Add week8 contributions
This commit is contained in:
140
week8/community_contributions/modal_services/ft_pricer.py
Normal file
140
week8/community_contributions/modal_services/ft_pricer.py
Normal file
@@ -0,0 +1,140 @@
|
||||
import modal
|
||||
from modal import App, Volume, Image
|
||||
|
||||
import logging
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
|
||||
# ─────────────────────────────────────────────────────────────────────────────
|
||||
# Constants
|
||||
# ─────────────────────────────────────────────────────────────────────────────
|
||||
|
||||
GPU = "T4" # Use a T4 GPU for inference
|
||||
CACHE_PATH = "/cache" # Mount point for the Modal volume
|
||||
|
||||
# Hugging Face model references
|
||||
BASE_MODEL = "meta-llama/Meta-Llama-3.1-8B"
|
||||
FINETUNED_MODEL = "ed-donner/pricer-2024-09-13_13.04.39"
|
||||
REVISION = "e8d637df551603dc86cd7a1598a8f44af4d7ae36" # Commit of the fine-tuned model
|
||||
|
||||
# Local cache paths (inside the volume)
|
||||
BASE_MODEL_DIR = f"{CACHE_PATH}/llama_base_model"
|
||||
FINETUNED_MODEL_DIR = f"{CACHE_PATH}/llama_finetuned_model"
|
||||
|
||||
# ─────────────────────────────────────────────────────────────────────────────
|
||||
# Structure
|
||||
# ─────────────────────────────────────────────────────────────────────────────
|
||||
|
||||
# Container (App: llm-ft-pricer)
|
||||
# ├── /app ← Code + installed Python packages (from image)
|
||||
# ├── /cache ← Mounted Modal volume (`hf-hub-cache`)
|
||||
# │ └── meta-llama/Meta-Llama-3.1-8B/... ← HuggingFace model files downloaded via snapshot_download
|
||||
|
||||
|
||||
|
||||
QUESTION = "How much does this cost to the nearest dollar?"
|
||||
PREFIX = "Price is $" # Used to parse generated output
|
||||
|
||||
# ─────────────────────────────────────────────────────────────────────────────
|
||||
# Modal App, Image, Volume, Secrets
|
||||
# ─────────────────────────────────────────────────────────────────────────────
|
||||
|
||||
app = modal.App("llm-ft-pricer") # Define the Modal app
|
||||
|
||||
image = (
|
||||
Image.debian_slim()
|
||||
.pip_install("huggingface", "torch", "transformers", "bitsandbytes", "accelerate", "peft") # All needed libraries
|
||||
.env({"HF_HUB_CACHE": CACHE_PATH}) # Hugging Face will store model files in /cache
|
||||
)
|
||||
|
||||
cache_vol = modal.Volume.from_name("hf-hub-cache", create_if_missing=True) # Persisted volume for caching models
|
||||
secrets = [modal.Secret.from_name("HF_TOKEN")] # Hugging Face auth token
|
||||
|
||||
# ─────────────────────────────────────────────────────────────────────────────
|
||||
# Modal Class: Pricer
|
||||
# ─────────────────────────────────────────────────────────────────────────────
|
||||
|
||||
# All methods in this class run inside the container with the image, volume, secrets, and GPU you configured.
|
||||
@app.cls(
|
||||
image=image,
|
||||
secrets=secrets,
|
||||
volumes={CACHE_PATH: cache_vol}, # Mount volume into /cache
|
||||
gpu=GPU,
|
||||
timeout=1800, # 30-minute max runtime
|
||||
min_containers=0, # = 1 : Keeping one container warm uses credits continuously if you forget to stop it.
|
||||
scaledown_window=300, # Shuts down the container
|
||||
)
|
||||
class Pricer:
|
||||
@modal.enter()
|
||||
def setup(self):
|
||||
import os, torch
|
||||
import logging
|
||||
from huggingface_hub import snapshot_download
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
||||
from peft import PeftModel
|
||||
|
||||
# Create cache path if it doesn't exist
|
||||
os.makedirs(CACHE_PATH, exist_ok=True)
|
||||
|
||||
# Download base and fine-tuned models into volume
|
||||
logging.info("Downloading base model...")
|
||||
snapshot_download(BASE_MODEL, local_dir=BASE_MODEL_DIR)
|
||||
|
||||
logging.info("Downloading fine-tuned model...")
|
||||
snapshot_download(FINETUNED_MODEL, revision=REVISION, local_dir=FINETUNED_MODEL_DIR)
|
||||
|
||||
# Quantization config (4-bit)
|
||||
quant_config = BitsAndBytesConfig(
|
||||
load_in_4bit=True,
|
||||
bnb_4bit_use_double_quant=True,
|
||||
bnb_4bit_compute_dtype=torch.bfloat16,
|
||||
bnb_4bit_quant_type="nf4"
|
||||
)
|
||||
|
||||
# Load tokenizer
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL_DIR)
|
||||
self.tokenizer.pad_token = self.tokenizer.eos_token
|
||||
self.tokenizer.padding_side = "right"
|
||||
|
||||
# Load base model (quantized)
|
||||
base_model = AutoModelForCausalLM.from_pretrained(
|
||||
BASE_MODEL_DIR,
|
||||
quantization_config=quant_config,
|
||||
device_map="auto"
|
||||
)
|
||||
|
||||
# Apply fine-tuned weights
|
||||
self.fine_tuned_model = PeftModel.from_pretrained(
|
||||
base_model,
|
||||
FINETUNED_MODEL_DIR,
|
||||
revision=REVISION
|
||||
)
|
||||
self.fine_tuned_model.generation_config.pad_token_id = self.tokenizer.pad_token_id
|
||||
|
||||
@modal.method()
|
||||
def price(self, description: str) -> float:
|
||||
import re, torch
|
||||
from transformers import set_seed
|
||||
|
||||
set_seed(42) # Deterministic output
|
||||
|
||||
# Construct prompt
|
||||
prompt = f"{QUESTION}\n\n{description}\n\n{PREFIX}"
|
||||
inputs = self.tokenizer.encode(prompt, return_tensors="pt").to("cuda")
|
||||
attention_mask = torch.ones(inputs.shape, device="cuda")
|
||||
|
||||
# Generate model output (max 5 tokens)
|
||||
outputs = self.fine_tuned_model.generate(
|
||||
inputs,
|
||||
attention_mask=attention_mask,
|
||||
max_new_tokens=5,
|
||||
num_return_sequences=1
|
||||
)
|
||||
result = self.tokenizer.decode(outputs[0])
|
||||
|
||||
# Extract number after "Price is $"
|
||||
contents = result.split("Price is $")[1]
|
||||
contents = contents.replace(',', '')
|
||||
match = re.search(r"[-+]?\d*\.\d+|\d+", contents)
|
||||
return float(match.group()) if match else 0 # Return parsed price or 0 if not found
|
||||
|
||||
|
||||
12
week8/community_contributions/modal_services/get_started.py
Normal file
12
week8/community_contributions/modal_services/get_started.py
Normal file
@@ -0,0 +1,12 @@
|
||||
import sys, modal
|
||||
|
||||
app = modal.App("example-hello-world")
|
||||
|
||||
@app.function()
|
||||
def f(i: int) -> int:
|
||||
if i % 2 == 0:
|
||||
print("hello", i)
|
||||
else:
|
||||
print("world", i, file=sys.stderr)
|
||||
|
||||
return i * i
|
||||
Reference in New Issue
Block a user