week 4 excercises: added Gemini and Python Code Documentation Assistant

This commit is contained in:
Krabulek
2025-09-19 12:35:00 +02:00
parent d72fccaaeb
commit 2a0eff02c2
2 changed files with 1390 additions and 0 deletions

View File

@@ -0,0 +1,700 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "4a6ab9a2-28a2-445d-8512-a0dc8d1b54e9",
"metadata": {},
"source": [
"# Python Code Documentation Assistant\n",
"\n",
"The requirement: use a Frontier model to add docstrings and comments to your Python code\n"
]
},
{
"cell_type": "markdown",
"id": "d4634170-c444-4326-9e68-5f87c63fa0e0",
"metadata": {},
"source": [
"## Imports"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1f72dfaf-9f20-4d81-b082-018eda152c9f",
"metadata": {},
"outputs": [],
"source": [
"!pip install -U -q \"google-genai\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e610bf56-a46e-4aff-8de1-ab49d62b1ad3",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import io\n",
"import sys\n",
"from dotenv import load_dotenv\n",
"from openai import OpenAI\n",
"from google import genai\n",
"from google.genai import types\n",
"import anthropic\n",
"from IPython.display import Markdown, display, update_display\n",
"import gradio as gr\n",
"import subprocess"
]
},
{
"cell_type": "markdown",
"id": "f91e8b32-4c98-4210-a1e1-bfe0b1fddab7",
"metadata": {},
"source": [
"## Environment"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4f672e1c-87e9-4865-b760-370fa605e614",
"metadata": {},
"outputs": [],
"source": [
"load_dotenv(override=True)\n",
"openai_api_key = os.getenv('OPENAI_API_KEY')\n",
"anthropic_api_key = os.getenv('ANTHROPIC_API_KEY')\n",
"google_api_key = os.getenv('GOOGLE_API_KEY')\n",
"\n",
"if openai_api_key:\n",
" print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
"else:\n",
" print(\"OpenAI API Key not set\")\n",
" \n",
"if anthropic_api_key:\n",
" print(f\"Anthropic API Key exists and begins {anthropic_api_key[:7]}\")\n",
"else:\n",
" print(\"Anthropic API Key not set\")\n",
"\n",
"if google_api_key:\n",
" print(f\"Google API Key exists and begins {google_api_key[:4]}\")\n",
"else:\n",
" print(\"Google API Key not set\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8aa149ed-9298-4d69-8fe2-8f5de0f667da",
"metadata": {},
"outputs": [],
"source": [
"openai = OpenAI()\n",
"claude = anthropic.Anthropic()\n",
"gemini = genai.Client()\n",
"\n",
"OPENAI_MODEL = \"o4-mini\"\n",
"CLAUDE_MODEL = \"claude-3-7-sonnet-latest\"\n",
"GEMINI_MODEL = \"gemini-2.5-flash\""
]
},
{
"cell_type": "markdown",
"id": "88a18c58-40d5-4592-8dd3-d7c7b0d951aa",
"metadata": {},
"source": [
"## Prompts"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6896636f-923e-4a2c-9d6c-fac07828a201",
"metadata": {},
"outputs": [],
"source": [
"system_message = \"\"\"\n",
"You are an assistant that documents Python code. \n",
"Your task: \n",
"- Add concise, clear, and informative docstrings to functions, classes, and modules. \n",
"- Add inline comments only where they improve readability or clarify intent. \n",
"- Do not modify the code logic or structure. \n",
"- Respond with Python code only. \n",
"\"\"\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8e7b3546-57aa-4c29-bc5d-f211970d04eb",
"metadata": {},
"outputs": [],
"source": [
"def user_prompt_for(python):\n",
" user_prompt = \"Add docstrings and comments to the following Python code:\\n\"\n",
" user_prompt += python\n",
" return user_prompt"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c6190659-f54c-4951-bef4-4960f8e51cc4",
"metadata": {},
"outputs": [],
"source": [
"def messages_for(python):\n",
" return [\n",
" {\"role\": \"system\", \"content\": system_message},\n",
" {\"role\": \"user\", \"content\": user_prompt_for(python)}\n",
" ]"
]
},
{
"cell_type": "markdown",
"id": "624e5066-bcf6-490d-a790-608d2bb34184",
"metadata": {},
"source": [
"## Helper functions"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "71e1ba8c-5b05-4726-a9f3-8d8c6257350b",
"metadata": {},
"outputs": [],
"source": [
"def write_output(python, filename_suffix):\n",
