Week4 exercise: Code and test app
This commit is contained in:
264
week4/community-contributions/Exercise_week4_jom.ipynb
Normal file
264
week4/community-contributions/Exercise_week4_jom.ipynb
Normal file
@@ -0,0 +1,264 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "fee27f39",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# imports\n",
|
||||
"\n",
|
||||
"import os\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"from openai import OpenAI\n",
|
||||
"import gradio as gr\n",
|
||||
"\n",
|
||||
"load_dotenv(override=True)\n",
|
||||
"openai_api_key = os.getenv('OPENAI_API_KEY')\n",
|
||||
"anthropic_api_key = os.getenv('ANTHROPIC_API_KEY')\n",
|
||||
"google_api_key = os.getenv('GOOGLE_API_KEY')\n",
|
||||
"ollama_api_key = os.getenv('OLLAMA_API_KEY')\n",
|
||||
"\n",
|
||||
"if openai_api_key:\n",
|
||||
" print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
|
||||
"else:\n",
|
||||
" print(\"OpenAI API Key not set\")\n",
|
||||
" \n",
|
||||
"if anthropic_api_key:\n",
|
||||
" print(f\"Anthropic API Key exists and begins {anthropic_api_key[:7]}\")\n",
|
||||
"else:\n",
|
||||
" print(\"Anthropic API Key not set (and this is optional)\")\n",
|
||||
"\n",
|
||||
"if google_api_key:\n",
|
||||
" print(f\"Google API Key exists and begins {google_api_key[:2]}\")\n",
|
||||
"else:\n",
|
||||
" print(\"Google API Key not set (and this is optional)\")\n",
|
||||
"\n",
|
||||
"if ollama_api_key:\n",
|
||||
" print(f\"OLLAMA API Key exists and begins {ollama_api_key[:2]}\")\n",
|
||||
"else:\n",
|
||||
" print(\"OLLAMA API Key not set (and this is optional)\")\n",
|
||||
"\n",
|
||||
"# Connect to client libraries\n",
|
||||
"\n",
|
||||
"openai = OpenAI()\n",
|
||||
"\n",
|
||||
"anthropic_url = \"https://api.anthropic.com/v1/\"\n",
|
||||
"gemini_url = \"https://generativelanguage.googleapis.com/v1beta/openai/\"\n",
|
||||
"ollama_url = \"http://localhost:11434/v1\"\n",
|
||||
"\n",
|
||||
"anthropic = OpenAI(api_key=anthropic_api_key, base_url=anthropic_url)\n",
|
||||
"gemini = OpenAI(api_key=google_api_key, base_url=gemini_url)\n",
|
||||
"ollama = OpenAI(api_key=ollama_api_key, base_url=ollama_url)\n",
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "d26f4175",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"models = [\"gpt-5\", \"claude-sonnet-4-5-20250929\", \"gemini-2.5-pro\", \"gpt-oss:20b-cloud\", ]\n",
|
||||
"\n",
|
||||
"clients = {\"gpt-5\": openai, \"claude-sonnet-4-5-20250929\": anthropic, \"gemini-2.5-pro\": gemini, \"gpt-oss:20b-cloud\": ollama}\n",
|
||||
"\n",
|
||||
"# Want to keep costs ultra-low? Replace this with models of your choice, using the examples from yesterday"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "76563884",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"system_prompt_doc = \"\"\"You are an expert Python developer and code reviewer.\n",
|
||||
"Your job is to read the user's provided function, and return:\n",
|
||||
"1. A concise, PEP-257-compliant docstring summarizing what the function does, clarifying types, parameters, return values, and side effects.\n",
|
||||
"2. Helpful inline comments that improve both readability and maintainability, without restating what the code obviously does.\n",
|
||||
"\n",
|
||||
"Only output the function, not explanations or additional text. \n",
|
||||
"Do not modify variable names or refactor the function logic.\n",
|
||||
