diff --git a/week1/community-contributions/fernando/day2.ipynb b/week1/community-contributions/fernando/day2.ipynb
new file mode 100644
index 0000000..4a6e7b5
--- /dev/null
+++ b/week1/community-contributions/fernando/day2.ipynb
@@ -0,0 +1,494 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "d15d8294-3328-4e07-ad16-8a03e9bbfdb9",
+ "metadata": {},
+ "source": [
+ "# Welcome to the Day 2 Lab!\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "ada885d9-4d42-4d9b-97f0-74fbbbfe93a9",
+ "metadata": {},
+ "source": [
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | \n",
+ " \n",
+ " Just before we get started --\n",
+ " I thought I'd take a second to point you at this page of useful resources for the course. This includes links to all the slides. \n",
+ " https://edwarddonner.com/2024/11/13/llm-engineering-resources/ \n",
+ " Please keep this bookmarked, and I'll continue to add more useful links there over time.\n",
+ " \n",
+ " | \n",
+ "
\n",
+ "
"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "79ffe36f",
+ "metadata": {},
+ "source": [
+ "## First - let's talk about the Chat Completions API\n",
+ "\n",
+ "1. The simplest way to call an LLM\n",
+ "2. It's called Chat Completions because it's saying: \"here is a conversation, please predict what should come next\"\n",
+ "3. The Chat Completions API was invented by OpenAI, but it's so popular that everybody uses it!\n",
+ "\n",
+ "### We will start by calling OpenAI again - but don't worry non-OpenAI people, your time is coming!\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "e38f17a0",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import os\n",
+ "from dotenv import load_dotenv\n",
+ "\n",
+ "load_dotenv(override=True)\n",
+ "api_key = os.getenv('OPENAI_API_KEY')\n",
+ "\n",
+ "if not api_key:\n",
+ " print(\"No API key was found - please head over to the troubleshooting notebook in this folder to identify & fix!\")\n",
+ "elif not api_key.startswith(\"sk-proj-\"):\n",
+ " print(\"An API key was found, but it doesn't start sk-proj-; please check you're using the right key - see troubleshooting notebook\")\n",
+ "else:\n",
+ " print(\"API key found and looks good so far!\")\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "97846274",
+ "metadata": {},
+ "source": [
+ "## Do you know what an Endpoint is?\n",
+ "\n",
+ "If not, please review the Technical Foundations guide in the guides folder\n",
+ "\n",
+ "And, here is an endpoint that might interest you..."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "5af5c188",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import requests\n",
+ "\n",
+ "headers = {\"Authorization\": f\"Bearer {api_key}\", \"Content-Type\": \"application/json\"}\n",
+ "\n",
+ "payload = {\n",
+ " \"model\": \"gpt-5-nano\",\n",
+ " \"messages\": [\n",
+ " {\"role\": \"user\", \"content\": \"Tell me a fun fact\"}]\n",
+ "}\n",
+ "\n",
+ "payload"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "2d0ab242",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "response = requests.post(\n",
+ " \"https://api.openai.com/v1/chat/completions\",\n",
+ " headers=headers,\n",
+ " json=payload\n",
+ ")\n",
+ "\n",
+ "response.json()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "cb11a9f6",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "response.json()[\"choices\"][0][\"message\"][\"content\"]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "cea3026a",
+ "metadata": {},
+ "source": [
+ "# What is the openai package?\n",
+ "\n",
+ "It's known as a Python Client Library.\n",
+ "\n",
+ "It's nothing more than a wrapper around making this exact call to the http endpoint.\n",
+ "\n",
+ "It just allows you to work with nice Python code instead of messing around with janky json objects.\n",
+ "\n",
+ "But that's it. It's open-source and lightweight. Some people think it contains OpenAI model code - it doesn't!\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "490fdf09",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Create OpenAI client\n",
+ "\n",
+ "from openai import OpenAI\n",
+ "openai = OpenAI()\n",
+ "\n",
+ "response = openai.chat.completions.create(model=\"gpt-5-nano\", messages=[{\"role\": \"user\", \"content\": \"Tell me a fun fact\"}])\n",
+ "\n",
+ "response.choices[0].message.content\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "c7739cda",
+ "metadata": {},
+ "source": [
