Submission for Week 1 and Week 2 Exercises
This commit is contained in:
@@ -0,0 +1,253 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "84ba5ab4",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Week 2 Exercise: Build a Multimodal AI Technical Assistant\n",
|
||||
"## Task Objective:\n",
|
||||
"This week, you will upgrade the technical question-answering tool you built in Week 1 into a full-featured prototype. The goal is to apply all the concepts from Week 2 to create a more robust and interactive AI assistant.\n",
|
||||
"\n",
|
||||
"Core Requirements\n",
|
||||
"Your prototype must include the following features:\n",
|
||||
"\n",
|
||||
"Gradio UI: Build a user-friendly interface for your assistant.\n",
|
||||
"\n",
|
||||
"Streaming Responses: Ensure the model's answers are streamed back to the user in real-time.\n",
|
||||
"\n",
|
||||
"System Prompt: Use a system prompt to define the AI's expertise and personality as a technical assistant.\n",
|
||||
"\n",
|
||||
"Model Switching: Implement a feature that allows the user to switch between at least two different models (e.g., an OpenAI model and Llama).\n",
|
||||
"\n",
|
||||
"Bonus: Demonstrate the use of a tool within your application for extra credit.\n",
|
||||
" "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 65,
|
||||
"id": "6f83cbe7",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# imports\n",
|
||||
"import os\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"from openai import OpenAI\n",
|
||||
"import gradio as gr\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 66,
|
||||
"id": "18207ba0",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Constants\n",
|
||||
"MODEL_GPT = 'gpt-4o-mini'\n",
|
||||
"MODEL_LLAMA = 'llama3.2'\n",
|
||||
"OLLAMA_BASE_URL = \"http://localhost:11434/v1\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 67,
|
||||
"id": "27033ed9",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"API key found and looks good so far!\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# set up environment\n",
|
||||
"load_dotenv(override=True)\n",
|
||||
"api_key=os.getenv('OPENAI_API_KEY')\n",
|
||||
"\n",
|
||||
"if not api_key:\n",
|
||||
" print(\"No API key was found - please head over to the troubleshooting notebook in this folder to identify & fix!\")\n",
|
||||
"elif not api_key.startswith(\"sk-proj-\"):\n",
|
||||
" print(\"An API key was found, but it doesn't start sk-proj-; please check you're using the right key - see troubleshooting notebook\")\n",
|
||||
"elif api_key.strip() != api_key:\n",
|
||||
" print(\"An API key was found, but it looks like it might have space or tab characters at the start or end - please remove them - see troubleshooting notebook\")\n",
|
||||
"else:\n",
|
||||
" print(\"API key found and looks good so far!\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 68,
|
||||
"id": "b78ae89b",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# initializing models\n",
|
||||
"\n",
|
||||
"openai = OpenAI()\n",
|
||||
"ollama = OpenAI(base_url=OLLAMA_BASE_URL, api_key='ollama')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 69,
|
||||
"id": "1023bb5d",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# here is the question; type over this to ask something new\n",
|
||||
"system_prompt = \"\"\"\n",
|
||||
"You are a technical assistant. You are to expect technical questions. You are to respond with detailed explanations to the technical question. You are to respond in Nigerian Pidgin English\n",
|
||||
"\"\"\"\n",
|
||||
"\n",
|
||||
"question = \"\"\"\n",
|
||||
"Please explain what tokens are in LLM\n",
|
||||
"\"\"\"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"messages = [\n",
|
||||
" {\"role\": \"system\", \"content\": system_prompt},\n",
|
||||
" {\"role\": \"user\", \"content\": question},\n",
|
||||
"]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 70,
|
||||
"id": "25ce65dc",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def chat(message, history, model_choice):\n",
|
||||
" # history = [{\"role\": h[\"role\"], \"content\": h[\"content\"]} for h in history]\n",
|
||||
" messages = (\n",
|
||||
" [{\"role\": \"system\", \"content\": system_prompt}]\n",
|
||||
" + history\n",
|
||||
" + [{\"role\": \"user\", \"content\": message}]\n",
|
||||
" )\n",
|
||||
" if model_choice == \"openai\":\n",
|
||||
" try:\n",
|
||||
" stream = openai.chat.completions.create(\n",
|
||||
" model=MODEL_GPT, messages=messages, stream=True\n",
|
||||
" )\n",
|
||||
" \n",
|
||||
" response = \"\"\n",
|
||||
" for chunk in stream:\n",
|
||||
" response += chunk.choices[0].delta.content or \"\"\n",
|
||||
" yield response\n",
|
||||
" except Exception as e:\n",
|
||||
" yield f\"Error with OpenAI API: {e}\"\n",
|
||||
"\n",
|
||||
" elif model_choice == \"llama\":\n",
|
||||
" try:\n",
|
||||
" stream = ollama.chat.completions.create(\n",
|
||||
" model=MODEL_LLAMA, messages=messages, stream=True\n",
|
||||
" )\n",
|
||||
" \n",
|
||||
" response = \"\"\n",
|
||||
" for chunk in stream:\n",
|
||||
" response += chunk.choices[0].delta.content or \"\"\n",
|
||||
" yield response\n",
|
||||
" except Exception as e:\n",
|
||||
" yield f\"Error with OpenAI API: {e}\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 71,
|
||||
"id": "8f46425c",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"model_selector = gr.Radio(\n",
|
||||
" [\"openai\", \"llama\"], \n",
|
||||
" label=\"Choose Model\", \n",
|
||||
" value=\"openai\" \n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 72,
|
||||
"id": "d239c424",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"chatbot = gr.ChatInterface(fn=chat, type=\"messages\", additional_inputs=[model_selector])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 73,
|
||||
"id": "b00ac432",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"* Running on local URL: http://127.0.0.1:7865\n",
|
||||
"* To create a public link, set `share=True` in `launch()`.\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/html": [
|
||||
"<div><iframe src=\"http://127.0.0.1:7865/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
||||
],
|
||||
"text/plain": [
|
||||
"<IPython.core.display.HTML object>"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": []
|
||||
},
|
||||
"execution_count": 73,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"chatbot.launch()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "8ad21f62",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": ".venv",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.12.4"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
Reference in New Issue
Block a user