"Your response should improve the code's clarity and documentation, making it easier for others to understand and maintain.\n",
|
||||
"Don't be extremely verbose.\n",
|
||||
"Your answer should be at a {level} level of expertise.\n",
|
||||
"\"\"\"\n",
|
||||
"\n",
|
||||
"system_prompt_tests = \"\"\"You are a seasoned Python developer and testing expert.\n",
|
||||
"Your task is to read the user's provided function, and generate:\n",
|
||||
"1. A concise set of meaningful unit tests that thoroughly validate the function's correctness, including typical, edge, and error cases.\n",
|
||||
"2. The tests should be written for pytest (or unittest if pytest is not appropriate), use clear, descriptive names, and avoid unnecessary complexity.\n",
|
||||
"3. If dependencies or mocking are needed, include minimal necessary setup code (but avoid over-mocking).\n",
|
||||
"\n",
|
||||
"Only output the relevant test code, not explanations or extra text.\n",
|
||||
"Do not change the original function; focus solely on comprehensive, maintainable test coverage that other developers can easily understand and extend.\n",
|
||||
"\"\"\"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "1bd82e96",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def generate_documentation(code, model, level):\n",
|
||||
" response = clients[model].chat.completions.create(\n",
|
||||
" model=model,\n",
|
||||
" messages=[\n",
|
||||
" {\"role\": \"system\", \"content\": system_prompt_doc.format(level=level)},\n",
|
||||
" {\"role\": \"user\", \"content\": code}\n",
|
||||
" ],\n",
|
||||
" stream=True\n",
|
||||
" )\n",
|
||||
" output = \"\"\n",
|
||||
" for chunk in response:\n",
|
||||
" output += chunk.choices[0].delta.content or \"\"\n",
|
||||
" yield output.replace(\"```python\", \"\").replace(\"```\", \"\")\n",
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "b01b3421",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def generate_tests(code, model ):\n",
|
||||
" response = clients[model].chat.completions.create(\n",
|
||||
" model=model,\n",
|
||||
" messages=[\n",
|
||||
" {\"role\": \"system\", \"content\": system_prompt_tests},\n",
|
||||
" {\"role\": \"user\", \"content\": code}\n",
|
||||
" ],\n",
|
||||
" stream=True\n",
|
||||
" )\n",
|
||||
" output = \"\"\n",
|
||||
" for chunk in response:\n",
|
||||
" output += chunk.choices[0].delta.content or \"\"\n",
|
||||
" yield output.replace(\"```python\", \"\").replace(\"```\", \"\")\n",
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "16b71915",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"vscode_dark = gr.themes.Monochrome(\n",
|
||||
" primary_hue=\"blue\",\n",
|
||||
" secondary_hue=\"slate\",\n",
|
||||
" neutral_hue=\"slate\",\n",
|
||||
").set(\n",
|
||||
" body_background_fill=\"#1e1e1e\",\n",
|
||||
" body_background_fill_dark=\"#1e1e1e\",\n",
|
||||
" block_background_fill=\"#252526\",\n",
|
||||
" block_background_fill_dark=\"#252526\",\n",
|
||||
" block_border_color=\"#3e3e42\",\n",
|
||||
" block_border_color_dark=\"#3e3e42\",\n",
|
||||
" border_color_primary=\"#3e3e42\",\n",
|
||||
" block_label_background_fill=\"#252526\",\n",
|
||||
" block_label_background_fill_dark=\"#252526\",\n",
|
||||
" block_label_text_color=\"#cccccc\",\n",
|
||||
" block_label_text_color_dark=\"#cccccc\",\n",
|
||||
" block_title_text_color=\"#cccccc\",\n",
|
||||
" block_title_text_color_dark=\"#cccccc\",\n",
|
||||
" body_text_color=\"#d4d4d4\",\n",
