Merge pull request #515 from pradeep1955/community-contributions-branch
Add my week1 EXERCISE.ipynb to community-contributions
This commit is contained in:
148
community-contributions/pradeep1955/week1 EXERCISE.ipynb
Normal file
148
community-contributions/pradeep1955/week1 EXERCISE.ipynb
Normal file
@@ -0,0 +1,148 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "fe12c203-e6a6-452c-a655-afb8a03a4ff5",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# End of week 1 exercise\n",
|
||||
"\n",
|
||||
"To demonstrate your familiarity with OpenAI API, and also Ollama, build a tool that takes a technical question, \n",
|
||||
"and responds with an explanation. This is a tool that you will be able to use yourself during the course!"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "c1070317-3ed9-4659-abe3-828943230e03",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# imports\n",
|
||||
"import os\n",
|
||||
"from openai import OpenAI\n",
|
||||
"from IPython.display import Markdown, display, update_display\n",
|
||||
"from dotenv import load_dotenv"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "4a456906-915a-4bfd-bb9d-57e505c5093f",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# constants\n",
|
||||
"\n",
|
||||
"MODEL_GPT = 'gpt-4o-mini'\n",
|
||||
"MODEL_LLAMA = 'llama3.2'"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "a8d7923c-5f28-4c30-8556-342d7c8497c1",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# set up environment\n",
|
||||
"load_dotenv(override=True)\n",
|
||||
"api_key=os.getenv(\"OPENAI_API_KEY\")\n",
|
||||
"if not api_key.startswith(\"sk-proj-\") and len(api_key)<10:\n",
|
||||
" print(\"api key not foud\")\n",
|
||||
"else:\n",
|
||||
" print(\"api found and is ok\")\n",
|
||||
"\n",
|
||||
"openai=OpenAI()\n",
|
||||
"print()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "3f0d0137-52b0-47a8-81a8-11a90a010798",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# here is the question; type over this to ask something new\n",
|
||||
"\n",
|
||||
"question = \"\"\"\n",
|
||||
"Please explain what this code does and why:\n",
|
||||
"yield from {book.get(\"author\") for book in books if book.get(\"author\")}\n",
|
||||
"\"\"\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "60ce7000-a4a5-4cce-a261-e75ef45063b4",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Get gpt-4o-mini to answer, with streaming\n",
|
||||
"messages = [{\"role\":\"system\",\"content\":\"You are a expert Dta Scientist\"}, {\"role\":\"user\",\"content\":question}]\n",
|
||||
"\n",
|
||||
"stream = openai.chat.completions.create(\n",
|
||||
" model = MODEL_GPT,\n",
|
||||
" messages = messages,\n",
|
||||
" stream = True\n",
|
||||
")\n",
|
||||
"response = \"\"\n",
|
||||
"display_handle = display(Markdown(\"\"), display_id=True)\n",
|
||||
"for chunk in stream:\n",
|
||||
" response += chunk.choices[0].delta.content or ''\n",
|
||||
" response = response.replace(\"```\",\"\").replace(\"markdown\", \"\")\n",
|
||||
" update_display(Markdown(response), display_id=display_handle.display_id)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "8f7c8ea8-4082-4ad0-8751-3301adcf6538",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Get Llama 3.2 to answer\n",
|
||||
"import ollama\n",
|
||||
"\n",
|
||||
"stream = ollama.chat(model=MODEL_LLAMA, messages=messages, stream=True)\n",
|
||||
"response = \"\"\n",
|
||||
"display_handle = display(Markdown(\"\"), display_id=True)\n",
|
||||
"for chunk in stream:\n",
|
||||
" response += chunk[\"message\"][\"content\"] or ''\n",
|
||||
" response = response.replace(\"```\",\"\").replace(\"markdown\", \"\")\n",
|
||||
" update_display(Markdown(response), display_id=display_handle.display_id)\n",
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "2a573174-779b-4d50-8792-fa0889b37211",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "llmenv",
|
||||
"language": "python",
|
||||
"name": "llmenv"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.13"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
426
community-contributions/pradeep1955/week1/day2 EXERCISE.ipynb
Normal file
426
community-contributions/pradeep1955/week1/day2 EXERCISE.ipynb
Normal file
@@ -0,0 +1,426 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "d15d8294-3328-4e07-ad16-8a03e9bbfdb9",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Welcome to your first assignment!\n",
|
||||
"\n",
|
||||
"Instructions are below. Please give this a try, and look in the solutions folder if you get stuck (or feel free to ask me!)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "ada885d9-4d42-4d9b-97f0-74fbbbfe93a9",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"<table style=\"margin: 0; text-align: left;\">\n",
|
||||
" <tr>\n",
|
||||
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
||||
" <img src=\"../resources.jpg\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
||||
" </td>\n",
|
||||
" <td>\n",
|
||||
