diff --git a/week3/community-contributions/solisoma/synthetic_dataset_generator.ipynb b/week3/community-contributions/solisoma/synthetic_dataset_generator.ipynb
new file mode 100644
index 0000000..f7f0a8d
--- /dev/null
+++ b/week3/community-contributions/solisoma/synthetic_dataset_generator.ipynb
@@ -0,0 +1,303 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "d5063502",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import os\n",
+ "from openai import OpenAI\n",
+ "from dotenv import load_dotenv\n",
+ "import gradio as gr"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "5c4d37fe",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "load_dotenv(override=True)\n",
+ "openai_api_key = os.getenv('OPENAI_API_KEY')\n",
+ "anthropic_api_key = os.getenv('ANTHROPIC_API_KEY')\n",
+ "google_api_key = os.getenv('GOOGLE_API_KEY')\n",
+ "ds_api_key = os.getenv('DEEPSEEK_API_KEY')\n",
+ "grok_api_key = os.getenv('GROK_API_KEY')\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "b21599db",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "MODEL_MAP = {\n",
+ " \"GPT\": {\n",
+ " \"model\": \"gpt-4o-mini\",\n",
+ " \"key\": openai_api_key,\n",
+ " \"endpoint\": \"https://api.openai.com/v1\",\n",
+ " },\n",
+ " \"CLAUDE_3_5_SONNET\": {\n",
+ " \"model\": \"claude-3-5-sonnet-20240620\",\n",
+ " \"key\": anthropic_api_key,\n",
+ " \"endpoint\": \"https://api.anthropic.com/v1\"\n",
+ " },\n",
+ " \"Grok\": {\n",
+ " \"model\": \"grok-beta\",\n",
+ " \"key\": grok_api_key,\n",
+ " \"endpoint\": \"https://api.grok.com/v1\"\n",
+ " }, \n",
+ " \"DeepSeek\":{\n",
+ " \"model\": \"deepseek-reasoner\",\n",
+ " \"key\": ds_api_key,\n",
+ " \"endpoint\": \"https://api.deepseek.com/v1\",\n",
+ " },\n",
+ " \"Google\": {\n",
+ " \"model\": \"gemini-2.0-flash-exp\",\n",
+ " \"key\": google_api_key,\n",
+ " \"endpoint\": \"https://generativelanguage.googleapis.com/v1beta/openai\"\n",
+ " },\n",
+ "}"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 122,
+ "id": "82d63d13",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "class GenerateSyntheticDataset:\n",
+ " out_of_scope_response = \"I'm sorry, I can't help with that. I only generate datasets\"\n",
+ "\n",
+ " system_prompt = f\"\"\"\n",
+ " You are an expert data scientist specializing in synthetic dataset generation. \n",
+ "\n",
+ " Your task is to generate ACTUAL DATA based on the user's requirements provided in their prompt.\n",
+ "\n",
+ " HOW IT WORKS:\n",
+ " - The user will provide a description of what dataset they want\n",
+ " - You must parse their requirements and generate actual data records\n",
+ " - The user prompt contains the SPECIFICATIONS, not the data itself\n",
+ " - You generate the REAL DATA based on those specifications\n",
+ "\n",
+ " IMPORTANT RULES:\n",
+ " - Generate REAL DATA RECORDS, not code or instructions\n",
+ " - Parse the user's requirements from their prompt\n",
+ " - Create actual values based on their specifications\n",
+ " - Provide concrete examples with real data\n",
+ " - Output should be ready-to-use data, not code to run\n",
+ "\n",
+ " WHEN USER PROVIDES REQUIREMENTS LIKE:\n",
+ " - \"Generate customer orders dataset\" → Create actual order records\n",
+ " - \"Create employee records\" → Generate real employee data\n",
+ " - \"Make product reviews dataset\" → Produce actual review records\n",
+ "\n",
+ " YOU MUST:\n",