" filename = f\"annotated_{filename_suffix}.py\"\n",
" code = python.replace(\"```python\",\"\").replace(\"```\",\"\")\n",
" with open(filename, \"w\") as f:\n",
" f.write(code)\n",
" print(f\"\\nWritten code to {filename}\")\n",
" return filename"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e7d2fea8-74c6-4421-8f1e-0e76d5b201b9",
"metadata": {},
"outputs": [],
"source": [
"def annotate_with_gpt(python, task_name): \n",
" stream = openai.chat.completions.create(model=OPENAI_MODEL, messages=messages_for(python), stream=True)\n",
" reply = \"\"\n",
" for chunk in stream:\n",
" fragment = chunk.choices[0].delta.content or \"\"\n",
" reply += fragment\n",
" print(fragment, end='', flush=True)\n",
" return write_output(reply, f\"{task_name}_gpt\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7cd84ad8-d55c-4fe0-9eeb-1895c95c4a9d",
"metadata": {},
"outputs": [],
"source": [
"def annotate_with_claude(python, task_name):\n",
" result = claude.messages.stream(\n",
" model=CLAUDE_MODEL,\n",
" max_tokens=2000,\n",
" system=system_message,\n",
" messages=[{\"role\": \"user\", \"content\": user_prompt_for(python)}],\n",
" )\n",
" reply = \"\"\n",
" with result as stream:\n",
" for text in stream.text_stream:\n",
" reply += text\n",
" print(text, end=\"\", flush=True)\n",
" return write_output(reply, f\"{task_name}_claude\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e8a35102-1c95-469b-8855-e85f4c9bdbdf",
"metadata": {},
"outputs": [],
"source": [
"def annotate_with_gemini(python, task_name):\n",
" reply = gemini.models.generate_content(\n",
" model=GEMINI_MODEL,\n",
" contents=user_prompt_for(python),\n",
" config=types.GenerateContentConfig(\n",
" system_instruction=system_message,\n",
" )\n",
" )\n",
"\n",
" print(reply.text)\n",
" return write_output(reply.text, f\"{task_name}_gemini\")"
]
},
{
"cell_type": "markdown",
"id": "028dcfdd-2d52-4e11-a79e-2214a97cb26d",
"metadata": {},
"source": [
"# Run the Annotator"
]
},
{
"cell_type": "markdown",
"id": "7462d9f9-6215-4fb0-9471-1d0141d33205",
"metadata": {},
"source": [
"## Pi example"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a1cbb778-fa57-43de-b04b-ed523f396c38",
"metadata": {},
"outputs": [],
"source": [
"pi = \"\"\"\n",
"import time\n",
"\n",
"def calculate(iterations, param1, param2):\n",
" result = 1.0\n",
" for i in range(1, iterations+1):\n",
" j = i * param1 - param2\n",
" result -= (1/j)\n",
" j = i * param1 + param2\n",
" result += (1/j)\n",
" return result\n",
"\n",
"start_time = time.time()\n",
"result = calculate(100_000_000, 4, 1) * 4\n",
"end_time = time.time()\n",
"\n",
"print(f\"Result: {result:.12f}\")\n",
"print(f\"Execution Time: {(end_time - start_time):.6f} seconds\")\n",
"\"\"\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "105db6f9-343c-491d-8e44-3a5328b81719",
"metadata": {},
"outputs": [],
"source": [
"gpt_pi = annotate_with_gpt(pi, \"pi))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "415819d0-fc95-4f78-a6ae-5c7d6781c6a7",
"metadata": {},
"outputs": [],
"source": [
"# check if the script works\n",
"\n",
"exec(open(gpt_pi).read())"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "983a11fe-e24d-4c65-8269-9802c5ef3ae6",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"claude_pi = annotate_with_claude(pi, \"pi\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "52f5b710-0dea-4884-8ed7-a94059d88281",
"metadata": {},
"outputs": [],
"source": [
"exec(open(claude_pi).read())"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "01f331f2-caac-48f6-9a03-8a228ee521bc",
"metadata": {},
"outputs": [],
"source": [
"gemini_pi = annotate_with_gemini(pi, \"pi\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "23529942-53fa-46ad-a5db-1f3096dd6607",
"metadata": {},
"outputs": [],
"source": [
"exec(open(gemini_pi).read())"
]
},
{
"cell_type": "markdown",
"id": "7d1eaeca-61be-4d0a-a525-dd09f52aaa0f",
"metadata": {},
"source": [
"## Hard example"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c3b497b3-f569-420e-b92e-fb0f49957ce0",
"metadata": {},
"outputs": [],
"source": [
"python_hard = \"\"\"# Be careful to support large number sizes\n",