" <h2 style=\"color:#f71;\">Just before we get to the assignment --</h2>\n",
|
||||
" <span style=\"color:#f71;\">I thought I'd take a second to point you at this page of useful resources for the course. This includes links to all the slides.<br/>\n",
|
||||
" <a href=\"https://edwarddonner.com/2024/11/13/llm-engineering-resources/\">https://edwarddonner.com/2024/11/13/llm-engineering-resources/</a><br/>\n",
|
||||
" Please keep this bookmarked, and I'll continue to add more useful links there over time.\n",
|
||||
" </span>\n",
|
||||
" </td>\n",
|
||||
" </tr>\n",
|
||||
"</table>"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "6e9fa1fc-eac5-4d1d-9be4-541b3f2b3458",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# HOMEWORK EXERCISE ASSIGNMENT\n",
|
||||
"\n",
|
||||
"Upgrade the day 1 project to summarize a webpage to use an Open Source model running locally via Ollama rather than OpenAI\n",
|
||||
"\n",
|
||||
"You'll be able to use this technique for all subsequent projects if you'd prefer not to use paid APIs.\n",
|
||||
"\n",
|
||||
"**Benefits:**\n",
|
||||
"1. No API charges - open-source\n",
|
||||
"2. Data doesn't leave your box\n",
|
||||
"\n",
|
||||
"**Disadvantages:**\n",
|
||||
"1. Significantly less power than Frontier Model\n",
|
||||
"\n",
|
||||
"## Recap on installation of Ollama\n",
|
||||
"\n",
|
||||
"Simply visit [ollama.com](https://ollama.com) and install!\n",
|
||||
"\n",
|
||||
"Once complete, the ollama server should already be running locally. \n",
|
||||
"If you visit: \n",
|
||||
"[http://localhost:11434/](http://localhost:11434/)\n",
|
||||
"\n",
|
||||
"You should see the message `Ollama is running`. \n",
|
||||
"\n",
|
||||
"If not, bring up a new Terminal (Mac) or Powershell (Windows) and enter `ollama serve` \n",
|
||||
"And in another Terminal (Mac) or Powershell (Windows), enter `ollama pull llama3.2` \n",
|
||||
"Then try [http://localhost:11434/](http://localhost:11434/) again.\n",
|
||||
"\n",
|
||||
"If Ollama is slow on your machine, try using `llama3.2:1b` as an alternative. Run `ollama pull llama3.2:1b` from a Terminal or Powershell, and change the code below from `MODEL = \"llama3.2\"` to `MODEL = \"llama3.2:1b\"`"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "4e2a9393-7767-488e-a8bf-27c12dca35bd",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# imports\n",
|
||||
"\n",
|
||||
"import requests\n",
|
||||
"from bs4 import BeautifulSoup\n",
|
||||
"from IPython.display import Markdown, display"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "29ddd15d-a3c5-4f4e-a678-873f56162724",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Constants\n",
|
||||
"\n",
|
||||
"OLLAMA_API = \"http://localhost:11434/api/chat\"\n",
|
||||
"HEADERS = {\"Content-Type\": \"application/json\"}\n",
|
||||
"MODEL = \"llama3.2\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "dac0a679-599c-441f-9bf2-ddc73d35b940",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Create a messages list using the same format that we used for OpenAI\n",
|
||||
"\n",
|
||||
"messages = [\n",
|
||||
" {\"role\": \"user\", \"content\": \"Describe some of the business applications of Generative AI\"}\n",
|
||||
"]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "7bb9c624-14f0-4945-a719-8ddb64f66f47",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"payload = {\n",
|
||||
" \"model\": MODEL,\n",
|
||||
" \"messages\": messages,\n",
|
||||
" \"stream\": False\n",
|
||||
" }"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "479ff514-e8bd-4985-a572-2ea28bb4fa40",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Let's just make sure the model is loaded\n",
|
||||
"\n",
|
||||
"!ollama pull llama3.2"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "42b9f644-522d-4e05-a691-56e7658c0ea9",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# If this doesn't work for any reason, try the 2 versions in the following cells\n",
|
||||
"# And double check the instructions in the 'Recap on installation of Ollama' at the top of this lab\n",
|
||||
"# And if none of that works - contact me!\n",
|
||||
"\n",
|
||||
"response = requests.post(OLLAMA_API, json=payload, headers=HEADERS)\n",
|
||||
"print(response.json()['message']['content'])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "6a021f13-d6a1-4b96-8e18-4eae49d876fe",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Introducing the ollama package\n",
|
||||
"\n",
|
||||
"And now we'll do the same thing, but using the elegant ollama python package instead of a direct HTTP call.\n",
|
||||
"\n",
|
||||
"Under the hood, it's making the same call as above to the ollama server running at localhost:11434"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "7745b9c4-57dc-4867-9180-61fa5db55eb8",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import ollama\n",
|
||||
"\n",
|
||||
"response = ollama.chat(model=MODEL, messages=messages)\n",
|
||||