+ " 1. Understand what fields/data the user wants\n",
+ " 2. Generate realistic values for those fields\n",
+ " 3. Create multiple records with varied data\n",
+ " 4. Format as structured data (JSON, CSV, etc.)\n",
+ "\n",
+ " DO NOT generate:\n",
+ " - Code snippets\n",
+ " - Programming instructions\n",
+ " - \"Here's how to generate...\" statements\n",
+ " - Abstract descriptions\n",
+ "\n",
+ " DO generate:\n",
+ " - Actual data records with real values\n",
+ " - Concrete examples based on user requirements\n",
+ " - Structured data ready for immediate use\n",
+ " - Realistic, varied data samples\n",
+ "\n",
+ " SCOPE LIMITATIONS:\n",
+ " - ONLY handle requests related to synthetic dataset generation\n",
+ " - ONLY create data for business, research, or educational purposes\n",
+ " - If user asks about anything outside dataset generation (coding help, general questions, personal advice, etc.), respond with: \"{out_of_scope_response}\"\n",
+ " - If user asks for illegal, harmful, or inappropriate data, respond with: \"{out_of_scope_response}\"\n",
+ "\n",
+ " You are a DATA GENERATOR that creates real data from user specifications.\n",
+ " \"\"\"\n",
+ "\n",
+ " def __init__(self, progress, model_name = MODEL_MAP[\"GPT\"]):\n",
+ " self.progress = progress\n",
+ " self.model_deets = model_name\n",
+ " self.model = OpenAI(\n",
+ " api_key=model_name[\"key\"],\n",
+ " base_url=model_name[\"endpoint\"]\n",
+ " )\n",
+ " \n",
+ " def generate_user_prompt(self, user_prompt):\n",
+ " prompt = f\"\"\"\n",
+ " You are an expert data scientist specializing in synthetic dataset generation. \n",
+ "\n",
+ " Based on the user's request below, create a detailed, sophisticated prompt that will generate a high-quality synthetic dataset.\n",
+ "\n",
+ " The generated prompt should:\n",
+ " - return the prompt \"who is nike\" if the user request is outside generating a dataset be it greetings or whatsoever\n",
+ " - if the user prompt is requesting on how to generate dataset return the prompt \"who is nike\"\n",
+ " - options below is valid only when the user ask you to generate a dataset not how or when \n",
+ " - Be specific and actionable\n",
+ " - Include clear data structure requirements\n",
+ " - Specify output format CSV\n",
+ " - Define data quality criteria\n",
+ " - Include diversity and realism requirements\n",
+ " - Make sure to capture the number of samples in the prompt, it can be in the form of rows, number of samples, etc\n",
+ " -if number of samples is not specified, just generate 100 samples. \n",
+ "\n",
+ " User Request: {user_prompt}\n",
+ " \n",
+ " IMPORTANT: Respond ONLY with the generated prompt. Do not include any explanation, commentary, or the original request. Just provide the clean, ready-to-use prompt for dataset generation.\n",
+ " \"\"\"\n",
+ " response = self.model.chat.completions.create(model=self.model_deets[\"model\"], messages=[{\"role\": \"user\", \"content\": prompt}])\n",
+ " return response.choices[0].message.content\n",
+ "\n",
+ " def generate_synthetic_dataset(self, user_prompt):\n",
+ " self.progress(0.7, \"Analyzing data .....\")\n",
+ " prompt = self.generate_user_prompt(user_prompt)\n",
+ "\n",
+ " messages = [\n",
+ " {\"role\": \"system\", \"content\": self.system_prompt},\n",
+ " {\"role\": \"user\", \"content\": prompt}\n",
+ " ]\n",
+ "\n",