"\n",
"def lcg(seed, a=1664525, c=1013904223, m=2**32):\n",
" value = seed\n",
" while True:\n",
" value = (a * value + c) % m\n",
" yield value\n",
" \n",
"def max_subarray_sum(n, seed, min_val, max_val):\n",
" lcg_gen = lcg(seed)\n",
" random_numbers = [next(lcg_gen) % (max_val - min_val + 1) + min_val for _ in range(n)]\n",
" max_sum = float('-inf')\n",
" for i in range(n):\n",
" current_sum = 0\n",
" for j in range(i, n):\n",
" current_sum += random_numbers[j]\n",
" if current_sum > max_sum:\n",
" max_sum = current_sum\n",
" return max_sum\n",
"\n",
"def total_max_subarray_sum(n, initial_seed, min_val, max_val):\n",
" total_sum = 0\n",
" lcg_gen = lcg(initial_seed)\n",
" for _ in range(20):\n",
" seed = next(lcg_gen)\n",
" total_sum += max_subarray_sum(n, seed, min_val, max_val)\n",
" return total_sum\n",
"\n",
"# Parameters\n",
"n = 10000 # Number of random numbers\n",
"initial_seed = 42 # Initial seed for the LCG\n",
"min_val = -10 # Minimum value of random numbers\n",
"max_val = 10 # Maximum value of random numbers\n",
"\n",
"# Timing the function\n",
"import time\n",
"start_time = time.time()\n",
"result = total_max_subarray_sum(n, initial_seed, min_val, max_val)\n",
"end_time = time.time()\n",
"\n",
"print(\"Total Maximum Subarray Sum (20 runs):\", result)\n",
"print(\"Execution Time: {:.6f} seconds\".format(end_time - start_time))\n",
"\"\"\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "dab5e4bc-276c-4555-bd4c-12c699d5e899",
"metadata": {},
"outputs": [],
"source": [
"exec(python_hard)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e8d24ed5-2c15-4f55-80e7-13a3952b3cb8",
"metadata": {},
"outputs": [],
"source": [
"gpt_hard = annotate_with_gpt(python_hard, \"hard\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "80a15259-3d51-47b8-953c-6271fbd4b6fb",
"metadata": {},
"outputs": [],
"source": [
"exec(open(gpt_hard).read())"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e9305446-1d0c-4b51-866a-b8c1e299bf5c",
"metadata": {},
"outputs": [],
"source": [
"gemini_hard = annotate_with_gemini(python_hard, \"hard\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ad6eecc8-0517-43d8-bd21-5bbdedae7a10",
"metadata": {},
"outputs": [],
"source": [
"exec(open(gemini_hard).read())"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2ee75e72-9ecb-4edd-a74a-4d3a83c1eb79",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"claude_hard = annotate_with_claude(python_hard, \"hard\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "47af1516-455f-4d1c-8a1c-2da5a38c0ba5",
"metadata": {},
"outputs": [],
"source": [
"exec(open(claude_hard).read())"
]
},
{
"cell_type": "markdown",
"id": "ff02ce09-0544-49a5-944d-a57b25bf9b72",
"metadata": {},
"source": [
"# Streaming"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0be9f47d-5213-4700-b0e2-d444c7c738c0",
"metadata": {},
"outputs": [],
"source": [
"def stream_gpt(python): \n",
" stream = openai.chat.completions.create(model=OPENAI_MODEL, messages=messages_for(python), stream=True)\n",
" reply = \"\"\n",
" for chunk in stream:\n",
" fragment = chunk.choices[0].delta.content or \"\"\n",
" reply += fragment\n",
" yield reply.replace('```python\\n','').replace('```','')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8669f56b-8314-4582-a167-78842caea131",
"metadata": {},
"outputs": [],
"source": [
"def stream_claude(python):\n",
" result = claude.messages.stream(\n",
" model=CLAUDE_MODEL,\n",
" max_tokens=2000,\n",
" system=system_message,\n",
" messages=[{\"role\": \"user\", \"content\": user_prompt_for(python)}],\n",
" )\n",
" reply = \"\"\n",
" with result as stream:\n",
" for text in stream.text_stream:\n",
" reply += text\n",
" yield reply.replace('```python\\n','').replace('```','')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d48d44df-c082-4ed1-b3ea-fc2a880591c2",
"metadata": {},
"outputs": [],
"source": [
"def stream_gemini(python):\n",
" stream = gemini.models.generate_content_stream(\n",
" model=GEMINI_MODEL,\n",
" contents=user_prompt_for(python),\n",
" config=types.GenerateContentConfig(\n",