+ "## And then this great thing happened:\n",
+ "\n",
+ "OpenAI's Chat Completions API was so popular, that the other model providers created endpoints that are identical.\n",
+ "\n",
+ "They are known as the \"OpenAI Compatible Endpoints\".\n",
+ "\n",
+ "For example, google made one here: https://generativelanguage.googleapis.com/v1beta/openai/\n",
+ "\n",
+ "And OpenAI decided to be kind: they said, hey, you can just use the same client library that we made for GPT. We'll allow you to specify a different endpoint URL and a different key, to use another provider.\n",
+ "\n",
+ "So you can use:\n",
+ "\n",
+ "```python\n",
+ "gemini = OpenAI(base_url=\"https://generativelanguage.googleapis.com/v1beta/openai/\", api_key=\"AIz....\")\n",
+ "gemini.chat.completions.create(...)\n",
+ "```\n",
+ "\n",
+ "And to be clear - even though OpenAI is in the code, we're only using this lightweight python client library to call the endpoint - there's no OpenAI model involved here.\n",
+ "\n",
+ "If you're confused, please review Guide 9 in the Guides folder!\n",
+ "\n",
+ "And now let's try it!"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "f74293bc",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "\n",
+ "GEMINI_BASE_URL = \"https://generativelanguage.googleapis.com/v1beta/openai/\"\n",
+ "\n",
+ "google_api_key = os.getenv(\"GOOGLE_API_KEY\")\n",
+ "\n",
+ "if not google_api_key:\n",
+ " print(\"No API key was found - please head over to the troubleshooting notebook in this folder to identify & fix!\")\n",
+ "elif not google_api_key.startswith(\"AIz\"):\n",
+ " print(\"An API key was found, but it doesn't start AIz\")\n",
+ "else:\n",
+ " print(\"API key found and looks good so far!\")\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "8fc5520d",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import google.generativeai as genai\n",
+ "from dotenv import load_dotenv\n",
+ "import os\n",
+ "\n",
+ "load_dotenv()\n",
+ "genai.configure(api_key=os.getenv(\"GOOGLE_API_KEY\"))\n",
+ "\n",
+ "# Lista de modelos disponibles\n",
+ "for model in genai.list_models():\n",
+ " print(model.name, \"-\", model.supported_generation_methods)\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "d060f484",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import google.generativeai as genai\n",
+ "from dotenv import load_dotenv\n",
+ "import os\n",
+ "\n",
+ "load_dotenv()\n",
+ "genai.configure(api_key=os.getenv(\"GOOGLE_API_KEY\"))\n",
+ "\n",
+ "model = genai.GenerativeModel(\"models/gemini-2.5-pro\") # Usa el modelo que viste en la lista, ejemplo \"gemini-1.5-pro\" o \"gemini-1.5-flash\"\n",
+ "response = model.generate_content(\"Tell me a fun fact\")\n",
+ "\n",
+ "print(response.text)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "gemini = OpenAI(base_url=GEMINI_BASE_URL, api_key=google_api_key)\n",
+ "\n",
+ "response = gemini.chat.completions.create(model=\"models/gemini-2.5-pro\", messages=[{\"role\": \"user\", \"content\": \"Tell me a fun fact\"}])\n",
+ "\n",
+ "response.choices[0].message.content"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "a5b069be",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "markdown",
+ "id": "65272432",
+ "metadata": {},
+ "source": [
+ "## And Ollama also gives an OpenAI compatible endpoint\n",
+ "\n",
+ "...and it's on your local machine!\n",
+ "\n",
+ "If the next cell doesn't print \"Ollama is running\" then please open a terminal and run `ollama serve`"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "f06280ad",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "requests.get(\"http://localhost:11434\").content"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "c6ef3807",
+ "metadata": {},
+ "source": [
+ "### Download llama3.2 from meta\n",
+ "\n",
+ "Change this to llama3.2:1b if your computer is smaller.\n",
+ "\n",
+ "Don't use llama3.3 or llama4! They are too big for your computer.."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "e633481d",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!ollama pull llama3.2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "ce240975",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import requests\n",
+ "response = requests.get(\"http://localhost:11434/v1/models\")\n",
+ "print(response.json())\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "d9419762",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from openai import OpenAI\n",