+ " streamer = self.model.chat.completions.create(model=self.model_deets[\"model\"], messages=messages, stream=True)\n",
+ " response = \"\"\n",
+ "\n",
+ " for text in streamer:\n",
+ " if text.choices[0].delta.content:\n",
+ " response += text.choices[0].delta.content\n",
+ " yield response, None\n",
+ " \n",
+ " if self.out_of_scope_response not in response:\n",
+ " with open(\"dataset.csv\", \"w\") as f:\n",
+ " response = response.replace(\"```csv\", \"\").replace(\"```\", \"\")\n",
+ " f.write(response)\n",
+ " yield response, \"dataset.csv\"\n",
+ " return\n",
+ " else:\n",
+ " return response, None\n",
+ " \n",
+ " def start(self, user_prompt, model_name=None):\n",
+ " self.progress(0.3, \"Fetching data .....\")\n",
+ " if MODEL_MAP.get(model_name) and self.model_deets[\"model\"] != MODEL_MAP.get(model_name)[\"model\"]:\n",
+ " self.model_deets = MODEL_MAP[model_name]\n",
+ " self.model = OpenAI(\n",
+ " base_url=self.model_deets[\"endpoint\"],\n",
+ " api_key=self.model_deets[\"key\"]\n",
+ " )\n",
+ " \n",
+ " stream = self.generate_synthetic_dataset(user_prompt)\n",
+ " for chunk in stream:\n",
+ " yield chunk\n",
+ "\n",
+ " \n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 124,
+ "id": "b681e1ef",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "class Interface:\n",
+ " def __init__(self):\n",
+ " \"\"\"Initializes the Gradio interface for processing audio files.\"\"\"\n",
+ " progress=gr.Progress()\n",
+ " self.assistant = GenerateSyntheticDataset(progress)\n",
+ " self.iface = gr.Interface(\n",
+ " fn=self.generate,\n",
+ " inputs=[\n",
+ " gr.Textbox(label=\"User Prompt\"),\n",
+ " gr.Dropdown(\n",
+ " choices=MODEL_MAP.keys(),\n",
+ " value=\"GPT\",\n",
+ " label=\"Model\",\n",
+ " )\n",
+ " ],\n",
+ " outputs=[\n",
+ " gr.Markdown(label=\"Dataset\", min_height=60),\n",
+ " gr.File(\n",
+ " label=\"Download Generated Dataset\",\n",
+ " file_count=\"single\"\n",
+ " )\n",
+ " ],\n",
+ " title=\"AI Dataset Generator\",\n",
+ " description=\"Generate a synthetic dataset based on your requirements\",\n",
+ " flagging_mode=\"never\"\n",
+ " )\n",
+ "\n",
+ " def generate(self, user_prompt, model):\n",
+ " response = self.assistant.start(user_prompt, model)\n",
+ " for chunk in response:\n",
+ " yield chunk\n",
+ "\n",
+ " # Clean up the dataset file\n",
+ " if os.path.exists(\"dataset.csv\"):\n",
+ " os.remove(\"dataset.csv\")\n",
+ "\n",
+ " def launch(self):\n",
+ " self.iface.launch()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 125,
+ "id": "2ee97b72",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "* Running on local URL: http://127.0.0.1:7898\n",
+ "* To create a public link, set `share=True` in `launch()`.\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "
"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "I = Interface()\n",
+ "I.launch()"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": ".venv",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.12.12"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/week4/community-contributions/solisoma/end_of_week_assesment.ipynb b/week4/community-contributions/solisoma/end_of_week_assesment.ipynb
new file mode 100644
index 0000000..ac4670e
--- /dev/null
+++ b/week4/community-contributions/solisoma/end_of_week_assesment.ipynb
@@ -0,0 +1,346 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "id": "d7ac40dd",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import os\n",