" system_instruction=system_message,\n",
" ),\n",
" )\n",
" reply = \"\"\n",
" for chunk in stream:\n",
" reply += chunk.text\n",
" yield reply.replace('```python\\n','').replace('```','')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2f1ae8f5-16c8-40a0-aa18-63b617df078d",
"metadata": {},
"outputs": [],
"source": [
"def annotate(python, model):\n",
" if model == \"GPT\":\n",
" result = stream_gpt(python)\n",
" elif model == \"Claude\":\n",
" result = stream_claude(python)\n",
" elif model == \"Gemini\":\n",
" result = stream_gemini(python)\n",
" else:\n",
" raise ValueError(\"Unknown model\")\n",
" for stream_so_far in result:\n",
" yield stream_so_far "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "19bf2bff-a822-4009-a539-f003b1651383",
"metadata": {},
"outputs": [],
"source": [
"def execute_python(code):\n",
" try:\n",
" output = io.StringIO()\n",
" sys.stdout = output\n",
" exec(code)\n",
" finally:\n",
" sys.stdout = sys.__stdout__\n",
" return output.getvalue()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9a2274f1-d03b-42c0-8dcc-4ce159b18442",
"metadata": {},
"outputs": [],
"source": [
"css = \"\"\"\n",
".python {background-color: #306998;}\n",
"\"\"\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "76167ea9-d0a1-4bc6-8d73-633d3b8c8df6",
"metadata": {},
"outputs": [],
"source": [
"import gradio as gr\n",
"\n",
"# Parameters\n",
"LINES = 25\n",
"LINE_HEIGHT = 20 # px, typical CodeMirror line height\n",
"PADDING = 10 # px, top + bottom padding\n",
"\n",
"CODE_HEIGHT = LINES * LINE_HEIGHT + PADDING\n",
"\n",
"\n",
"with gr.Blocks(\n",
" theme=gr.themes.Soft(),\n",
" css=f\"\"\"\n",
"#code_input .cm-editor, #annotated_code .cm-editor {{\n",
" height: {CODE_HEIGHT}px !important;\n",
" overflow-y: auto !important;\n",
"}}\n",
"\"\"\"\n",
") as demo_v2:\n",
" gr.Markdown(\"## 🐍 Annotate Python Code with Docstrings and Comments\")\n",
"\n",
" with gr.Row():\n",
" with gr.Column(scale=1):\n",
" gr.Markdown(\"### Python code:\")\n",
" code_input = gr.Code(\n",
" language=\"python\", \n",
" value=python_hard,\n",
" lines=25,\n",
" elem_id=\"code_input\"\n",
" )\n",
" \n",
" with gr.Column(scale=1):\n",
" gr.Markdown(\"### Annotated code:\")\n",
" annotated_output = gr.Code(\n",
" language=\"python\",\n",
" lines=25,\n",
" elem_id=\"annotated_code\"\n",
" )\n",
"\n",
" with gr.Row():\n",
" with gr.Column(scale=1):\n",
" model_dropdown = gr.Dropdown(\n",
" choices=[\"Gemini\", \"GPT-4\", \"Claude\"],\n",
" value=\"Gemini\",\n",
" label=\"Select model\"\n",
" )\n",
" with gr.Column(scale=1):\n",
" annotate_btn = gr.Button(\"✨ Annotate code\", variant=\"primary\")\n",
" run_btn = gr.Button(\"▶️ Run Python\", variant=\"secondary\")\n",
"\n",
" with gr.Row():\n",
" with gr.Column():\n",
" gr.Markdown(\"### Python result:\")\n",
" result_output = gr.Textbox(\n",
" lines=5, \n",
" label=\"Output\",\n",
" interactive=False\n",
" )\n",
" \n",
" annotate_btn.click(\n",
" annotate,\n",
" inputs=[code_input, model_dropdown],\n",
" outputs=[annotated_output]\n",
" )\n",
" run_btn.click(execute_python, inputs=[code_input], outputs=[result_output])\n",
"\n",
" \n",
"demo_v2.launch(inbrowser=True)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ea42883b-fdba-46ed-97be-f42e3cb41f11",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.13"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -0,0 +1,690 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "4a6ab9a2-28a2-445d-8512-a0dc8d1b54e9",
"metadata": {},
"source": [
"# Code Generator\n",
"\n",
"The requirement: use a Frontier model to generate high performance C++ code from Python code\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1f72dfaf-9f20-4d81-b082-018eda152c9f",
"metadata": {},
"outputs": [],
"source": [
"!pip install -U -q \"google-genai\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e610bf56-a46e-4aff-8de1-ab49d62b1ad3",
"metadata": {},
"outputs": [],
"source": [
"# imports\n",
"\n",
"import os\n",
"import io\n",
"import sys\n",
"from dotenv import load_dotenv\n",
"from openai import OpenAI\n",
