Week5 GenAi Andela bootcamp project

This commit is contained in:
Chimwemwe Kachaje
2025-10-20 11:10:49 +02:00
parent 71fb93947d
commit 691dd6250f

View File

@@ -0,0 +1,204 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "b4992675",
"metadata": {},
"source": [
"# Personal Knowledge Worker Using RAG\n",
"\n",
"Tool for querying personal file storage using RAG. Working with local Llama instance"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2680f9c0",
"metadata": {},
"outputs": [],
"source": [
"! pip -q install langchain langchain-community sentence-transformers ollama"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "47b6caab",
"metadata": {},
"outputs": [],
"source": [
"# imports\n",
"\n",
"import os\n",
"from langchain_community.document_loaders import DirectoryLoader\n",
"from langchain.text_splitter import CharacterTextSplitter\n",
"from langchain.document_loaders import TextLoader\n",
"import glob\n",
"from langchain_community.llms import Ollama\n",
"from langchain.embeddings import OllamaEmbeddings\n",
"from langchain_chroma import Chroma\n",
"from langchain.memory import ConversationBufferMemory\n",
"from langchain.chains import ConversationalRetrievalChain\n",
"import gradio as gr\n",
"from langchain_core.callbacks import StdOutCallbackHandler\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d42c7523",
"metadata": {},
"outputs": [],
"source": [
"# Using mistral model to run locally\n",
"\n",
"MODEL = \"mistral\"\n",
"db_name = \"vector_db\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a3ac38f7",
"metadata": {},
"outputs": [],
"source": [
"def add_metadata(doc, doc_type):\n",
" doc.metadata[\"doc_type\"] = doc_type\n",
" return doc\n",
"\n",
"\n",
"# Using reference data as default to avoid repeating the same steps. This can be substituted with any other data later dynamically\n",
"def load_documents(folders = glob.glob(\"../../knowledge-base/*\")):\n",
" text_loader_kwargs = {'encoding': 'utf-8'}\n",
"\n",
" documents = []\n",
" for folder in folders:\n",
" doc_type = os.path.basename(folder)\n",
" loader = DirectoryLoader(folder, glob=\"**/*.md\", loader_cls=TextLoader, loader_kwargs=text_loader_kwargs)\n",
" folder_docs = loader.load()\n",
" documents.extend([add_metadata(doc, doc_type) for doc in folder_docs])\n",
"\n",
" text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=200)\n",
" chunks = text_splitter.split_documents(documents)\n",
"\n",
" print(f\"Total number of chunks: {len(chunks)}\")\n",
" print(f\"Document types found: {set(doc.metadata['doc_type'] for doc in documents)}\")\n",
"\n",
" return documents, chunks\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "75a53301",
"metadata": {},
"outputs": [],
"source": [
"embeddings = OllamaEmbeddings(model=MODEL)\n",
"\n",
"documents, chunks = load_documents()\n",
"\n",
"# Use existing vectorstore if it exists\n",
"if os.path.exists(db_name):\n",
" vectorstore = Chroma(persist_directory=db_name, embedding_function=embeddings)\n",
"else:\n",
" # Create a new vectorstore\n",
" vectorstore = Chroma.from_documents(documents=chunks, embedding=embeddings, persist_directory=db_name)\n",
"print(f\"Vectorstore created with {vectorstore._collection.count()} documents\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2e906f8a",
"metadata": {},
"outputs": [],
"source": [
"llm = Ollama(model=MODEL)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7f1ca473",
"metadata": {},
"outputs": [],
"source": [
"retriever = vectorstore.as_retriever()\n",
"\n",
"memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)\n",
"\n",
"conversation_chain = ConversationalRetrievalChain.from_llm(llm=llm, retriever=retriever, memory=memory)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "34d5a20a",
"metadata": {},
"outputs": [],
"source": [
"question = \"Please explain what Insurellm is in a couple of sentences\"\n",
"result = conversation_chain.invoke(question)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e0ad3702",
"metadata": {},
"outputs": [],
"source": [
"print(result[\"answer\"])"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "652d8420",
"metadata": {},
"outputs": [],
"source": [
"# Wrapping that in a function\n",
"\n",
"def chat(question, history):\n",
" result = conversation_chain.invoke({\"question\": question})\n",
" return result[\"answer\"]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "73bd1d46",
"metadata": {},
"outputs": [],
"source": [
"# And in Gradio:\n",
"\n",
"view = gr.ChatInterface(chat, type=\"messages\").launch(inbrowser=True)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.10"
}
},
"nbformat": 4,
"nbformat_minor": 5
}