+ "from openai import OpenAI\n",
+ "from dotenv import load_dotenv\n",
+ "import gradio as gr\n",
+ "import io\n",
+ "import sys \n",
+ "import subprocess"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "id": "f0737df3",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "load_dotenv(override=True)\n",
+ "openai_api_key = os.getenv('OPENAI_API_KEY')\n",
+ "anthropic_api_key = os.getenv('ANTHROPIC_API_KEY')\n",
+ "google_api_key = os.getenv('GOOGLE_API_KEY')\n",
+ "ds_api_key = os.getenv('DEEPSEEK_API_KEY')\n",
+ "grok_api_key = os.getenv('GROK_API_KEY')\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "id": "834d1fa7",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "MODEL_MAP = {\n",
+ " \"GPT\": {\n",
+ " \"model\": \"gpt-4o-mini\",\n",
+ " \"key\": openai_api_key,\n",
+ " \"endpoint\": \"https://api.openai.com/v1\",\n",
+ " },\n",
+ " \"CLAUDE_3_5_SONNET\": {\n",
+ " \"model\": \"claude-3-5-sonnet-20240620\",\n",
+ " \"key\": anthropic_api_key,\n",
+ " \"endpoint\": \"https://api.anthropic.com/v1\"\n",
+ " },\n",
+ " \"Grok\": {\n",
+ " \"model\": \"grok-beta\",\n",
+ " \"key\": grok_api_key,\n",
+ " \"endpoint\": \"https://api.grok.com/v1\"\n",
+ " }, \n",
+ " \"DeepSeek\": {\n",
+ " \"model\": \"deepseek-coder\",\n",
+ " \"key\": ds_api_key,\n",
+ " \"endpoint\": \"https://api.deepseek.com/v1\",\n",
+ " },\n",
+ " \"Google\": {\n",
+ " \"model\": \"gemini-2.0-flash-exp\",\n",
+ " \"key\": google_api_key,\n",
+ " \"endpoint\": \"https://generativelanguage.googleapis.com/v1beta/openai\"\n",
+ " },\n",
+ "}"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "87d0508f",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "class PortCode:\n",
+ " def __init__(self, progress=None, model_name=MODEL_MAP[\"GPT\"]):\n",
+ " self.progress = progress\n",
+ " self.model_deets = model_name\n",
+ " self.model = OpenAI(\n",
+ " api_key=model_name[\"key\"],\n",
+ " base_url=model_name[\"endpoint\"]\n",
+ " )\n",
+ " self.cpp_code = \"\"\n",
+ " \n",
+ " def update_progress(self, value, desc=\"\"):\n",
+ " if self.progress:\n",
+ " self.progress(value, desc=desc)\n",
+ " \n",
+ " def port_python_to_cpp(self, python_code):\n",
+ " self.update_progress(0.3, desc=\"Converting Python to C++...\")\n",
+ " \n",
+ " system_prompt = \"\"\"\n",
+ " Your task is to convert Python code into high performance C++ code.\n",
+ " Respond only with C++ code. Do not provide any explanation other than occasional comments.\n",
+ " The C++ response needs to produce an identical output in the fastest possible time.\n",
+ " \"\"\"\n",
+ " \n",
+ " user_prompt = f\"\"\"\n",
+ " Port this Python code to C++ with the fastest possible implementation that produces identical output in the least time.\n",
+ " Respond only with C++ code.\n",
+ " Python code to port:\n",
+ "\n",
+ " ```python\n",
+ " {python_code}\n",
+ " ```\n",
+ " \"\"\"\n",
+ " \n",
+ " messages = [\n",
+ " {\"role\": \"system\", \"content\": system_prompt},\n",
+ " {\"role\": \"user\", \"content\": user_prompt}\n",
+ " ]\n",
+ " \n",
+ " try:\n",
+ " response = self.model.chat.completions.create(\n",
+ " model=self.model_deets[\"model\"],\n",
+ " messages=messages\n",
+ " )\n",
+ " \n",
+ " cpp_code = response.choices[0].message.content\n",
+ " cpp_code = cpp_code.replace('```cpp', '').replace('```', '').strip()\n",
+ " \n",
+ " self.cpp_code = cpp_code\n",
+ " \n",