"print(response['message']['content'])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "a4704e10-f5fb-4c15-a935-f046c06fb13d",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Alternative approach - using OpenAI python library to connect to Ollama"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "23057e00-b6fc-4678-93a9-6b31cb704bff",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# There's actually an alternative approach that some people might prefer\n",
|
||||
"# You can use the OpenAI client python library to call Ollama:\n",
|
||||
"\n",
|
||||
"from openai import OpenAI\n",
|
||||
"ollama_via_openai = OpenAI(base_url='http://localhost:11434/v1', api_key='ollama')\n",
|
||||
"\n",
|
||||
"response = ollama_via_openai.chat.completions.create(\n",
|
||||
" model=MODEL,\n",
|
||||
" messages=messages\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"print(response.choices[0].message.content)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "9f9e22da-b891-41f6-9ac9-bd0c0a5f4f44",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Are you confused about why that works?\n",
|
||||
"\n",
|
||||
"It seems strange, right? We just used OpenAI code to call Ollama?? What's going on?!\n",
|
||||
"\n",
|
||||
"Here's the scoop:\n",
|
||||
"\n",
|
||||
"The python class `OpenAI` is simply code written by OpenAI engineers that makes calls over the internet to an endpoint. \n",
|
||||
"\n",
|
||||
"When you call `openai.chat.completions.create()`, this python code just makes a web request to the following url: \"https://api.openai.com/v1/chat/completions\"\n",
|
||||
"\n",
|
||||
"Code like this is known as a \"client library\" - it's just wrapper code that runs on your machine to make web requests. The actual power of GPT is running on OpenAI's cloud behind this API, not on your computer!\n",
|
||||
"\n",
|
||||
"OpenAI was so popular, that lots of other AI providers provided identical web endpoints, so you could use the same approach.\n",
|
||||
"\n",
|
||||
"So Ollama has an endpoint running on your local box at http://localhost:11434/v1/chat/completions \n",
|
||||
"And in week 2 we'll discover that lots of other providers do this too, including Gemini and DeepSeek.\n",
|
||||
"\n",
|
||||
"And then the team at OpenAI had a great idea: they can extend their client library so you can specify a different 'base url', and use their library to call any compatible API.\n",
|
||||
"\n",
|
||||
"That's it!\n",
|
||||
"\n",
|
||||
"So when you say: `ollama_via_openai = OpenAI(base_url='http://localhost:11434/v1', api_key='ollama')` \n",
|
||||
"Then this will make the same endpoint calls, but to Ollama instead of OpenAI."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "bc7d1de3-e2ac-46ff-a302-3b4ba38c4c90",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Also trying the amazing reasoning model DeepSeek\n",
|
||||
"\n",
|
||||
"Here we use the version of DeepSeek-reasoner that's been distilled to 1.5B. \n",
|
||||
"This is actually a 1.5B variant of Qwen that has been fine-tuned using synethic data generated by Deepseek R1.\n",
|
||||
"\n",
|
||||
"Other sizes of DeepSeek are [here](https://ollama.com/library/deepseek-r1) all the way up to the full 671B parameter version, which would use up 404GB of your drive and is far too large for most!"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "cf9eb44e-fe5b-47aa-b719-0bb63669ab3d",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!ollama pull deepseek-r1:1.5b"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "1d3d554b-e00d-4c08-9300-45e073950a76",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# This may take a few minutes to run! You should then see a fascinating \"thinking\" trace inside <think> tags, followed by some decent definitions\n",
|
||||
"\n",
|
||||
"response = ollama_via_openai.chat.completions.create(\n",
|
||||
" model=\"deepseek-r1:1.5b\",\n",
|
||||
" messages=[{\"role\": \"user\", \"content\": \"Please give definitions of some core concepts behind LLMs: a neural network, attention and the transformer\"}]\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"print(response.choices[0].message.content)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "1622d9bb-5c68-4d4e-9ca4-b492c751f898",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# NOW the exercise for you\n",
|
||||
"\n",
|
||||
"Take the code from day1 and incorporate it here, to build a website summarizer that uses Llama 3.2 running locally instead of OpenAI; use either of the above approaches."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "43ef4b92-53e1-4af2-af3f-726812f4265c",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"import requests\n",
|
||||
"#from dotenv import load_dotenv\n",
|
||||
"from bs4 import BeautifulSoup\n",
|
||||
"from IPython.display import Markdown, display\n",
|
||||
"#from openai import OpenAI"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "97d45733-394e-493e-a92b-1475876d9028",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"headers = {\n",
