Unit tests for pricer-module
This commit is contained in:
@@ -1,18 +1,5 @@
|
|||||||
# Run Continuous Integration (CI) Tests on Modal
|
# Run Continuous Integration (CI) Tests on Modal
|
||||||
|
|
||||||
Note!
|
|
||||||
The HF secret in Modal is named "huggingface-secret". Pls rename if your secret has another name.
|
|
||||||
|
|
||||||
## Test modal deployment
|
|
||||||
You can test pricer.ci in Modal:
|
|
||||||
(`modal deploy -m pricer.ci`)
|
|
||||||
In python CLI:
|
|
||||||
(`import modal`)
|
|
||||||
(`Pricer = modal.Cls.lookup("pricer-ci-testing", "Pricer")`)
|
|
||||||
(`pricer = Pricer()`)
|
|
||||||
(`reply = pricer.price.remote("Quadcast HyperX condenser mic, connects via usb-c to your computer for crystal clear audio")`)
|
|
||||||
(`print(reply)`)
|
|
||||||
|
|
||||||
## Unit testing
|
## Unit testing
|
||||||
Unit test strategy created like in
|
Unit test strategy created like in
|
||||||
[This example repo](https://github.com/modal-labs/ci-on-modal)
|
[This example repo](https://github.com/modal-labs/ci-on-modal)
|
||||||
@@ -20,11 +7,12 @@ Unit test strategy created like in
|
|||||||
## Usage
|
## Usage
|
||||||
|
|
||||||
All commands below are run from the root of the repository (this directory).
|
All commands below are run from the root of the repository (this directory).
|
||||||
|
_Note_: I removed modal-decorators from pricer.ci-module to be able to run unit tests.
|
||||||
|
|
||||||
### Run tests remotely on Modal
|
### Run tests remotely on Modal
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
modal run pricer.ci
|
modal run pricer.ci::pytest
|
||||||
```
|
```
|
||||||
|
|
||||||
On the first execution, the [container image](https://modal.com/docs/guide/custom-container)
|
On the first execution, the [container image](https://modal.com/docs/guide/custom-container)
|
||||||
@@ -39,9 +27,15 @@ To debug the tests, you can open a shell
|
|||||||
in the exact same environment that the tests are run in:
|
in the exact same environment that the tests are run in:
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
modal shell pricer.ci
|
modal shell pricer.ci::pytest
|
||||||
```
|
```
|
||||||
|
|
||||||
_Note_: On the Modal worker, the `pytest` command is run from the home directory, `/root`,
|
_Note_: On the Modal worker, the `pytest` command is run from the home directory, `/root`,
|
||||||
which contains the `tests` folder, but the `modal shell` command will
|
which contains the `tests` folder, but the `modal shell` command will
|
||||||
drop you at the top of the filesystem, `/`.
|
drop you at the top of the filesystem, `/`.
|
||||||
|
|
||||||
|
To run test:
|
||||||
|
```bash
|
||||||
|
cd root
|
||||||
|
pytest
|
||||||
|
```
|
||||||
@@ -39,17 +39,16 @@ FINETUNED_DIR = MODEL_DIR + FINETUNED_MODEL
|
|||||||
QUESTION = "How much does this cost to the nearest dollar?"
|
QUESTION = "How much does this cost to the nearest dollar?"
|
||||||
PREFIX = "Price is $"
|
PREFIX = "Price is $"
|
||||||
|
|
||||||
@app.cls(image=image, secrets=secrets, gpu=GPU, timeout=1800)
|
|
||||||
class Pricer:
|
class Pricer:
|
||||||
@modal.build()
|
|
||||||
def download_model_to_folder(self):
|
def download_model_to_folder(self):
|
||||||
from huggingface_hub import snapshot_download
|
from huggingface_hub import snapshot_download
|
||||||
import os
|
import os
|
||||||
os.makedirs(MODEL_DIR, exist_ok=True)
|
os.makedirs(MODEL_DIR, exist_ok=True)
|
||||||
snapshot_download(BASE_MODEL, local_dir=BASE_DIR)
|
print(f"Using this HF Token: {hf_token}")
|
||||||
snapshot_download(FINETUNED_MODEL, revision=REVISION, local_dir=FINETUNED_DIR)
|
snapshot_download(BASE_MODEL, local_dir=BASE_DIR, use_auth_token=hf_token)
|
||||||
|
snapshot_download(FINETUNED_MODEL, revision=REVISION, local_dir=FINETUNED_DIR, use_auth_token=hf_token)
|
||||||
|
|
||||||
@modal.enter()
|
|
||||||
def setup(self):
|
def setup(self):
|
||||||
import os
|
import os
|
||||||
import torch
|
import torch
|
||||||
@@ -78,7 +77,6 @@ class Pricer:
|
|||||||
|
|
||||||
self.fine_tuned_model = PeftModel.from_pretrained(self.base_model, FINETUNED_DIR, revision=REVISION)
|
self.fine_tuned_model = PeftModel.from_pretrained(self.base_model, FINETUNED_DIR, revision=REVISION)
|
||||||
|
|
||||||
@modal.method()
|
|
||||||
def price(self, description: str) -> float:
|
def price(self, description: str) -> float:
|
||||||
import os
|
import os
|
||||||
import re
|
import re
|
||||||
@@ -98,6 +96,5 @@ class Pricer:
|
|||||||
match = re.search(r"[-+]?\d*\.\d+|\d+", contents)
|
match = re.search(r"[-+]?\d*\.\d+|\d+", contents)
|
||||||
return float(match.group()) if match else 0
|
return float(match.group()) if match else 0
|
||||||
|
|
||||||
@modal.method()
|
|
||||||
def wake_up(self) -> str:
|
def wake_up(self) -> str:
|
||||||
return "ok"
|
return "ok"
|
||||||
|
|||||||
@@ -4,3 +4,4 @@ transformers
|
|||||||
bitsandbytes
|
bitsandbytes
|
||||||
accelerate
|
accelerate
|
||||||
peft
|
peft
|
||||||
|
dotenv
|
||||||
|
|||||||
@@ -1,5 +0,0 @@
|
|||||||
from my_pkg.lib import has_gpu
|
|
||||||
|
|
||||||
|
|
||||||
def test_torch_cuda():
|
|
||||||
assert has_gpu()
|
|
||||||
@@ -0,0 +1,84 @@
|
|||||||
|
import pdb
|
||||||
|
from pricer.ci import Pricer
|
||||||
|
from unittest.mock import patch, MagicMock
|
||||||
|
import torch
|
||||||
|
import pytest
|
||||||
|
from transformers import BitsAndBytesConfig
|
||||||
|
|
||||||
|
BASE_MODEL = "meta-llama/Meta-Llama-3.1-8B"
|
||||||
|
PROJECT_NAME = "pricer"
|
||||||
|
HF_USER = "ed-donner" # your HF name here! Or use mine if you just want to reproduce my results.
