Week 8 updates
This commit is contained in:
84
week8/pricer_service2.py
Normal file
84
week8/pricer_service2.py
Normal file
@@ -0,0 +1,84 @@
|
||||
import modal
|
||||
from modal import App, Volume, Image
|
||||
|
||||
# Setup - define our infrastructure with code!
|
||||
|
||||
app = modal.App("pricer-service")
|
||||
image = Image.debian_slim().pip_install("huggingface", "torch", "transformers", "bitsandbytes", "accelerate", "peft")
|
||||
secrets = [modal.Secret.from_name("hf-secret")]
|
||||
|
||||
# Constants
|
||||
|
||||
GPU = "T4"
|
||||
BASE_MODEL = "meta-llama/Meta-Llama-3.1-8B"
|
||||
PROJECT_NAME = "pricer"
|
||||
HF_USER = "ed-donner" # your HF name here! Or use mine if you just want to reproduce my results.
|
||||
RUN_NAME = "2024-09-13_13.04.39"
|
||||
PROJECT_RUN_NAME = f"{PROJECT_NAME}-{RUN_NAME}"
|
||||
REVISION = "e8d637df551603dc86cd7a1598a8f44af4d7ae36"
|
||||
FINETUNED_MODEL = f"{HF_USER}/{PROJECT_RUN_NAME}"
|
||||
|
||||
QUESTION = "How much does this cost to the nearest dollar?"
|
||||
PREFIX = "Price is $"
|
||||
|
||||
|
||||
@app.cls(image=image, secrets=secrets, gpu=GPU)
|
||||
class Pricer:
|
||||
@modal.build()
|
||||
def download_model_to_folder(self):
|
||||
from huggingface_hub import snapshot_download
|
||||
import os
|
||||
MODEL_DIR = "~/.cache/huggingface/hub/"
|
||||
os.makedirs(MODEL_DIR, exist_ok=True)
|
||||
snapshot_download(BASE_MODEL, local_dir=MODEL_DIR)
|
||||
snapshot_download(FINETUNED_MODEL, revision=REVISION, local_dir=MODEL_DIR)
|
||||
|
||||
@modal.enter()
|
||||
def setup(self):
|
||||
import os
|
||||
import torch
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, set_seed
|
||||
from peft import PeftModel
|
||||
|
||||
# Quant Config
|
||||
quant_config = BitsAndBytesConfig(
|
||||
load_in_4bit=True,
|
||||
bnb_4bit_use_double_quant=True,
|
||||
bnb_4bit_compute_dtype=torch.bfloat16,
|
||||
bnb_4bit_quant_type="nf4"
|
||||
)
|
||||
|
||||
# Load model and tokenizer
|
||||
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
|
||||
self.tokenizer.pad_token = self.tokenizer.eos_token
|
||||
self.tokenizer.padding_side = "right"
|
||||
|
||||
self.base_model = AutoModelForCausalLM.from_pretrained(
|
||||
BASE_MODEL,
|
||||
quantization_config=quant_config,
|
||||
device_map="auto"
|
||||
)
|
||||
|
||||
self.fine_tuned_model = PeftModel.from_pretrained(self.base_model, FINETUNED_MODEL, revision=REVISION)
|
||||
|
||||
@modal.method()
|
||||
def price(self, description: str) -> float:
|
||||
import os
|
||||
import re
|
||||
import torch
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, set_seed
|
||||
from peft import PeftModel
|
||||
|
||||
set_seed(42)
|
||||
prompt = f"{QUESTION}\n\n{description}\n\n{PREFIX}"
|
||||
inputs = self.tokenizer.encode(prompt, return_tensors="pt").to("cuda")
|
||||
attention_mask = torch.ones(inputs.shape, device="cuda")
|
||||
outputs = self.fine_tuned_model.generate(inputs, attention_mask=attention_mask, max_new_tokens=5, num_return_sequences=1)
|
||||
result = self.tokenizer.decode(outputs[0])
|
||||
|
||||
contents = result.split("Price is $")[1]
|
||||
contents = contents.replace(',','')
|
||||
match = re.search(r"[-+]?\d*\.\d+|\d+", contents)
|
||||
return float(match.group()) if match else 0
|
||||
|
||||
Reference in New Issue
Block a user