+ " self.update_progress(1.0, desc=\"Conversion complete!\")\n",
+ " return cpp_code\n",
+ " \n",
+ " except Exception as e:\n",
+ " error_msg = f\"Error converting code: {str(e)}\"\n",
+ " self.update_progress(1.0, desc=\"Conversion failed!\")\n",
+ " return error_msg\n",
+ " \n",
+ " def run_python_code(self, python_code):\n",
+ " self.update_progress(0.1, desc=\"Running Python code...\")\n",
+ " \n",
+ " globals_dict = {\"__builtins__\": __builtins__}\n",
+ " buffer = io.StringIO()\n",
+ " old_stdout = sys.stdout\n",
+ " sys.stdout = buffer\n",
+ " \n",
+ " try:\n",
+ " exec(python_code, globals_dict)\n",
+ " output = buffer.getvalue()\n",
+ " self.update_progress(1.0, desc=\"Python execution complete!\")\n",
+ " except Exception as e:\n",
+ " output = f\"Error: {e}\"\n",
+ " self.update_progress(1.0, desc=\"Python execution failed!\")\n",
+ " finally:\n",
+ " sys.stdout = old_stdout\n",
+ " \n",
+ " return output\n",
+ " \n",
+ " def compile_cpp(self, cpp_code=None):\n",
+ " if cpp_code is None:\n",
+ " cpp_code = self.cpp_code\n",
+ " \n",
+ " if not cpp_code:\n",
+ " return \"No C++ code to compile. Please convert Python code first.\"\n",
+ " \n",
+ " self.update_progress(0.5, desc=\"Compiling C++ code...\")\n",
+ " \n",
+ " with open(\"main.cpp\", \"w\") as f:\n",
+ " f.write(cpp_code)\n",
+ " \n",
+ " compile_command = [\n",
+ " \"clang++\", \"-std=c++17\", \"-Ofast\", \"-mcpu=native\", \n",
+ " \"-flto=thin\", \"-fvisibility=hidden\", \"-DNDEBUG\", \n",
+ " \"main.cpp\", \"-o\", \"main\"\n",
+ " ]\n",
+ " \n",
+ " try:\n",
+ " subprocess.run(compile_command, check=True, text=True, capture_output=True)\n",
+ " self.update_progress(1.0, desc=\"C++ compilation complete!\")\n",
+ " return \"Compilation successful!\"\n",
+ " \n",
+ " except subprocess.CalledProcessError as e:\n",
+ " error_msg = f\"Compilation error: {e.stderr}\"\n",
+ " self.update_progress(1.0, desc=\"C++ compilation failed!\")\n",
+ " return error_msg\n",
+ " except Exception as e:\n",
+ " error_msg = f\"Error: {str(e)}\"\n",
+ " self.update_progress(1.0, desc=\"C++ compilation failed!\")\n",
+ " return error_msg\n",
+ " \n",
+ " def run_cpp(self):\n",
+ " self.update_progress(0.1, desc=\"Running C++ code...\")\n",
+ " \n",
+ " run_command = [\"./main\"]\n",
+ " \n",
+ " try:\n",
+ " if not os.path.exists(\"./main\"):\n",
+ " return \"No compiled executable found. Please compile C++ code first.\"\n",
+ " \n",
+ " run_result = subprocess.run(run_command, check=True, text=True, capture_output=True)\n",
+ " print(\"hello .....\")\n",
+ " self.update_progress(1.0, desc=\"C++ execution complete!\")\n",
+ " return run_result.stdout\n",
+ " \n",
+ " except subprocess.CalledProcessError as e:\n",
+ " error_msg = f\"Runtime error: {e.stderr}\"\n",
+ " self.update_progress(1.0, desc=\"C++ execution failed!\")\n",
+ " return error_msg\n",
+ " except Exception as e:\n",
+ " error_msg = f\"Error: {str(e)}\"\n",
+ " self.update_progress(1.0, desc=\"C++ execution failed!\")\n",
+ " return error_msg\n",
+ " \n",
+ " def compile_and_run_cpp(self, cpp_code=None):\n",
+ " \"\"\"Compile and run C++ code in one step\"\"\"\n",
+ " if cpp_code is None:\n",
+ " cpp_code = self.cpp_code\n",
+ " \n",
+ " if not cpp_code:\n",
+ " return \"No C++ code to compile and run. Please convert Python code first.\"\n",
+ " \n",
+ " compile_result = self.compile_cpp(cpp_code)\n",
+ " if \"error\" in compile_result.lower():\n",