|
||||
" \"User-Agent\": \"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/117.0.0.0 Safari/537.36\"\n",
|
||||
"}\n",
|
||||
"\n",
|
||||
"class Website:\n",
|
||||
"\n",
|
||||
" def __init__(self, url):\n",
|
||||
" \"\"\"\n",
|
||||
" Create this Website object from the given url using the BeautifulSoup library\n",
|
||||
" \"\"\"\n",
|
||||
" self.url = url\n",
|
||||
" response = requests.get(url, headers=headers)\n",
|
||||
" soup = BeautifulSoup(response.content, 'html.parser')\n",
|
||||
" self.title = soup.title.string if soup.title else \"No title found\"\n",
|
||||
" for irrelevant in soup.body([\"script\", \"style\", \"img\", \"input\"]):\n",
|
||||
" irrelevant.decompose()\n",
|
||||
" self.text = soup.body.get_text(separator=\"\\n\", strip=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "6a40f9c5-1b14-42f9-9319-6a66e58e03f2",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"webpage = Website(\"https://www.pleasurewebsite.com\")\n",
|
||||
"print(webpage.title)\n",
|
||||
"print(webpage.text)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "a72a005d-43de-4ae5-b427-99a8fcb6065c",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"system_prompt = \"You are an assistant that analyzes the contents of a website \\\n",
|
||||
"and provides a short summary, ignoring text that might be navigation related. \\\n",
|
||||
"Respond in markdown.\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "f0e4f95f-0ccf-4027-9457-5c973cd17702",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def user_prompt_for(website):\n",
|
||||
" user_prompt = f\"You are looking at a website titled {website.title}\"\n",
|
||||
" user_prompt += \"\\nThe contents of this website is as follows; \\\n",
|
||||
"please provide a short summary of this website in markdown. \\\n",
|
||||
"If it includes news or announcements, then summarize these too.\\n\\n\"\n",
|
||||
" user_prompt += website.text\n",
|
||||
" return user_prompt"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "ceae6073-a085-49ce-ad44-39e46d8e6934",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def messages_for(website):\n",
|
||||
" return [\n",
|
||||
" {\"role\": \"system\", \"content\": system_prompt},\n",
|
||||
" {\"role\": \"user\", \"content\": user_prompt_for(website)}\n",
|
||||
" ]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "9d53b26b-308c-470c-a0a9-9edb887aed6d",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"messages=messages_for(webpage)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "6de38216-6d1c-48c4-877b-86d403f4e0f8",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import ollama\n",
|
||||
"MODEL = \"llama3.2\"\n",
|
||||
"response = ollama.chat(model=MODEL, messages=messages)\n",
|
||||
"print(response['message']['content'])"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "llmenv",
|
||||
"language": "python",
|
||||
"name": "llmenv"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.13"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
@@ -0,0 +1,351 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "06cf3063-9f3e-4551-a0d5-f08d9cabb927",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Triangular agent conversation\n",
|
||||
"\n",
|
||||
"## GPT (Hamlet), LLM (Falstaff), Gemini (Iago):"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "3637910d-2c6f-4f19-b1fb-2f916d23f9ac",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Created a 3-way, bringing Gemini into the coversation.\n",
|
||||
"### Replacing one of the models with an open source model running with Ollama."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "f8e0c1bd-a159-475b-9cdc-e219a7633355",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# imports\n",
|
||||
"\n",
|
||||
"import os\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"from openai import OpenAI\n",
|
||||
"from IPython.display import Markdown, display, update_display\n",
|
||||
"import ollama"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "a3ad57ad-46a8-460e-9cb3-67a890093536",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import google.generativeai"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "4f531c14-5743-4a5b-83d9-cb5863ca2ddf",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Load environment variables in a file called .env\n",
|
||||
"# Print the key prefixes to help with any debugging\n",
|
||||
"\n",
|
||||
"load_dotenv(override=True)\n",
|
||||
"openai_api_key = os.getenv('OPENAI_API_KEY')\n",
|
||||
"google_api_key = os.getenv('GOOGLE_API_KEY')\n",
|
||||
"\n",
|
||||
"if openai_api_key:\n",
|
||||
" print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
|
||||
"else:\n",
|
||||
" print(\"OpenAI API Key not set\")\n",
|
||||
"\n",
|
||||
"if google_api_key:\n",
|
||||
" print(f\"Google API Key exists and begins {google_api_key[:8]}\")\n",
|
||||
"else:\n",
|
||||
