Merge pull request #659 from IsaiasRVH2/community-contributions-week2-branch

feat:  Added a multi tool variation for Day 4 FlightAI assistant in Community Contributions
This commit is contained in:
Ed Donner
2025-09-19 19:38:20 -04:00
committed by GitHub

View File

@@ -0,0 +1,359 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "ddfa9ae6-69fe-444a-b994-8c4c5970a7ec",
"metadata": {},
"source": [
"# Project - Airline AI Assistant\n",
"\n",
"We'll now bring together what we've learned to make an AI Customer Support assistant for an Airline"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8b50bbe2-c0b1-49c3-9a5c-1ba7efa2bcb4",
"metadata": {},
"outputs": [],
"source": [
"# imports\n",
"\n",
"import os\n",
"import json\n",
"from dotenv import load_dotenv\n",
"from openai import OpenAI\n",
"import gradio as gr"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "747e8786-9da8-4342-b6c9-f5f69c2e22ae",
"metadata": {},
"outputs": [],
"source": [
"# Initialization\n",
"\n",
"load_dotenv(override=True)\n",
"\n",
"openai_api_key = os.getenv('OPENAI_API_KEY')\n",
"if openai_api_key:\n",
" print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
"else:\n",
" print(\"OpenAI API Key not set\")\n",
" \n",
"MODEL = \"gpt-4o-mini\"\n",
"openai = OpenAI()\n",
"\n",
"# As an alternative, if you'd like to use Ollama instead of OpenAI\n",
"# Check that Ollama is running for you locally (see week1/day2 exercise) then uncomment these next 2 lines\n",
"# MODEL = \"llama3.2\"\n",
"# openai = OpenAI(base_url='http://localhost:11434/v1', api_key='ollama')\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0a521d84-d07c-49ab-a0df-d6451499ed97",
"metadata": {},
"outputs": [],
"source": [
"system_message = \"You are a helpful assistant for an Airline called FlightAI. \"\n",
"system_message += \"Give short, courteous answers, no more than 1 sentence. \"\n",
"system_message += \"Always be accurate. If you don't know the answer, say so.\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "61a2a15d-b559-4844-b377-6bd5cb4949f6",
"metadata": {},
"outputs": [],
"source": [
"# This function looks rather simpler than the one from my video, because we're taking advantage of the latest Gradio updates\n",
"\n",
"def chat(message, history):\n",
" messages = [{\"role\": \"system\", \"content\": system_message}] + history + [{\"role\": \"user\", \"content\": message}]\n",
" response = openai.chat.completions.create(model=MODEL, messages=messages)\n",
" return response.choices[0].message.content\n",
"\n",
"gr.ChatInterface(fn=chat, type=\"messages\").launch()"
]
},
{
"cell_type": "markdown",
"id": "36bedabf-a0a7-4985-ad8e-07ed6a55a3a4",
"metadata": {},
"source": [
"## Tools\n",
"\n",
"Tools are an incredibly powerful feature provided by the frontier LLMs.\n",
"\n",
"With tools, you can write a function, and have the LLM call that function as part of its response.\n",
"\n",
"Sounds almost spooky.. we're giving it the power to run code on our machine?\n",
"\n",
"Well, kinda."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0696acb1-0b05-4dc2-80d5-771be04f1fb2",
"metadata": {},
"outputs": [],
"source": [
"# Let's start by making a useful function\n",
"\n",
"ticket_prices = {\"london\": \"$799\", \"paris\": \"$899\", \"tokyo\": \"$1400\", \"berlin\": \"$499\"}\n",
"flight_schedules = {\"london\": [\"08:00\", \"15:00\"], \"paris\": [\"09:00\", \"16:00\"], \"tokyo\": [\"12:00\"], \"berlin\": [\"07:00\", \"13:00\"]}\n",
"\n",
"def get_ticket_price(destination_city):\n",
" print(f\"Tool get_ticket_price called for {destination_city}\")\n",
" city = destination_city.lower()\n",
" return ticket_prices.get(city, \"Unknown\")\n",
"\n",