"from google import genai\n",
"from google.genai import types\n",
"import anthropic\n",
"from IPython.display import Markdown, display, update_display\n",
"import gradio as gr\n",
"import subprocess"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4f672e1c-87e9-4865-b760-370fa605e614",
"metadata": {},
"outputs": [],
"source": [
"# environment\n",
"\n",
"load_dotenv(override=True)\n",
"openai_api_key = os.getenv('OPENAI_API_KEY')\n",
"anthropic_api_key = os.getenv('ANTHROPIC_API_KEY')\n",
"google_api_key = os.getenv('GOOGLE_API_KEY')\n",
"\n",
"if openai_api_key:\n",
" print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
"else:\n",
" print(\"OpenAI API Key not set\")\n",
" \n",
"if anthropic_api_key:\n",
" print(f\"Anthropic API Key exists and begins {anthropic_api_key[:7]}\")\n",
"else:\n",
" print(\"Anthropic API Key not set\")\n",
"\n",
"if google_api_key:\n",
" print(f\"Google API Key exists and begins {google_api_key[:8]}\")\n",
"else:\n",
" print(\"Google API Key not set\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8aa149ed-9298-4d69-8fe2-8f5de0f667da",
"metadata": {},
"outputs": [],
"source": [
"# initialize\n",
"\n",
"openai = OpenAI()\n",
"claude = anthropic.Anthropic()\n",
"gemini = genai.Client()\n",
"\n",
"OPENAI_MODEL = \"o4-mini\"\n",
"CLAUDE_MODEL = \"claude-3-7-sonnet-latest\"\n",
"GEMINI_MODEL = \"gemini-2.5-flash\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6896636f-923e-4a2c-9d6c-fac07828a201",
"metadata": {},
"outputs": [],
"source": [
"system_message = \"You are an assistant that reimplements Python code in high performance C++ for an M1 Mac. \"\n",
"system_message += \"Respond only with C++ code; use comments sparingly and do not provide any explanation other than occasional comments. \"\n",
"system_message += \"The C++ response needs to produce an identical output in the fastest possible time.\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8e7b3546-57aa-4c29-bc5d-f211970d04eb",
"metadata": {},
"outputs": [],
"source": [
"def user_prompt_for(python):\n",
" user_prompt = \"Rewrite this Python code in C++ with the fastest possible implementation that produces identical output in the least time. \"\n",
" user_prompt += \"Respond only with C++ code; do not explain your work other than a few comments. \"\n",
" user_prompt += \"Pay attention to number types to ensure no int overflows. Remember to #include all necessary C++ packages such as iomanip.\\n\\n\"\n",
" user_prompt += python\n",
" return user_prompt"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c6190659-f54c-4951-bef4-4960f8e51cc4",
"metadata": {},
"outputs": [],
"source": [
"def messages_for(python):\n",
" return [\n",
" {\"role\": \"system\", \"content\": system_message},\n",
" {\"role\": \"user\", \"content\": user_prompt_for(python)}\n",
" ]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "71e1ba8c-5b05-4726-a9f3-8d8c6257350b",
"metadata": {},
"outputs": [],
"source": [
"# write to a file called optimized.cpp\n",
"\n",
"def write_output(cpp):\n",
" code = cpp.replace(\"```cpp\",\"\").replace(\"```\",\"\")\n",
" with open(\"optimized.cpp\", \"w\") as f:\n",
" f.write(code)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e7d2fea8-74c6-4421-8f1e-0e76d5b201b9",
"metadata": {},
"outputs": [],
"source": [
"def optimize_gpt(python): \n",
" stream = openai.chat.completions.create(model=OPENAI_MODEL, messages=messages_for(python), stream=True)\n",
" reply = \"\"\n",
" for chunk in stream:\n",
" fragment = chunk.choices[0].delta.content or \"\"\n",
" reply += fragment\n",
" print(fragment, end='', flush=True)\n",
" write_output(reply)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7cd84ad8-d55c-4fe0-9eeb-1895c95c4a9d",
"metadata": {},
"outputs": [],
"source": [
"def optimize_claude(python):\n",
" result = claude.messages.stream(\n",
" model=CLAUDE_MODEL,\n",
" max_tokens=2000,\n",
" system=system_message,\n",
" messages=[{\"role\": \"user\", \"content\": user_prompt_for(python)}],\n",
" )\n",
" reply = \"\"\n",
" with result as stream:\n",
" for text in stream.text_stream:\n",