" print(\"Google API Key not set\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "3d5150ee-3858-4921-bce6-2eecfb96bc75",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Connect to OpenAI\n",
|
||||
"\n",
|
||||
"openai = OpenAI()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "11381fd8-5099-41e8-a1d7-6787dea56e43",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"google.generativeai.configure()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "c1766d20-54b6-4f76-96c5-c338ae7073c9",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"gpt_model = \"gpt-4o-mini\"\n",
|
||||
"llama_model = \"llama3.2\"\n",
|
||||
"gemini_model = 'gemini-2.0-flash'\n",
|
||||
"\n",
|
||||
"gpt_system = \"You are playing part of Hamlet. he is philosopher, probes Iago with a mixture of suspicion\\\n",
|
||||
"and intellectual curiosity, seeking to unearth the origins of his deceit.\\\n",
|
||||
"Is malice born of scorn, envy, or some deeper void? Hamlet’s introspective nature\\\n",
|
||||
"drives him to question whether Iago’s actions reveal a truth about humanity itself.\\\n",
|
||||
"You will respond as Shakespear's Hamlet will do.\"\n",
|
||||
"\n",
|
||||
"llama_system = \"You are acting part of Falstaff who attempts to lighten the mood with his jokes and observations,\\\n",
|
||||
"potentially clashing with Hamlet's melancholic nature.You respond as Shakespear's Falstaff do.\"\n",
|
||||
"\n",
|
||||
"gemini_system = \"You are acting part of Iago, subtly trying to manipulate both Hamlet and Falstaff\\\n",
|
||||
"to his own advantage, testing their weaknesses and exploiting their flaws. You respond like Iago\"\n",
|
||||
"\n",
|
||||
"gpt_messages = [\"Hi there\"]\n",
|
||||
"llama_messages = [\"Hi\"]\n",
|
||||
"gemini_messages = [\"Hello\"]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "806a0506-dac8-4bad-ac08-31f350256b58",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def call_gpt():\n",
|
||||
" messages = [{\"role\": \"system\", \"content\": gpt_system}]\n",
|
||||
" for gpt, claude, gemini in zip(gpt_messages, llama_messages, gemini_messages):\n",
|
||||
" messages.append({\"role\": \"assistant\", \"content\": gpt})\n",
|
||||
" messages.append({\"role\": \"user\", \"content\": claude})\n",
|
||||
" messages.append({\"role\": \"user\", \"content\": gemini})\n",
|
||||
" completion = openai.chat.completions.create(\n",
|
||||
" model=gpt_model,\n",
|
||||
" messages=messages\n",
|
||||
" )\n",
|
||||
" return completion.choices[0].message.content"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "43674885-ede7-48bf-bee4-467454f3e96a",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def call_llama():\n",
|
||||
" messages = []\n",
|
||||
" for gpt, llama, gemini in zip(gpt_messages, llama_messages, gemini_messages):\n",
|
||||
" messages.append({\"role\": \"user\", \"content\": gpt})\n",
|
||||
" messages.append({\"role\": \"assistant\", \"content\": llama})\n",
|
||||
" messages.append({\"role\": \"user\", \"content\": gemini})\n",
|
||||
" messages.append({\"role\": \"user\", \"content\": gpt_messages[-1]})\n",
|
||||
" response = ollama.chat(model=llama_model, messages=messages)\n",
|
||||
"\n",
|
||||
" \n",
|
||||
" return response['message']['content']"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "03d34769-b339-4c4b-8c60-69494c39d725",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#import google.generativeai as genai\n",
|
||||
"\n",
|
||||
"# Make sure you configure the API key first:\n",
|
||||
"#genai.configure(api_key=\"YOUR_API_KEY\")\n",
|
||||
"\n",
|
||||
"def call_gemini():\n",
|
||||
" gemini_messages = []\n",
|
||||
" \n",
|
||||
" # Format the history for Gemini\n",
|
||||
" for gpt, llama, gemini_message in zip(gpt_messages, llama_messages, gemini_messages):\n",
|
||||
" gemini_messages.append({\"role\": \"user\", \"parts\": [gpt]}) # Hamlet speaks\n",
|
||||
" gemini_messages.append({\"role\": \"model\", \"parts\": [llama]}) # Falstaff responds\n",
|
||||
" gemini_messages.append({\"role\": \"model\", \"parts\": [gemini_message]}) # Iago responds\n",
|
||||
"\n",
|
||||
" # Add latest user input if needed (optional)\n",
|
||||
" gemini_messages.append({\"role\": \"user\", \"parts\": [llama_messages[-1]]})\n",
|
||||
"\n",
|
||||
" # Initialize the model with the correct system instruction\n",
|
||||
" gemini = google.generativeai.GenerativeModel(\n",
|
||||
" #model_name='gemini-1.5-flash', # Or 'gemini-pro'\n",
|
||||
" model_name = gemini_model,\n",
|
||||
" system_instruction=gemini_system\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
" response = gemini.generate_content(gemini_messages)\n",
|
||||
" return response.text\n",
|
||||
"#print(response.text)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "93fc8253-67cb-4ea4-aff7-097b2a222793",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"gpt_messages = [\"Hi there\"]\n",
|
||||
"llama_messages = [\"Hi\"]\n",
|
||||
"gemini_messages = [\"Hello\"]\n",
|
||||
"\n",
|
||||
"print(f\"Hamlet:\\n{gpt_messages[0]}\\n\")\n",