"def get_flight_schedules(destination_city):\n",
" print(f\"Tool get_flight_hours called for {destination_city}\")\n",
" city = destination_city.lower()\n",
" return flight_schedules.get(city, \"Unknown\")\n",
"\n",
"def flight_confirmation_number(destination_city, date, hour):\n",
" import random\n",
" number = destination_city[:3].upper() + ''.join(random.choices('ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789', k=6))\n",
" print(f\"Tool flight_confirmation_number called for {destination_city} on {date} at {hour}, returning {number}\")\n",
" return number"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "80ca4e09-6287-4d3f-997d-fa6afbcf6c85",
"metadata": {},
"outputs": [],
"source": [
"print(get_ticket_price(\"London\"))\n",
"print(get_flight_schedules(\"London\"))\n",
"print(flight_confirmation_number(\"London\", \"2024-10-01\", \"15:00\"))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4afceded-7178-4c05-8fa6-9f2085e6a344",
"metadata": {},
"outputs": [],
"source": [
"# There's a particular dictionary structure that's required to describe our function:\n",
"\n",
"price_function = {\n",
" \"name\": \"get_ticket_price\",\n",
" \"description\": \"Get the price of a return ticket to the destination city. Call this whenever you need \\\n",
" to know the ticket price, for example when a customer asks 'How much is a ticket to this city'\",\n",
" \"parameters\": {\n",
" \"type\": \"object\",\n",
" \"properties\": {\n",
" \"destination_city\": {\n",
" \"type\": \"string\",\n",
" \"description\": \"The city that the customer wants to travel to\",\n",
" },\n",
" },\n",
" \"required\": [\"destination_city\"],\n",
" \"additionalProperties\": False\n",
" }\n",
"}\n",
"\n",
"schedule_function = {\n",
" \"name\": \"get_flight_schedules\",\n",
" \"description\": \"Get the daily flight schedules (departure times) to the destination city. Call this \\\n",
" whenever you need to know the flight times, for example when a customer asks 'What time \\\n",
" are the flights to this city?'\",\n",
" \"parameters\": {\n",
" \"type\": \"object\",\n",
" \"properties\": {\n",
" \"destination_city\": {\n",
" \"type\": \"string\",\n",
" \"description\": \"The city that the customer wants to travel to\",\n",
" },\n",
" },\n",
" \"required\": [\"destination_city\"],\n",
" \"additionalProperties\": False\n",
" }\n",
"}\n",
"\n",
"confirmation_function = {\n",
" \"name\": \"flight_confirmation_number\",\n",
" \"description\": \"Get a flight confirmation number for a booking. Call this whenever you need to \\\n",
" provide a confirmation number, after a customer has selected a destination city, a flight \\\n",
" date and a departure time, and also asked for the price. For example when a customer says \\\n",
" 'I'd like to book that flight'\",\n",
" \"parameters\": {\n",
" \"type\": \"object\",\n",
" \"properties\": {\n",
" \"destination_city\": {\n",
" \"type\": \"string\",\n",
" \"description\": \"The city that the customer wants to travel to\",\n",
" },\n",
" \"date\": {\n",
" \"type\": \"string\",\n",
" \"description\": \"The date of the flight, in YYYY-MM-DD format\",\n",
" },\n",
" \"hour\": {\n",
" \"type\": \"string\",\n",
" \"description\": \"The departure time of the flight, in HH:MM format\",\n",
" },\n",
" },\n",
" \"required\": [\"destination_city\", \"date\", \"hour\"],\n",
" \"additionalProperties\": False\n",
" }\n",
"}"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "bdca8679-935f-4e7f-97e6-e71a4d4f228c",
"metadata": {},
"outputs": [],
"source": [
"# And this is included in a list of tools:\n",
"\n",
"tools = [{\"type\": \"function\", \"function\": price_function},\n",