+ "\n",
+ "OLLAMA_BASE_URL = \"http://localhost:11434/v1\"\n",
+ "\n",
+ "ollama = OpenAI(base_url=OLLAMA_BASE_URL, api_key='ollama')\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "e2456cdf",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Get a fun fact\n",
+ "\n",
+ "response = ollama.chat.completions.create(model=\"llama3.2\", messages=[{\"role\": \"user\", \"content\": \"Tell me a fun fact\"}])\n",
+ "\n",
+ "response.choices[0].message.content"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "3d7cebd7",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Now let's try deepseek-r1:1.5b - this is DeepSeek \"distilled\" into Qwen from Alibaba Cloud\n",
+ "\n",
+ "!ollama pull deepseek-r1:1.5b"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "25002f25",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#response = ollama.chat.completions.create(model=\"deepseek-r1:1.5b\", messages=[{\"role\": \"user\", \"content\": \"Tell me a fun fact\"}])\n",
+ "#response.choices[0].message.content\n",
+ "\n",
+ "from ollama import chat # pip install ollama\n",
+ "\n",
+ "resp = chat(\n",
+ " model='deepseek-r1:1.5b',\n",
+ " messages=[{'role': 'user', 'content': 'Tell me a fun fact'}],\n",
+ ")\n",
+ "\n",
+ "print(resp['message']['content'])\n",
+ "# o\n",
+ "print(resp.message.content)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "6e9fa1fc-eac5-4d1d-9be4-541b3f2b3458",
+ "metadata": {},
+ "source": [
+ "# HOMEWORK EXERCISE ASSIGNMENT\n",
+ "\n",
+ "Upgrade the day 1 project to summarize a webpage to use an Open Source model running locally via Ollama rather than OpenAI\n",
+ "\n",
+ "You'll be able to use this technique for all subsequent projects if you'd prefer not to use paid APIs.\n",
+ "\n",
+ "**Benefits:**\n",
+ "1. No API charges - open-source\n",
+ "2. Data doesn't leave your box\n",
+ "\n",
+ "**Disadvantages:**\n",
+ "1. Significantly less power than Frontier Model\n",
+ "\n",
+ "## Recap on installation of Ollama\n",
+ "\n",
+ "Simply visit [ollama.com](https://ollama.com) and install!\n",
+ "\n",
+ "Once complete, the ollama server should already be running locally. \n",
+ "If you visit: \n",
+ "[http://localhost:11434/](http://localhost:11434/)\n",
+ "\n",
+ "You should see the message `Ollama is running`. \n",
+ "\n",
+ "If not, bring up a new Terminal (Mac) or Powershell (Windows) and enter `ollama serve` \n",
+ "And in another Terminal (Mac) or Powershell (Windows), enter `ollama pull llama3.2` \n",
+ "Then try [http://localhost:11434/](http://localhost:11434/) again.\n",
+ "\n",
+ "If Ollama is slow on your machine, try using `llama3.2:1b` as an alternative. Run `ollama pull llama3.2:1b` from a Terminal or Powershell, and change the code from `MODEL = \"llama3.2\"` to `MODEL = \"llama3.2:1b\"`"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "6de38216-6d1c-48c4-877b-86d403f4e0f8",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# imports\n",
+ "import os\n",
+ "from dotenv import load_dotenv\n",
+ "from scraper import fetch_website_contents\n",
+ "from IPython.display import Markdown, display\n",
+ "from ollama import Client \n",
+ "\n",
+ "# Cliente Ollama local\n",
+ "ollama = Client()\n",
+ "\n",
+ "system_prompt = \"\"\"\n",
+ "You are a helpful assistant that analyzes the contents of a website,\n",
+ "and provides a short, snarky, humorous summary, ignoring text that might be navigation related.\n",
+ "Respond in markdown. Do not wrap the markdown in a code block - respond just with the markdown.\n",
+ "\"\"\"\n",
+ "\n",
+ "user_prompt_prefix = \"\"\"\n",
+ "Here are the contents of a website.\n",
+ "Provide a short summary of this website.\n",
+ "If it includes news or announcements, then summarize these too.\n",
+ "\"\"\"\n",
+ "\n",
+ "def messages_for(website):\n",
+ " return [\n",
+ " {\"role\": \"system\", \"content\": system_prompt},\n",
+ " {\"role\": \"user\", \"content\": user_prompt_prefix + website}\n",
+ " ]\n",
+ "\n",
+ "def summarize(url):\n",
+ " website = fetch_website_contents(url)\n",
+ " response = ollama.chat(\n",
+ " model='llama3.2',\n",
+ " messages=messages_for(website)\n",
+ " )\n",
+ " return response['message']['content']\n",
+ "\n",
+ "def display_summary(url):\n",
+ " summary = summarize(url)\n",
+ " display(Markdown(summary))\n",
+ "\n",
+ "# Ejecuta el resumen\n",