|
||||
"print(f\"Falstaff:\\n{llama_messages[0]}\\n\")\n",
|
||||
"print(f\"Iago:\\n{gemini_messages[0]}\\n\")\n",
|
||||
"\n",
|
||||
"for i in range(3):\n",
|
||||
" gpt_next = call_gpt()\n",
|
||||
" print(f\"GPT:\\n{gpt_next}\\n\")\n",
|
||||
" gpt_messages.append(gpt_next)\n",
|
||||
" \n",
|
||||
" llama_next = call_llama()\n",
|
||||
" print(f\"Llama:\\n{llama_next}\\n\")\n",
|
||||
" llama_messages.append(llama_next)\n",
|
||||
"\n",
|
||||
" gemini_next = call_gemini()\n",
|
||||
" print(f\"Gemini:\\n{gemini_next}\\n\")\n",
|
||||
" llama_messages.append(gemini_next)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "bca66ffc-9dc1-4384-880c-210889f5d0ac",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Conversation between gpt-4.0-mini and llama3.2"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "c23224f6-7008-44ed-a57f-718975f4e291",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Let's make a conversation between GPT-4o-mini and Claude-3-haiku\n",
|
||||
"# We're using cheap versions of models so the costs will be minimal\n",
|
||||
"\n",
|
||||
"gpt_model = \"gpt-4o-mini\"\n",
|
||||
"llama_model = \"llama3.2\"\n",
|
||||
"\n",
|
||||
"gpt_system = \"You are a tapori from mumbai who is very optimistic; \\\n",
|
||||
"you alway look at the brighter part of the situation and you always ready to take act to win way.\"\n",
|
||||
"\n",
|
||||
"llama_system = \"You are a Jaat from Haryana. You try to express with hindi poems \\\n",
|
||||
"to agree with other person and or find common ground. If the other person is optimistic, \\\n",
|
||||
"you respond in poetic way and keep chatting.\"\n",
|
||||
"\n",
|
||||
"gpt_messages = [\"Hi there\"]\n",
|
||||
"llama_messages = [\"Hi\"]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "2d704bbb-f22b-400d-a695-efbd02b26548",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def call_gpt():\n",
|
||||
" messages = [{\"role\": \"system\", \"content\": gpt_system}]\n",
|
||||
" for gpt, llama in zip(gpt_messages, llama_messages):\n",
|
||||
" messages.append({\"role\": \"assistant\", \"content\": gpt})\n",
|
||||
" messages.append({\"role\": \"user\", \"content\": llama})\n",
|
||||
" completion = openai.chat.completions.create(\n",
|
||||
" model=gpt_model,\n",
|
||||
" messages=messages\n",
|
||||
" )\n",
|
||||
" return completion.choices[0].message.content"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "385ccec8-de59-4e42-9616-3f5c9a05589c",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def call_llama():\n",
|
||||
" messages = []\n",
|
||||
" for gpt, llama_message in zip(gpt_messages, llama_messages):\n",
|
||||
" messages.append({\"role\": \"user\", \"content\": gpt})\n",
|
||||
" messages.append({\"role\": \"assistant\", \"content\": llama_message})\n",
|
||||
" messages.append({\"role\": \"user\", \"content\": gpt_messages[-1]})\n",
|
||||
" response = ollama.chat(model=llama_model, messages=messages)\n",
|
||||
"\n",
|
||||
" \n",
|
||||
" return response['message']['content']"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "70b5481b-455e-4275-80d3-0afe0fabcb0f",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"gpt_messages = [\"Hi there\"]\n",
|
||||
"llama_messages = [\"Hi\"]\n",
|
||||
"\n",
|
||||
"print(f\"GPT:\\n{gpt_messages[0]}\\n\")\n",
|
||||
"print(f\"Llama:\\n{llama_messages[0]}\\n\")\n",
|
||||
"\n",
|
||||
"for i in range(3):\n",
|
||||
" gpt_next = call_gpt()\n",
|
||||
" print(f\"GPT:\\n{gpt_next}\\n\")\n",
|
||||
" gpt_messages.append(gpt_next)\n",
|
||||
" \n",
|
||||
" llama_next = call_llama()\n",
|
||||
" print(f\"Llama:\\n{llama_next}\\n\")\n",
|
||||
" llama_messages.append(llama_next)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "7f8d734b-57e5-427d-bcb1-7956fc58a348",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "llmenv",
|
||||
"language": "python",
|
||||
"name": "llmenv"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.13"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
@@ -0,0 +1,351 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "06cf3063-9f3e-4551-a0d5-f08d9cabb927",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Triangular agent conversation\n",
|
||||
"\n",
|
||||
"## GPT (Hamlet), LLM (Falstaff), Gemini (Iago):"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "3637910d-2c6f-4f19-b1fb-2f916d23f9ac",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Created a 3-way, bringing Gemini into the coversation.\n",
|
||||
"### Replacing one of the models with an open source model running with Ollama."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "f8e0c1bd-a159-475b-9cdc-e219a7633355",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# imports\n",
|
||||
"\n",
|
||||
"import os\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"from openai import OpenAI\n",
|
||||
"from IPython.display import Markdown, display, update_display\n",
|
||||