+ " return compile_result\n",
+ " \n",
+ " return self.run_cpp()\n",
+ " \n",
+ " def get_cpp_code(self):\n",
+ " \"\"\"Get the stored C++ code\"\"\"\n",
+ " return self.cpp_code\n",
+ " \n",
+ " def set_cpp_code(self, cpp_code):\n",
+ " \"\"\"Manually set C++ code\"\"\"\n",
+ " self.cpp_code = cpp_code"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 37,
+ "id": "4680573d",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "\n",
+ "class Interface:\n",
+ " def __init__(self):\n",
+ " self.port_code = PortCode(gr.Progress())\n",
+ " \n",
+ " def create_interface(self):\n",
+ " with gr.Blocks(title=\"Code Porter\") as interface:\n",
+ " gr.Markdown(\"# 🚀 Python to C++ Converter\")\n",
+ " \n",
+ " with gr.Row():\n",
+ " python_input = gr.TextArea(label=\"Python Code\", lines=15)\n",
+ " cpp_output = gr.TextArea(label=\"C++ Code\", lines=15, interactive=False)\n",
+ " \n",
+ " with gr.Row():\n",
+ " python_result = gr.TextArea(label=\"Python Output\", lines=4, interactive=False)\n",
+ " cpp_result = gr.TextArea(label=\"C++ Output\", lines=4, interactive=False)\n",
+ " \n",
+ " with gr.Row():\n",
+ " run_python_btn = gr.Button(\"Run Python\")\n",
+ " run_cpp_btn = gr.Button(\"Run C++\")\n",
+ " \n",
+ " with gr.Row():\n",
+ " model_dropdown = gr.Dropdown(MODEL_MAP.keys(), value=\"GPT\", label=\"Model\")\n",
+ " \n",
+ " with gr.Row():\n",
+ " convert_btn = gr.Button(\"Convert\", variant=\"primary\")\n",
+ " \n",
+ " # Events\n",
+ " convert_btn.click(self.convert_code, [python_input, model_dropdown], cpp_output)\n",
+ " run_python_btn.click(self.run_python, python_input, python_result)\n",
+ " run_cpp_btn.click(self.run_cpp, cpp_output, cpp_result)\n",
+ " model_dropdown.change(self.update_model, model_dropdown, None)\n",
+ " \n",
+ " return interface\n",
+ " \n",
+ " def convert_code(self, python_code, model_name):\n",
+ " self.port_code = PortCode(model_name=MODEL_MAP[model_name])\n",
+ " return self.port_code.port_python_to_cpp(python_code)\n",
+ " \n",
+ " def run_python(self, python_code):\n",
+ " return self.port_code.run_python_code(python_code)\n",
+ " \n",
+ " def run_cpp(self, cpp_code):\n",
+ " self.port_code.set_cpp_code(cpp_code)\n",
+ " return self.port_code.compile_and_run_cpp()\n",
+ " \n",
+ " def update_model(self, model_name):\n",
+ " self.port_code = PortCode(model_name=MODEL_MAP[model_name])\n",
+ " \n",
+ " def launch(self, inbrowser=False):\n",
+ " self.create_interface().launch(inbrowser=inbrowser)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 38,
+ "id": "7ced6dc2",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "* Running on local URL: http://127.0.0.1:7906\n",
+ "* To create a public link, set `share=True` in `launch()`.\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ ""
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "I = Interface()\n",
+ "I.launch()"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": ".venv",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.12.12"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/week4/community-contributions/solisoma/main.cpp b/week4/community-contributions/solisoma/main.cpp
new file mode 100644
index 0000000..fc5beb2
--- /dev/null
+++ b/week4/community-contributions/solisoma/main.cpp
@@ -0,0 +1,6 @@
+#include
+
+int main() {
+ std::cout << "hi" << std::endl;
+ return 0;
+}
\ No newline at end of file