Merge pull request #655 from bharathchandrareddy/community-contributions-branch

Added my contribution for day 4
This commit is contained in:
Ed Donner
2025-09-19 19:36:53 -04:00
committed by GitHub

View File

@@ -0,0 +1,249 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "87c471b2-6a46-47f6-9da9-81d2652dd1b6",
"metadata": {},
"source": [
"# The code given by tutor results in an error when more than 1 city name is entered."
]
},
{
"cell_type": "markdown",
"id": "d4c3cdc4-3af9-4b9e-a5d2-80cee3b120be",
"metadata": {},
"source": [
"# This code aims to solve that by giving proper prices for all the given cities"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "292b5152-8932-4341-b2c4-850f16a89e5e",
"metadata": {},
"outputs": [],
"source": [
"# imports\n",
"\n",
"import os\n",
"import json\n",
"from dotenv import load_dotenv\n",
"from openai import OpenAI\n",
"import gradio as gr\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "92d35c3d-cb2d-4ce8-a6da-3907ce3ce8b8",
"metadata": {},
"outputs": [],
"source": [
"# Initialization\n",
"\n",
"load_dotenv(override=True)\n",
"\n",
"openai_api_key = os.getenv('OPENAI_API_KEY')\n",
"if openai_api_key:\n",
" print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
"else:\n",
" print(\"OpenAI API Key not set\")\n",
" \n",
"MODEL = \"gpt-4o-mini\"\n",
"openai = OpenAI()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "54e11038-795c-4451-ad3b-f797abb57728",
"metadata": {},
"outputs": [],
"source": [
"system_message = \"You are a helpful assistant for an Airline called FlightAI. \"\n",
"system_message += \"Give short, courteous answers, no more than 1 sentence. \"\n",
"system_message += \"Always be accurate. If you don't know the answer, say so.\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e06c982f-59f1-4e33-a1c1-2f56415efbde",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"# This function looks rather simpler than the one from my video, because we're taking advantage of the latest Gradio updates\n",
"\n",
"def chat(message, history):\n",
" messages = [{\"role\": \"system\", \"content\": system_message}] + history + [{\"role\": \"user\", \"content\": message}]\n",
" response = openai.chat.completions.create(model=MODEL, messages=messages)\n",
" return response.choices[0].message.content\n",
"\n",
"gr.ChatInterface(fn=chat, type=\"messages\").launch()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d895e0ff-c47f-4b01-b987-4a236c452ba6",
"metadata": {},
"outputs": [],
"source": [
"# we'll try to impliment methods handle multi inputs in the query\n",
"ticket_prices = {\"london\": \"$799\", \"paris\": \"$899\", \"tokyo\": \"$1400\", \"berlin\": \"$499\"}\n",
"\n",
"def get_ticket_price(destination_city):\n",
" print(f\"Tool get_ticket_price called for {destination_city}\")\n",
" #return_prices = []\n",
" #for city in destination_city:\n",
" city = destination_city.lower()\n",
" #return_prices.append(ticket_prices.get(city,\"unknown\"))\n",
" return ticket_prices.get(city,\"Unknown\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e2387fe7-a7ac-4192-ad46-9ec2a9bc49fa",
"metadata": {},
"outputs": [],
"source": [
"get_ticket_price(\"paris\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b63e229e-08c9-49b4-b7af-1883736f12cd",
"metadata": {},
"outputs": [],
"source": [
"# There's a particular dictionary structure that's required to describe our function:\n",
"\n",
"price_function = {\n",
" \"name\": \"get_ticket_price\",\n",
" \"description\": \"Get the price of a return ticket to the destination city. Call this whenever you need to know the ticket price, for example when a customer asks 'How much is a ticket to this city'\",\n",
" \"parameters\": {\n",
" \"type\": \"object\",\n",
" \"properties\": {\n",
" \"destination_city\": {\n",
" \"type\": \"string\",\n",
" \"description\": \"List of cities that the customer wants to travel to\",\n",
" },\n",
" },\n",
" \"required\": [\"destination_city\"],\n",
" \"additionalProperties\": False\n",
" }\n",
"}"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0162af66-2ea4-4221-93df-dd22f0ad92f7",
"metadata": {},
"outputs": [],
"source": [
"# And this is included in a list of tools:\n",
"\n",
"tools = [{\"type\": \"function\", \"function\": price_function}]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8b2a5434-63d0-4519-907e-bce21852d48f",
"metadata": {},
"outputs": [],
"source": [
"def chat(message, history):\n",
" messages = [{\"role\": \"system\", \"content\": system_message}] + history + [{\"role\": \"user\", \"content\": message}]\n",
" response = openai.chat.completions.create(model=MODEL, messages=messages, tools=tools)\n",
" print(f\"response ----------------- \\n {response}\")\n",
" if response.choices[0].finish_reason==\"tool_calls\":\n",
" message = response.choices[0].message\n",
" print(f\"message: -----------------\\n\",message)\n",
" response, city = handle_tool_call(message)\n",
" # print('response is --------', response)\n",
" # print('city is ----------',city)\n",
" messages.append(message)\n",
" messages.extend(response)\n",
" response = openai.chat.completions.create(model=MODEL, messages=messages)\n",
" \n",
" return response.choices[0].message.content"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d7dfa28c-95f8-4d25-8f3c-cd677bb4a4d1",
"metadata": {},
"outputs": [],
"source": [
"# We have to write that function handle_tool_call:\n",
"\n",
"def handle_tool_call(message):\n",
" responses = []\n",
" all_cities = []\n",
" for tool_call in message.tool_calls:\n",
" \n",
" arguments = json.loads(tool_call.function.arguments)\n",
" list_of_city = arguments.get('destination_city')\n",
" print(f'list of city is ======== {list_of_city}')\n",
" price = get_ticket_price(list_of_city)\n",
" print(f'price of ticket to {list_of_city} is {price}')\n",
" response = {\n",
" \"role\": \"tool\",\n",
" \"content\": json.dumps({\"destination_city\": list_of_city,\"price\": price}),\n",
" \"tool_call_id\": tool_call.id\n",
" }\n",
" responses.append(response)\n",
" all_cities.append(list_of_city)\n",
" print(f'responses ====== {responses}')\n",
" print(f'cities ======= {all_cities}')\n",
" return responses,all_cities"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "15a4152d-6455-4116-bb63-6700eedf0626",
"metadata": {},
"outputs": [],
"source": [
"gr.ChatInterface(fn=chat, type=\"messages\").launch()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c6b0fcfa-38b7-4063-933e-1c8177bf55f1",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.13"
}
},
"nbformat": 4,
"nbformat_minor": 5
}