"import ollama"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "a3ad57ad-46a8-460e-9cb3-67a890093536",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import google.generativeai"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "4f531c14-5743-4a5b-83d9-cb5863ca2ddf",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Load environment variables in a file called .env\n",
|
||||
"# Print the key prefixes to help with any debugging\n",
|
||||
"\n",
|
||||
"load_dotenv(override=True)\n",
|
||||
"openai_api_key = os.getenv('OPENAI_API_KEY')\n",
|
||||
"google_api_key = os.getenv('GOOGLE_API_KEY')\n",
|
||||
"\n",
|
||||
"if openai_api_key:\n",
|
||||
" print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
|
||||
"else:\n",
|
||||
" print(\"OpenAI API Key not set\")\n",
|
||||
"\n",
|
||||
"if google_api_key:\n",
|
||||
" print(f\"Google API Key exists and begins {google_api_key[:8]}\")\n",
|
||||
"else:\n",
|
||||
" print(\"Google API Key not set\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "3d5150ee-3858-4921-bce6-2eecfb96bc75",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Connect to OpenAI\n",
|
||||
"\n",
|
||||
"openai = OpenAI()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "11381fd8-5099-41e8-a1d7-6787dea56e43",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"google.generativeai.configure()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "c1766d20-54b6-4f76-96c5-c338ae7073c9",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"gpt_model = \"gpt-4o-mini\"\n",
|
||||
"llama_model = \"llama3.2\"\n",
|
||||
"gemini_model = 'gemini-2.0-flash'\n",
|
||||
"\n",
|
||||
"gpt_system = \"You are playing part of Hamlet. he is philosopher, probes Iago with a mixture of suspicion\\\n",
|
||||
"and intellectual curiosity, seeking to unearth the origins of his deceit.\\\n",
|
||||
"Is malice born of scorn, envy, or some deeper void? Hamlet’s introspective nature\\\n",
|
||||
"drives him to question whether Iago’s actions reveal a truth about humanity itself.\\\n",
|
||||
"You will respond as Shakespear's Hamlet will do.\"\n",
|
||||
"\n",
|
||||
"llama_system = \"You are acting part of Falstaff who attempts to lighten the mood with his jokes and observations,\\\n",
|
||||
"potentially clashing with Hamlet's melancholic nature.You respond as Shakespear's Falstaff do.\"\n",
|
||||
"\n",
|
||||
"gemini_system = \"You are acting part of Iago, subtly trying to manipulate both Hamlet and Falstaff\\\n",
|
||||
"to his own advantage, testing their weaknesses and exploiting their flaws. You respond like Iago\"\n",
|
||||
"\n",
|
||||
"gpt_messages = [\"Hi there\"]\n",
|
||||
"llama_messages = [\"Hi\"]\n",
|
||||
"gemini_messages = [\"Hello\"]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "806a0506-dac8-4bad-ac08-31f350256b58",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def call_gpt():\n",
|
||||
" messages = [{\"role\": \"system\", \"content\": gpt_system}]\n",
|
||||
" for gpt, claude, gemini in zip(gpt_messages, llama_messages, gemini_messages):\n",
|
||||
" messages.append({\"role\": \"assistant\", \"content\": gpt})\n",
|
||||
" messages.append({\"role\": \"user\", \"content\": claude})\n",
|
||||
" messages.append({\"role\": \"user\", \"content\": gemini})\n",
|
||||
" completion = openai.chat.completions.create(\n",
|
||||
" model=gpt_model,\n",
|
||||
" messages=messages\n",
|
||||
" )\n",
|
||||
" return completion.choices[0].message.content"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "43674885-ede7-48bf-bee4-467454f3e96a",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def call_llama():\n",
|
||||
" messages = []\n",
|
||||
" for gpt, llama, gemini in zip(gpt_messages, llama_messages, gemini_messages):\n",
|
||||
" messages.append({\"role\": \"user\", \"content\": gpt})\n",
|
||||
" messages.append({\"role\": \"assistant\", \"content\": llama})\n",
|
||||
" messages.append({\"role\": \"user\", \"content\": gemini})\n",
|
||||
" messages.append({\"role\": \"user\", \"content\": gpt_messages[-1]})\n",
|
||||
" response = ollama.chat(model=llama_model, messages=messages)\n",
|
||||
"\n",
|
||||
" \n",
|
||||
" return response['message']['content']"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "03d34769-b339-4c4b-8c60-69494c39d725",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#import google.generativeai as genai\n",
|
||||
"\n",
|
||||
"# Make sure you configure the API key first:\n",
|
||||
"#genai.configure(api_key=\"YOUR_API_KEY\")\n",
|
||||
"\n",
|
||||
"def call_gemini():\n",
|
||||
" gemini_messages = []\n",
|
||||
" \n",
|
||||
" # Format the history for Gemini\n",
|
||||
" for gpt, llama, gemini_message in zip(gpt_messages, llama_messages, gemini_messages):\n",
|
||||
" gemini_messages.append({\"role\": \"user\", \"parts\": [gpt]}) # Hamlet speaks\n",
|
||||
" gemini_messages.append({\"role\": \"model\", \"parts\": [llama]}) # Falstaff responds\n",
|
||||
" gemini_messages.append({\"role\": \"model\", \"parts\": [gemini_message]}) # Iago responds\n",
|
||||