+ "display_summary(\"https://www.reforma.com\")\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": ".venv",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.12.12"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/week1/community-contributions/fernando/week1 EXERCISE.ipynb b/week1/community-contributions/fernando/week1 EXERCISE.ipynb
new file mode 100644
index 0000000..c152cb7
--- /dev/null
+++ b/week1/community-contributions/fernando/week1 EXERCISE.ipynb
@@ -0,0 +1,175 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "fe12c203-e6a6-452c-a655-afb8a03a4ff5",
+ "metadata": {},
+ "source": [
+ "# End of week 1 exercise\n",
+ "\n",
+ "To demonstrate your familiarity with OpenAI API, and also Ollama, build a tool that takes a technical question, \n",
+ "and responds with an explanation. This is a tool that you will be able to use yourself during the course!"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "c1070317-3ed9-4659-abe3-828943230e03",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# imports\n",
+ "import os\n",
+ "from openai import OpenAI\n",
+ "from dotenv import load_dotenv"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "4a456906-915a-4bfd-bb9d-57e505c5093f",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# constants\n",
+ "MODEL_GPT = 'gpt-4o-mini'\n",
+ "MODEL_LLAMA = 'llama3.2'"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "a8d7923c-5f28-4c30-8556-342d7c8497c1",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# set up environment\n",
+ "system_prompt = \"\"\"\n",
+ "You are a technical expert of AI and LLMs.\n",
+ "\"\"\"\n",
+ "\n",
+ "user_prompt_prefix = \"\"\"\n",
+ "Provide deep explanations of the provided text.\n",
+ "\"\"\"\n",
+ "\n",
+ "user_prompt = \"\"\"\n",
+ "Explain the provided text.\n",
+ "\"\"\"\n",
+ "client = OpenAI()\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "3f0d0137-52b0-47a8-81a8-11a90a010798",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# here is the question; type over this to ask something new\n",
+ "\n",
+ "question = \"\"\"\n",
+ "Ollama does have an OpenAI compatible endpoint, but Gemini doesn't?\n",
+ "\"\"\""
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Get gpt-4o-mini to answer, with streaming\n",
+ "def messages_for(question):\n",
+ " return [\n",
+ " {\"role\": \"system\", \"content\": system_prompt},\n",
+ " {\"role\": \"user\", \"content\": user_prompt_prefix + question}\n",
+ " ]\n",
+ "\n",
+ "def run_model_streaming(model_name, question):\n",
+ " stream = client.chat.completions.create(\n",
+ " model=model_name,\n",
+ " messages=messages_for(question),\n",
+ " stream=True\n",
+ " )\n",
+ " for chunk in stream:\n",
+ " content = chunk.choices[0].delta.content\n",
+ " if content:\n",
+ " print(content, end=\"\", flush=True)\n",
+ "\n",
+ "run_model_streaming(MODEL_GPT, question)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "8f7c8ea8-4082-4ad0-8751-3301adcf6538",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Get Llama 3.2 to answer\n",
+ "# imports\n",
+ "import os\n",
+ "from openai import OpenAI\n",
+ "from dotenv import load_dotenv\n",
+ "\n",
+ "# set up environment\n",
+ "client = OpenAI(\n",
+ " base_url=os.getenv(\"OPENAI_BASE_URL\", \"http://localhost:11434/v1\"),\n",
+ " api_key=os.getenv(\"OPENAI_API_KEY\", \"ollama\")\n",
+ ")\n",
+ "\n",
+ "system_prompt = \"\"\"\n",
+ "You are a technical expert of AI and LLMs.\n",
+ "\"\"\"\n",
+ "\n",
+ "user_prompt_prefix = \"\"\"\n",
+ "Provide deep explanations of the provided text.\n",
+ "\"\"\"\n",
+ "\n",
+ "# question\n",
+ "question = \"\"\"\n",
+ "Ollama does have an OpenAI compatible endpoint, but Gemini doesn't?\n",
+ "\"\"\"\n",
+ "\n",
+ "# message\n",
+ "def messages_for(question):\n",
+ " return [\n",
+ " {\"role\": \"system\", \"content\": system_prompt},\n",
+ " {\"role\": \"user\", \"content\": user_prompt_prefix + question}\n",
+ " ]\n",
+ "\n",
+ "# response\n",
+ "def run_model(model_name, question):\n",
+ " response = client.chat.completions.create(\n",
+ " model=model_name,\n",
+ " messages=messages_for(question)\n",
+ " )\n",
+ " return response.choices[0].message.content\n",
+ "\n",
+ "# run and print result\n",
+ "print(run_model(MODEL_LLAMA, question))\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": ".venv",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.12.12"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}