" reply += text\n",
" print(text, end=\"\", flush=True)\n",
" write_output(reply)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e8a35102-1c95-469b-8855-e85f4c9bdbdf",
"metadata": {},
"outputs": [],
"source": [
"def optimize_gemini(python):\n",
" reply = gemini.models.generate_content(\n",
" model=GEMINI_MODEL,\n",
" contents=user_prompt_for(python),\n",
" config=types.GenerateContentConfig(\n",
" system_instruction=system_message,\n",
" )\n",
" )\n",
"\n",
" print(reply.text)\n",
" write_output(reply.text)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a1cbb778-fa57-43de-b04b-ed523f396c38",
"metadata": {},
"outputs": [],
"source": [
"pi = \"\"\"\n",
"import time\n",
"\n",
"def calculate(iterations, param1, param2):\n",
" result = 1.0\n",
" for i in range(1, iterations+1):\n",
" j = i * param1 - param2\n",
" result -= (1/j)\n",
" j = i * param1 + param2\n",
" result += (1/j)\n",
" return result\n",
"\n",
"start_time = time.time()\n",
"result = calculate(100_000_000, 4, 1) * 4\n",
"end_time = time.time()\n",
"\n",
"print(f\"Result: {result:.12f}\")\n",
"print(f\"Execution Time: {(end_time - start_time):.6f} seconds\")\n",
"\"\"\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7fe1cd4b-d2c5-4303-afed-2115a3fef200",
"metadata": {},
"outputs": [],
"source": [
"exec(pi)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "105db6f9-343c-491d-8e44-3a5328b81719",
"metadata": {},
"outputs": [],
"source": [
"optimize_gpt(pi)"
]
},
{
"cell_type": "markdown",
"id": "bf8f8018-f64d-425c-a0e1-d7862aa9592d",
"metadata": {},
"source": [
"# Compiling C++ and executing\n",
"\n",
"This next cell contains the command to compile a C++ file on my M1 Mac. \n",
"It compiles the file `optimized.cpp` into an executable called `optimized` \n",
"Then it runs the program called `optimized`\n",
"\n",
"In the next lab (day4), a student has contributed a full solution that compiles to efficient code on Mac, PC and Linux!\n",
"\n",
"You can wait for this, or you can google (or ask ChatGPT!) for how to do this on your platform, then replace the lines below.\n",
"If you're not comfortable with this step, you can skip it for sure - I'll show you exactly how it performs on my Mac.\n",
"\n",
"\n",
"OR alternatively: student Sandeep K.G. points out that you can run Python and C++ code online to test it out that way. Thank you Sandeep! \n",
"> Not an exact comparison but you can still get the idea of performance difference.\n",
"> For example here: https://www.programiz.com/cpp-programming/online-compiler/"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4194e40c-04ab-4940-9d64-b4ad37c5bb40",
"metadata": {},
"outputs": [],
"source": [
"# Compile C++ and run the executable\n",
"\n",
"!clang++ -O3 -std=c++17 -march=armv8.3-a -o optimized optimized.cpp\n",
"!./optimized"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "983a11fe-e24d-4c65-8269-9802c5ef3ae6",
"metadata": {},
"outputs": [],
"source": [
"optimize_claude(pi)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d5a766f9-3d23-4bb4-a1d4-88ec44b61ddf",
"metadata": {},
"outputs": [],
"source": [
"# Repeat for Claude - again, use the right approach for your platform\n",
"\n",
"!clang++ -O3 -std=c++17 -march=armv8.3-a -o optimized optimized.cpp\n",
"!./optimized"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "01f331f2-caac-48f6-9a03-8a228ee521bc",
"metadata": {},
"outputs": [],
"source": [
"optimize_gemini(pi)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5ef707a4-930e-4b8b-9443-e7e4fd309c2a",
"metadata": {},
"outputs": [],
"source": [
"!clang++ -O3 -std=c++17 -march=armv8.3-a -o optimized optimized.cpp\n",
"!./optimized"
]
},
{
"cell_type": "markdown",
"id": "7d1eaeca-61be-4d0a-a525-dd09f52aaa0f",
"metadata": {},
"source": [
"# Python Hard Version"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c3b497b3-f569-420e-b92e-fb0f49957ce0",
"metadata": {},
"outputs": [],
"source": [
"python_hard = \"\"\"# Be careful to support large number sizes\n",
"\n",
"def lcg(seed, a=1664525, c=1013904223, m=2**32):\n",
" value = seed\n",
" while True:\n",