|
||||
" body_text_color_dark=\"#d4d4d4\",\n",
|
||||
" button_primary_background_fill=\"#0e639c\",\n",
|
||||
" button_primary_background_fill_dark=\"#0e639c\",\n",
|
||||
" button_primary_background_fill_hover=\"#1177bb\",\n",
|
||||
" button_primary_background_fill_hover_dark=\"#1177bb\",\n",
|
||||
" button_primary_text_color=\"#ffffff\",\n",
|
||||
" button_primary_text_color_dark=\"#ffffff\",\n",
|
||||
" input_background_fill=\"#3c3c3c\",\n",
|
||||
" input_background_fill_dark=\"#3c3c3c\",\n",
|
||||
" color_accent=\"#007acc\",\n",
|
||||
" color_accent_soft=\"#094771\",\n",
|
||||
")\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "23311022",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import gradio as gr\n",
|
||||
"\n",
|
||||
"with gr.Blocks(theme=vscode_dark, css=\"\"\"\n",
|
||||
" .gradio-container {font-family: 'Consolas', 'Monaco', monospace;}\n",
|
||||
" h1 {color: #d4d4d4 !important;}\n",
|
||||
"\"\"\") as ui:\n",
|
||||
" gr.Markdown(\"# 🧑💻 Python Code Reviewer & Test Generator\", elem_id=\"app-title\")\n",
|
||||
" with gr.Tab(\"Docstring & Comments\") as tab1:\n",
|
||||
" gr.Markdown(\"# Function Docstring & Comment Helper\\nPaste your function below and get helpful docstrings and inline comments!\")\n",
|
||||
"\n",
|
||||
" with gr.Row():\n",
|
||||
" code_input_1 = gr.Code(label=\"Paste your Python function here\", lines=10, language=\"python\")\n",
|
||||
" code_output = gr.Code(label=\"Function with improved docstring and comments\", lines=10, language=\"python\")\n",
|
||||
" \n",
|
||||
" with gr.Row(equal_height=True):\n",
|
||||
" level_radio = gr.Radio(choices=[\"Junior\", \"Mid\", \"Senior\"], value=\"Mid\", label=\"Reviewer level\", interactive=True)\n",
|
||||
" model_dropdown = gr.Dropdown(choices=models, value=models[-1], label=\"Select model\")\n",
|
||||
" submit_doc_btn = gr.Button(\"Generate docstring & comments\", scale=0.5)\n",
|
||||
"\n",
|
||||
" submit_doc_btn.click(\n",
|
||||
" generate_documentation, \n",
|
||||
" inputs=[code_input_1, model_dropdown, level_radio], \n",
|
||||
" outputs=code_output\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
" with gr.Tab(\"Unit Tests\") as tab2:\n",
|
||||
" gr.Markdown(\"# Unit Test Generator\\nPaste your function below and get auto-generated unit tests!\")\n",
|
||||
"\n",
|
||||
" with gr.Row():\n",
|
||||
" code_input_2 = gr.Code(label=\"Paste your Python function here\", lines=10, language=\"python\")\n",
|
||||
" code_output_2 = gr.Code(label=\"Generated tests\", lines=10, language=\"python\")\n",
|
||||
" \n",
|
||||
" with gr.Row(equal_height=True):\n",
|
||||
" model_dropdown_2 = gr.Dropdown(choices=models, value=models[-1], label=\"Select model\")\n",
|
||||
" submit_test_btn = gr.Button(\"Generate unit tests\", scale=0.5)\n",
|
||||
"\n",
|
||||
" submit_test_btn.click(\n",
|
||||
" generate_tests, \n",
|
||||
" inputs=[code_input_2, model_dropdown_2], \n",
|
||||
" outputs=code_output_2\n",
|
||||
" )\n",
|
||||
" \n",
|
||||
" tab2.select(lambda x: x, inputs=code_input_1, outputs=code_input_2)\n",
|
||||
" tab1.select(lambda x: x, inputs=code_input_2, outputs=code_input_1)\n",
|
||||
"\n",
|
||||
"ui.launch(share=False, inbrowser=True)"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": ".venv",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.12.8"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
Reference in New Issue
Block a user