Week4 GenAi Andela bootcamp project
This commit is contained in:
@@ -0,0 +1,152 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "ee939d6d",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Docstring Generator for Code\n",
|
||||
"\n",
|
||||
"Tool for generating documentation/comments for code using a local Llama LLM model"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "d61ff2a0",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# imports \n",
|
||||
"\n",
|
||||
"from openai import OpenAI"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "1410b7dd",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"openai = OpenAI(base_url='http://localhost:11434/v1', api_key='ollama')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "8391d095",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# model\n",
|
||||
"\n",
|
||||
"MODEL = \"llama3.2\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "8f55ad72",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def create_user_prompt(code_snippet=\"\"\"\n",
|
||||
"def calculate_total_price(price, tax_rate):\n",
|
||||
" return price * (1 + tax_rate)\n",
|
||||
"\"\"\"):\n",
|
||||
" return f\"\"\"\n",
|
||||
"Please generate a Google-style Python docstring for the following function. Explain its purpose, arguments, return value, and any exceptions it might raise. Include a small usage example if applicable.\n",
|
||||
"\n",
|
||||
"```python\n",
|
||||
"{code_snippet}\n",
|
||||
"```\n",
|
||||
"\"\"\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "48b0e6e3",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"user_prompt = create_user_prompt()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "648e61f9",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(user_prompt)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "af787e3e",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def create_docstring_for_code(user_prompt):\n",
|
||||
" system_message = (\n",
|
||||
" \"You are a helpful assistant that generates docstrings for code.\"\n",
|
||||
" )\n",
|
||||
" response = openai.chat.completions.create(\n",
|
||||
" model=MODEL,\n",
|
||||
" messages=[\n",
|
||||
" {\"role\": \"system\", \"content\": system_message},\n",
|
||||
" {\"role\": \"user\", \"content\": user_prompt}\n",
|
||||
" ]\n",
|
||||
" )\n",
|
||||
" result = response.choices[0].message.content\n",
|
||||
"\n",
|
||||
" return result"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "e740c9e1",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"result = create_docstring_for_code(user_prompt)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "f9b030c6",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(result)"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": ".venv",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.12.10"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
@@ -0,0 +1,152 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "ee939d6d",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Unit Tests Generator for Code\n",
|
||||
"\n",
|
||||
"Tool for generating unit tests for code using a local Llama LLM model"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "d61ff2a0",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# imports \n",
|
||||
"\n",
|
||||
"from openai import OpenAI"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "1410b7dd",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"openai = OpenAI(base_url='http://localhost:11434/v1', api_key='ollama')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "8391d095",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# model\n",
|
||||
"\n",
|
||||
"MODEL = \"llama3.2\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "8f55ad72",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def create_user_prompt(code_snippet=\"\"\"\n",
|
||||
"def calculate_total_price(price, tax_rate):\n",
|
||||
" return price * (1 + tax_rate)\n",
|
||||
"\"\"\"):\n",
|
||||
" return f\"\"\"\n",
|
||||
"Please generate unit tests for the following code. Maximize on coverage. Take care of edge cases as well.\n",
|
||||
"\n",
|
||||
"```python\n",
|
||||
"{code_snippet}\n",
|
||||
"```\n",
|
||||
"\"\"\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "48b0e6e3",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"user_prompt = create_user_prompt()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "648e61f9",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(user_prompt)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "af787e3e",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def create_unit_tests_for_code(user_prompt):\n",
|
||||
" system_message = (\n",
|
||||
" \"You are a helpful assistant that generates unit tests for code.\"\n",
|
||||
" )\n",
|
||||
" response = openai.chat.completions.create(\n",
|
||||
" model=MODEL,\n",
|
||||
" messages=[\n",
|
||||
" {\"role\": \"system\", \"content\": system_message},\n",
|
||||
" {\"role\": \"user\", \"content\": user_prompt}\n",
|
||||
" ]\n",
|
||||
" )\n",
|
||||
" result = response.choices[0].message.content\n",
|
||||
"\n",
|
||||
" return result"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "e740c9e1",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"result = create_unit_tests_for_code(user_prompt)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "f9b030c6",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(result)"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": ".venv",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.12.10"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
Reference in New Issue
Block a user