" value = (a * value + c) % m\n",
" yield value\n",
" \n",
"def max_subarray_sum(n, seed, min_val, max_val):\n",
" lcg_gen = lcg(seed)\n",
" random_numbers = [next(lcg_gen) % (max_val - min_val + 1) + min_val for _ in range(n)]\n",
" max_sum = float('-inf')\n",
" for i in range(n):\n",
" current_sum = 0\n",
" for j in range(i, n):\n",
" current_sum += random_numbers[j]\n",
" if current_sum > max_sum:\n",
" max_sum = current_sum\n",
" return max_sum\n",
"\n",
"def total_max_subarray_sum(n, initial_seed, min_val, max_val):\n",
" total_sum = 0\n",
" lcg_gen = lcg(initial_seed)\n",
" for _ in range(20):\n",
" seed = next(lcg_gen)\n",
" total_sum += max_subarray_sum(n, seed, min_val, max_val)\n",
" return total_sum\n",
"\n",
"# Parameters\n",
"n = 10000 # Number of random numbers\n",
"initial_seed = 42 # Initial seed for the LCG\n",
"min_val = -10 # Minimum value of random numbers\n",
"max_val = 10 # Maximum value of random numbers\n",
"\n",
"# Timing the function\n",
"import time\n",
"start_time = time.time()\n",
"result = total_max_subarray_sum(n, initial_seed, min_val, max_val)\n",
"end_time = time.time()\n",
"\n",
"print(\"Total Maximum Subarray Sum (20 runs):\", result)\n",
"print(\"Execution Time: {:.6f} seconds\".format(end_time - start_time))\n",
"\"\"\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "dab5e4bc-276c-4555-bd4c-12c699d5e899",
"metadata": {},
"outputs": [],
"source": [
"exec(python_hard)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e8d24ed5-2c15-4f55-80e7-13a3952b3cb8",
"metadata": {},
"outputs": [],
"source": [
"optimize_gpt(python_hard)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e0b3d073-88a2-40b2-831c-6f0c345c256f",
"metadata": {},
"outputs": [],
"source": [
"# Replace this with the right C++ compile + execute command for your platform\n",
"\n",
"!clang++ -O3 -std=c++17 -march=armv8.3-a -o optimized optimized.cpp\n",
"!./optimized"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e9305446-1d0c-4b51-866a-b8c1e299bf5c",
"metadata": {},
"outputs": [],
"source": [
"optimize_gemini(python_hard)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0c181036-8193-4fdd-aef3-fc513b218d43",
"metadata": {},
"outputs": [],
"source": [
"# Replace this with the right C++ compile + execute command for your platform\n",
"\n",
"!clang++ -O3 -std=c++17 -march=armv8.3-a -o optimized optimized.cpp\n",
"!./optimized"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2ee75e72-9ecb-4edd-a74a-4d3a83c1eb79",
"metadata": {},
"outputs": [],
"source": [
"optimize_claude(python_hard)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4a4ab43c-7df2-4770-bd05-6bbc198a8c45",
"metadata": {},
"outputs": [],
"source": [
"# Replace this with the right C++ compile + execute command for your platform\n",
"\n",
"!clang++ -O3 -std=c++17 -march=armv8.3-a -o optimized optimized.cpp\n",
"!./optimized"
]
},
{
"cell_type": "markdown",
"id": "ff02ce09-0544-49a5-944d-a57b25bf9b72",
"metadata": {},
"source": [
"# Streaming"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0be9f47d-5213-4700-b0e2-d444c7c738c0",
"metadata": {},
"outputs": [],
"source": [
"def stream_gpt(python): \n",
" stream = openai.chat.completions.create(model=OPENAI_MODEL, messages=messages_for(python), stream=True)\n",
" reply = \"\"\n",
" for chunk in stream:\n",
" fragment = chunk.choices[0].delta.content or \"\"\n",
" reply += fragment\n",
" yield reply.replace('```cpp\\n','').replace('```','')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8669f56b-8314-4582-a167-78842caea131",
"metadata": {},
"outputs": [],
"source": [
"def stream_claude(python):\n",
" result = claude.messages.stream(\n",
" model=CLAUDE_MODEL,\n",
" max_tokens=2000,\n",
" system=system_message,\n",
" messages=[{\"role\": \"user\", \"content\": user_prompt_for(python)}],\n",
" )\n",
" reply = \"\"\n",
" with result as stream:\n",
" for text in stream.text_stream:\n",
" reply += text\n",
" yield reply.replace('```cpp\\n','').replace('```','')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d48d44df-c082-4ed1-b3ea-fc2a880591c2",
"metadata": {},
"outputs": [],
