Merge pull request #879 from muthash/stephen/week6-exercise

[Bootcamp] Week 6 Fine-tuning Exercise (Stephen)
This commit is contained in:
Ed Donner
2025-10-28 19:55:59 -04:00
committed by GitHub

View File

@@ -0,0 +1,362 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "db8736a7-ed94-441c-9556-831fa57b5a10",
"metadata": {},
"source": [
"# The Product Pricer\n",
"\n",
"A model that can estimate how much something costs, from its description.\n",
"\n",
"## Fine Tuning a model!"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "681c717b-4c24-4ac3-a5f3-3c5881d6e70a",
"metadata": {},
"outputs": [],
"source": [
"# imports\n",
"\n",
"import os\n",
"import re\n",
"import math\n",
"import json\n",
"import random\n",
"from dotenv import load_dotenv\n",
"from huggingface_hub import login\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"import pickle\n",
"from collections import Counter\n",
"from openai import OpenAI\n",
"from anthropic import Anthropic\n",
"\n",
"from items import Item\n",
"from testing import Tester"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "36d05bdc-0155-4c72-a7ee-aa4e614ffd3c",
"metadata": {},
"outputs": [],
"source": [
"# environment\n",
"\n",
"load_dotenv(override=True)\n",
"os.environ['OPENAI_API_KEY'] = os.getenv('OPENAI_API_KEY', 'your-key-if-not-using-env')\n",
"os.environ['ANTHROPIC_API_KEY'] = os.getenv('ANTHROPIC_API_KEY', 'your-key-if-not-using-env')\n",
"os.environ['HF_TOKEN'] = os.getenv('HF_TOKEN', 'your-key-if-not-using-env')\n",
"\n",
"hf_token = os.environ['HF_TOKEN']\n",
"login(hf_token, add_to_git_credential=True)\n",
"\n",
"openai = OpenAI()"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "c830ed3e-24ee-4af6-a07b-a1bfdcd39278",
"metadata": {},
"outputs": [],
"source": [
"%matplotlib inline"
]
},
{
"cell_type": "code",
"execution_count": 48,
"id": "5c9b05f4-c9eb-462c-8d86-de9140a2d985",
"metadata": {},
"outputs": [],
"source": [
"# Let's avoid curating all our data again! Load in the pickle files:\n",
"\n",
"with open('train.pkl', 'rb') as file:\n",
" train = pickle.load(file)\n",
"\n",
"with open('test.pkl', 'rb') as file:\n",
" test = pickle.load(file)\n",
"\n",
"# OpenAI recommends fine-tuning with populations of 50-100 examples\n",
"# But as our examples are very small, I'm suggesting we go with 200 examples (and 1 epoch)\n",
"\n",
"fine_tune_train = train[:2000]\n",
"fine_tune_validation = train[2000:2200]"
]
},
{
"cell_type": "markdown",
"id": "8be4a889-81c3-42b1-a2fc-034cdc7321a6",
"metadata": {},
"source": [
"# Step 1\n",
"\n",
"Prepare our data for fine-tuning in JSONL (JSON Lines) format and upload to OpenAI"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8ae2fb3c-1cff-4ce3-911e-627c970edd7b",
"metadata": {},
"outputs": [],
"source": [
"# First let's work on a good prompt for a Frontier model\n",
"\n",
"def messages_for(item):\n",
" system_message = \"You estimate prices of items. Reply only with the price, no explanation\"\n",
" user_prompt = item.test_prompt().replace(\" to the nearest dollar\",\"\").replace(\"\\n\\nPrice is $\",\"\")\n",
" return [\n",
" {\"role\": \"system\", \"content\": system_message},\n",
" {\"role\": \"user\", \"content\": user_prompt},\n",
" {\"role\": \"assistant\", \"content\": f\"Price is ${item.price:.2f}\"}\n",
" ]\n",
"\n",
"messages_for(train[0])"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c0e5b56c-8a0b-4d8e-a112-ce87efb4e152",
"metadata": {},
"outputs": [],
"source": [
"# {\"messages\" : [{\"role\": \"system\", \"content\": \"You estimate prices...\n",
"\n",
"def make_jsonl(items):\n",
" result = \"\"\n",
" for item in items:\n",
" messages = messages_for(item)\n",
" messages_str = json.dumps(messages)\n",
" result += '{\"messages\": ' + messages_str +'}\\n'\n",
" return result.strip()\n",
"\n",
"print(make_jsonl(train[:3]))"
]
},
{
"cell_type": "code",
"execution_count": 51,
"id": "7734bff0-95c4-4e67-a87e-7e2254e2c67d",
"metadata": {},
"outputs": [],
"source": [
"# Convert the items into jsonl and write them to a file\n",
"\n",
"def write_jsonl(items, filename):\n",
" with open(filename, \"w\") as f:\n",