|
||||||
|
RUN_NAME = "2024-09-13_13.04.39"
|
||||||
|
PROJECT_RUN_NAME = f"{PROJECT_NAME}-{RUN_NAME}"
|
||||||
|
REVISION = "e8d637df551603dc86cd7a1598a8f44af4d7ae36"
|
||||||
|
FINETUNED_MODEL = f"{HF_USER}/{PROJECT_RUN_NAME}"
|
||||||
|
MODEL_DIR = "hf-cache/"
|
||||||
|
BASE_DIR = MODEL_DIR + BASE_MODEL
|
||||||
|
FINETUNED_DIR = MODEL_DIR + FINETUNED_MODEL
|
||||||
|
|
||||||
|
@pytest.fixture
|
||||||
|
def pricer():
|
||||||
|
return Pricer()
|
||||||
|
|
||||||
|
def test_wake_up():
|
||||||
|
pricer = Pricer()
|
||||||
|
assert pricer.wake_up() == "ok"
|
||||||
|
|
||||||
|
|
||||||
|
@patch('transformers.AutoTokenizer')
|
||||||
|
@patch('peft.PeftModel')
|
||||||
|
@patch('transformers.AutoModelForCausalLM')
|
||||||
|
def test_setup(MockAutoModel, MockPeftModel, MockAutoTokenizer, pricer):
|
||||||
|
# Setup mocks
|
||||||
|
mock_tokenizer = MockAutoTokenizer.from_pretrained.return_value
|
||||||
|
mock_model = MockAutoModel.from_pretrained.return_value
|
||||||
|
mock_peft_model = MockPeftModel.from_pretrained.return_value
|
||||||
|
|
||||||
|
# Call the setup method
|
||||||
|
pricer.setup()
|
||||||
|
|
||||||
|
# Assertions to ensure the setup method works correctly
|
||||||
|
MockAutoTokenizer.from_pretrained.assert_called_once_with(BASE_DIR)
|
||||||
|
assert pricer.tokenizer == mock_tokenizer
|
||||||
|
assert pricer.tokenizer.pad_token == pricer.tokenizer.eos_token
|
||||||
|
assert pricer.tokenizer.padding_side == "right"
|
||||||
|
|
||||||
|
quant_config = BitsAndBytesConfig(
|
||||||
|
load_in_4bit=True,
|
||||||
|
bnb_4bit_use_double_quant=True,
|
||||||
|
bnb_4bit_compute_dtype=torch.bfloat16,
|
||||||
|
bnb_4bit_quant_type="nf4"
|
||||||
|
)
|
||||||
|
|
||||||
|
MockAutoModel.from_pretrained.assert_called_once_with(
|
||||||
|
BASE_DIR,
|
||||||
|
quantization_config=quant_config,
|
||||||
|
device_map="auto"
|
||||||
|
)
|
||||||
|
assert pricer.base_model == mock_model
|
||||||
|
|
||||||
|
MockPeftModel.from_pretrained.assert_called_once_with(mock_model, FINETUNED_DIR, revision=REVISION)
|
||||||
|
assert pricer.fine_tuned_model == mock_peft_model
|
||||||
|
|
||||||
|
|
||||||
|
@patch('transformers.AutoTokenizer')
|
||||||
|
@patch('peft.PeftModel')
|
||||||
|
def test_price(MockPeftModel, MockAutoTokenizer, pricer):
|
||||||
|
# Setup mocks
|
||||||
|
mock_tokenizer = MockAutoTokenizer.return_value
|
||||||
|
mock_tokenizer.encode.return_value = torch.tensor([[1, 2, 3]])
|
||||||
|
mock_tokenizer.decode.return_value = "Price is $123.45"
|
||||||
|
|
||||||
|
mock_model = MockPeftModel.return_value
|
||||||
|
mock_model.generate.return_value = torch.tensor([[1, 2, 3, 4, 5]])
|
||||||
|
|
||||||
|
# Assign mocks to the pricer instance
|
||||||
|
pricer.tokenizer = mock_tokenizer
|
||||||
|
pricer.fine_tuned_model = mock_model
|
||||||
|
|
||||||
|
# Call the method
|
||||||
|
description = "Test description"
|
||||||
|
result = pricer.price(description)
|
||||||
|
|
||||||
|
# Assert the result
|
||||||
|
assert result == 123.45
|
||||||
Reference in New Issue
Block a user