" {\"type\": \"function\", \"function\": schedule_function},\n",
" {\"type\": \"function\", \"function\": confirmation_function}]"
]
},
{
"cell_type": "markdown",
"id": "c3d3554f-b4e3-4ce7-af6f-68faa6dd2340",
"metadata": {},
"source": [
"## Getting OpenAI to use our Tool\n",
"\n",
"There's some fiddly stuff to allow OpenAI \"to call our tool\"\n",
"\n",
"What we actually do is give the LLM the opportunity to inform us that it wants us to run the tool.\n",
"\n",
"Here's how the new chat function looks:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ce9b0744-9c78-408d-b9df-9f6fd9ed78cf",
"metadata": {},
"outputs": [],
"source": [
"def chat(message, history):\n",
" messages = [{\"role\": \"system\", \"content\": system_message}] + history + [{\"role\": \"user\", \"content\": message}]\n",
" response = openai.chat.completions.create(model=MODEL, messages=messages, tools=tools)\n",
"\n",
" if response.choices[0].finish_reason==\"tool_calls\":\n",
" message = response.choices[0].message\n",
" response, city = handle_tool_call(message)\n",
" messages.append(message)\n",
" messages.append(response)\n",
" response = openai.chat.completions.create(model=MODEL, messages=messages)\n",
" \n",
" return response.choices[0].message.content"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b0992986-ea09-4912-a076-8e5603ee631f",
"metadata": {},
"outputs": [],
"source": [
"# We have to write that function handle_tool_call:\n",
"def handle_price_tool_call(tool_call_id, arguments):\n",
" city = arguments.get('destination_city')\n",
" price = get_ticket_price(city)\n",
" response = {\n",
" \"role\": \"tool\",\n",
" \"content\": json.dumps({\"destination_city\": city,\"price\": price}),\n",
" \"tool_call_id\": tool_call_id\n",
" }\n",
" return response, city\n",
" \n",
"def handle_schedule_tool_call(tool_call_id, arguments):\n",
" city = arguments.get('destination_city')\n",
" schedules = get_flight_schedules(city)\n",
" response = {\n",
" \"role\": \"tool\",\n",
" \"content\": json.dumps({\"destination_city\": city,\"schedules\": schedules}),\n",
" \"tool_call_id\": tool_call_id\n",
" }\n",
" return response, city\n",
"\n",
"def handle_confirmation_tool_call(tool_call_id, arguments):\n",
" city = arguments.get('destination_city')\n",
" date = arguments.get('date')\n",
" hour = arguments.get('hour')\n",
" confirmation = flight_confirmation_number(city, date, hour)\n",
" response = {\n",
" \"role\": \"tool\",\n",
" \"content\": json.dumps({\"destination_city\": city,\"date\": date,\"hour\": hour,\"confirmation_number\": confirmation}),\n",
" \"tool_call_id\": tool_call_id\n",
" }\n",
" return response, city\n",
"\n",
"def handle_tool_call(message):\n",
" print(\"Number of tool calls:\", len(message.tool_calls))\n",
" \n",
" tool_call = message.tool_calls[0]\n",
" print(\"Tool call is for function:\", tool_call.function.name)\n",
" arguments = json.loads(tool_call.function.arguments)\n",
" \n",
" if tool_call.function.name == \"get_ticket_price\":\n",
" response, city = handle_price_tool_call(tool_call.id, arguments)\n",
" elif tool_call.function.name == \"get_flight_schedules\":\n",
" response, city = handle_schedule_tool_call(tool_call.id, arguments)\n",
" elif tool_call.function.name == \"flight_confirmation_number\":\n",
" response, city = handle_confirmation_tool_call(tool_call.id, arguments)\n",
" \n",
" return response, city"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f4be8a71-b19e-4c2f-80df-f59ff2661f14",
"metadata": {},
"outputs": [],
"source": [
"gr.ChatInterface(fn=chat, type=\"messages\").launch()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "530e4bef",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 5
}