" jsonl = make_jsonl(items)\n",
" f.write(jsonl)\n",
"\n",
"write_jsonl(fine_tune_train, \"fine_tune_train.jsonl\")\n",
"write_jsonl(fine_tune_validation, \"fine_tune_validation.jsonl\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d59ad8d2-c61a-448e-b7ed-232f1606970f",
"metadata": {},
"outputs": [],
"source": [
"with open(\"fine_tune_train.jsonl\", \"rb\") as f:\n",
" train_file = openai.files.create(file=f, purpose=\"fine-tune\")\n",
"\n",
"with open(\"fine_tune_validation.jsonl\", \"rb\") as f:\n",
" validation_file = openai.files.create(file=f, purpose=\"fine-tune\")\n",
"\n",
"train_file\n",
"validation_file"
]
},
{
"cell_type": "markdown",
"id": "466052b9-9fb9-48f6-8cf9-c74e6ddc1394",
"metadata": {},
"source": [
"# Step 2\n",
"\n",
"## And now time to Fine-tune!"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "45421b86-5531-4e42-ab19-d6abbb8f4c13",
"metadata": {},
"outputs": [],
"source": [
"openai.fine_tuning.jobs.create(\n",
" training_file=train_file.id,\n",
" validation_file=validation_file.id,\n",
" model=\"gpt-4o-mini-2024-07-18\",\n",
" seed=42,\n",
" hyperparameters={\n",
" \"n_epochs\": 6,\n",
" \"batch_size\": 32,\n",
" \"learning_rate_multiplier\": 0.8\n",
" },\n",
" suffix=\"ft-accuracy\"\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "aeb9de2e-542c-4e83-81c7-b6745133e48b",
"metadata": {},
"outputs": [],
"source": [
"openai.fine_tuning.jobs.list(limit=1)\n",
"\n",
"job_id = openai.fine_tuning.jobs.list(limit=1).data[0].id\n",
"\n",
"\n",
"openai.fine_tuning.jobs.retrieve(job_id)\n",
"openai.fine_tuning.jobs.list_events(fine_tuning_job_id=job_id, limit=10).data"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f2062e4d",
"metadata": {},
"outputs": [],
"source": [
"job_id"
]
},
{
"cell_type": "markdown",
"id": "066fef03-8338-4526-9df3-89b649ad4f0a",
"metadata": {},
"source": [
"# Step 3\n",
"\n",
"Test our fine tuned model"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "fa4488cb-3c17-4eda-abd1-53c1c68a491b",
"metadata": {},
"outputs": [],
"source": [
"fine_tuned_model_name = openai.fine_tuning.jobs.retrieve(job_id).fine_tuned_model\n",
"fine_tuned_model_name"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2206d9d0",
"metadata": {},
"outputs": [],
"source": [
"\n",
"print(fine_tuned_model_name)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "66ea68e8-ab1b-4f0d-aba4-a59574d8f85e",
"metadata": {},
"outputs": [],
"source": [
"# The prompt\n",
"\n",
"def messages_for(item):\n",
" system_message = \"You estimate prices of items. Reply only with the price, no explanation\"\n",
" user_prompt = item.test_prompt().replace(\" to the nearest dollar\",\"\").replace(\"\\n\\nPrice is $\",\"\")\n",
" return [\n",
" {\"role\": \"system\", \"content\": system_message},\n",
" {\"role\": \"user\", \"content\": user_prompt},\n",
" {\"role\": \"assistant\", \"content\": \"Price is $\"}\n",
" ]\n",
"\n",
"def get_price(s):\n",
" s = s.replace('$','').replace(',','')\n",
" match = re.search(r\"[-+]?\\d*\\.\\d+|\\d+\", s)\n",
" return float(match.group()) if match else 0\n",
"\n",
"messages_for(test[0])\n",
"get_price(\"The price is roughly $99.99 because blah blah\")"
]
},
{
"cell_type": "code",
"execution_count": 61,
"id": "501a2a7a-69c8-451b-bbc0-398bcb9e1612",
"metadata": {},
"outputs": [],
"source": [
"# The function for gpt-4o-mini\n",
"\n",
"def gpt_fine_tuned(item):\n",
" response = openai.chat.completions.create(\n",
" model=fine_tuned_model_name,\n",
" messages=messages_for(item),\n",
" seed=42,\n",
" max_tokens=7\n",
" )\n",
" reply = response.choices[0].message.content\n",
" return get_price(reply)\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "84e3813a",
"metadata": {},
"outputs": [],
"source": [
"print(test[0].test_prompt())\n",
"\n",
"print(test[0].price)\n",
"print(gpt_fine_tuned(test[0]))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "36bdd2c9-1859-4f99-a09f-3ec83b845b30",
"metadata": {},
"outputs": [],
"source": [
"Tester.test(gpt_fine_tuned, test)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.12"
}
},
"nbformat": 4,
"nbformat_minor": 5
}