"\n",
|
||||
" # Add latest user input if needed (optional)\n",
|
||||
" gemini_messages.append({\"role\": \"user\", \"parts\": [llama_messages[-1]]})\n",
|
||||
"\n",
|
||||
" # Initialize the model with the correct system instruction\n",
|
||||
" gemini = google.generativeai.GenerativeModel(\n",
|
||||
" #model_name='gemini-1.5-flash', # Or 'gemini-pro'\n",
|
||||
" model_name = gemini_model,\n",
|
||||
" system_instruction=gemini_system\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
" response = gemini.generate_content(gemini_messages)\n",
|
||||
" return response.text\n",
|
||||
"#print(response.text)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "93fc8253-67cb-4ea4-aff7-097b2a222793",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"gpt_messages = [\"Hi there\"]\n",
|
||||
"llama_messages = [\"Hi\"]\n",
|
||||
"gemini_messages = [\"Hello\"]\n",
|
||||
"\n",
|
||||
"print(f\"Hamlet:\\n{gpt_messages[0]}\\n\")\n",
|
||||
"print(f\"Falstaff:\\n{llama_messages[0]}\\n\")\n",
|
||||
"print(f\"Iago:\\n{gemini_messages[0]}\\n\")\n",
|
||||
"\n",
|
||||
"for i in range(3):\n",
|
||||
" gpt_next = call_gpt()\n",
|
||||
" print(f\"GPT:\\n{gpt_next}\\n\")\n",
|
||||
" gpt_messages.append(gpt_next)\n",
|
||||
" \n",
|
||||
" llama_next = call_llama()\n",
|
||||
" print(f\"Llama:\\n{llama_next}\\n\")\n",
|
||||
" llama_messages.append(llama_next)\n",
|
||||
"\n",
|
||||
" gemini_next = call_gemini()\n",
|
||||
" print(f\"Gemini:\\n{gemini_next}\\n\")\n",
|
||||
" llama_messages.append(gemini_next)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "bca66ffc-9dc1-4384-880c-210889f5d0ac",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Conversation between gpt-4.0-mini and llama3.2"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "c23224f6-7008-44ed-a57f-718975f4e291",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Let's make a conversation between GPT-4o-mini and Claude-3-haiku\n",
|
||||
"# We're using cheap versions of models so the costs will be minimal\n",
|
||||
"\n",
|
||||
"gpt_model = \"gpt-4o-mini\"\n",
|
||||
"llama_model = \"llama3.2\"\n",
|
||||
"\n",
|
||||
"gpt_system = \"You are a tapori from mumbai who is very optimistic; \\\n",
|
||||
"you alway look at the brighter part of the situation and you always ready to take act to win way.\"\n",
|
||||
"\n",
|
||||
"llama_system = \"You are a Jaat from Haryana. You try to express with hindi poems \\\n",
|
||||
"to agree with other person and or find common ground. If the other person is optimistic, \\\n",
|
||||
"you respond in poetic way and keep chatting.\"\n",
|
||||
"\n",
|
||||
"gpt_messages = [\"Hi there\"]\n",
|
||||
"llama_messages = [\"Hi\"]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "2d704bbb-f22b-400d-a695-efbd02b26548",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def call_gpt():\n",
|
||||
" messages = [{\"role\": \"system\", \"content\": gpt_system}]\n",
|
||||
" for gpt, llama in zip(gpt_messages, llama_messages):\n",
|
||||
" messages.append({\"role\": \"assistant\", \"content\": gpt})\n",
|
||||
" messages.append({\"role\": \"user\", \"content\": llama})\n",
|
||||
" completion = openai.chat.completions.create(\n",
|
||||
" model=gpt_model,\n",
|
||||
" messages=messages\n",
|
||||
" )\n",
|
||||
" return completion.choices[0].message.content"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "385ccec8-de59-4e42-9616-3f5c9a05589c",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def call_llama():\n",
|
||||
" messages = []\n",
|
||||
" for gpt, llama_message in zip(gpt_messages, llama_messages):\n",
|
||||
" messages.append({\"role\": \"user\", \"content\": gpt})\n",
|
||||
" messages.append({\"role\": \"assistant\", \"content\": llama_message})\n",
|
||||
" messages.append({\"role\": \"user\", \"content\": gpt_messages[-1]})\n",
|
||||
" response = ollama.chat(model=llama_model, messages=messages)\n",
|
||||
"\n",
|
||||
" \n",
|
||||
" return response['message']['content']"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "70b5481b-455e-4275-80d3-0afe0fabcb0f",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"gpt_messages = [\"Hi there\"]\n",
|
||||
"llama_messages = [\"Hi\"]\n",
|
||||
"\n",
|
||||
"print(f\"GPT:\\n{gpt_messages[0]}\\n\")\n",
|
||||
"print(f\"Llama:\\n{llama_messages[0]}\\n\")\n",
|
||||
"\n",
|
||||
"for i in range(3):\n",
|
||||
" gpt_next = call_gpt()\n",
|
||||
" print(f\"GPT:\\n{gpt_next}\\n\")\n",
|
||||
" gpt_messages.append(gpt_next)\n",
|
||||
" \n",
|
||||
" llama_next = call_llama()\n",
|
||||
" print(f\"Llama:\\n{llama_next}\\n\")\n",
|
||||
" llama_messages.append(llama_next)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "7f8d734b-57e5-427d-bcb1-7956fc58a348",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "llmenv",
|
||||
"language": "python",
|
||||
"name": "llmenv"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.13"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
Reference in New Issue
Block a user