"source": [
"def stream_gemini(python):\n",
" stream = gemini.models.generate_content_stream(\n",
" model=GEMINI_MODEL,\n",
" contents=user_prompt_for(python),\n",
" config=types.GenerateContentConfig(\n",
" system_instruction=system_message,\n",
" ),\n",
" )\n",
" reply = \"\"\n",
" for chunk in stream:\n",
" reply += chunk.text\n",
" yield reply.replace('```cpp\\n','').replace('```','')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2f1ae8f5-16c8-40a0-aa18-63b617df078d",
"metadata": {},
"outputs": [],
"source": [
"def optimize(python, model):\n",
" if model==\"GPT\":\n",
" result = stream_gpt(python)\n",
" elif model==\"Claude\":\n",
" result = stream_claude(python)\n",
" elif model==\"Gemini\":\n",
" result = stream_gemini(python)\n",
" else:\n",
" raise ValueError(\"Unknown model\")\n",
" for stream_so_far in result:\n",
" yield stream_so_far "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f1ddb38e-6b0a-4c37-baa4-ace0b7de887a",
"metadata": {},
"outputs": [],
"source": [
"with gr.Blocks() as ui:\n",
" with gr.Row():\n",
" python = gr.Textbox(label=\"Python code:\", lines=10, value=python_hard)\n",
" cpp = gr.Textbox(label=\"C++ code:\", lines=10)\n",
" with gr.Row():\n",
" model = gr.Dropdown([\"GPT\", \"Claude\", \"Gemini\"], label=\"Select model\", value=\"GPT\")\n",
" convert = gr.Button(\"Convert code\")\n",
"\n",
" convert.click(optimize, inputs=[python, model], outputs=[cpp])\n",
"\n",
"ui.launch(inbrowser=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "19bf2bff-a822-4009-a539-f003b1651383",
"metadata": {},
"outputs": [],
"source": [
"def execute_python(code):\n",
" try:\n",
" output = io.StringIO()\n",
" sys.stdout = output\n",
" exec(code)\n",
" finally:\n",
" sys.stdout = sys.__stdout__\n",
" return output.getvalue()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "77f3ab5d-fcfb-4d3f-8728-9cacbf833ea6",
"metadata": {},
"outputs": [],
"source": [
"# M1 Mac version to compile and execute optimized C++ code:\n",
"\n",
"def execute_cpp(code):\n",
" write_output(code)\n",
" try:\n",
" compile_cmd = [\"clang++\", \"-Ofast\", \"-std=c++17\", \"-march=armv8.5-a\", \"-mtune=apple-m1\", \"-mcpu=apple-m1\", \"-o\", \"optimized\", \"optimized.cpp\"]\n",
" compile_result = subprocess.run(compile_cmd, check=True, text=True, capture_output=True)\n",
" run_cmd = [\"./optimized\"]\n",
" run_result = subprocess.run(run_cmd, check=True, text=True, capture_output=True)\n",
" return run_result.stdout\n",
" except subprocess.CalledProcessError as e:\n",
" return f\"An error occurred:\\n{e.stderr}\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9a2274f1-d03b-42c0-8dcc-4ce159b18442",
"metadata": {},
"outputs": [],
"source": [
"css = \"\"\"\n",
".python {background-color: #306998;}\n",
".cpp {background-color: #050;}\n",
"\"\"\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f1303932-160c-424b-97a8-d28c816721b2",
"metadata": {},
"outputs": [],
"source": [
"with gr.Blocks(css=css) as ui:\n",
" gr.Markdown(\"## Convert code from Python to C++\")\n",
" with gr.Row():\n",
" python = gr.Textbox(label=\"Python code:\", value=python_hard, lines=20)\n",
" cpp = gr.Textbox(label=\"C++ code:\", lines=20)\n",
" with gr.Row():\n",
" model = gr.Dropdown([\"GPT\", \"Claude\", \"Gemini\"], label=\"Select model\", value=\"GPT\")\n",
" convert = gr.Button(\"Convert code\")\n",
" with gr.Row():\n",
" python_run = gr.Button(\"Run Python\")\n",
" cpp_run = gr.Button(\"Run C++\")\n",
" with gr.Row():\n",
" python_out = gr.TextArea(label=\"Python result:\", elem_classes=[\"python\"])\n",
" cpp_out = gr.TextArea(label=\"C++ result:\", elem_classes=[\"cpp\"])\n",
"\n",
" convert.click(optimize, inputs=[python, model], outputs=[cpp])\n",
" python_run.click(execute_python, inputs=[python], outputs=[python_out])\n",
" cpp_run.click(execute_cpp, inputs=[cpp], outputs=[cpp_out])\n",
"\n",
"ui.launch(inbrowser=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ea42883b-fdba-46ed-97be-f42e3cb41f11",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.13"
}
},
"nbformat": 4,
"nbformat_minor": 5
}