diff --git a/week8/community_contributions/Ensemble_with_xgboost/Build _UI.ipynb b/week8/community_contributions/Ensemble_with_xgboost/Build _UI.ipynb new file mode 100644 index 0000000..9c3aba0 --- /dev/null +++ b/week8/community_contributions/Ensemble_with_xgboost/Build _UI.ipynb @@ -0,0 +1,181 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "a71ed017-e1b0-4299-88b3-f0eb05adc4df", + "metadata": {}, + "source": [ + "# Build UI\n", + "\n", + "We will use more advanced aspects of Gradio - building piece by piece." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "614c6202-4575-448d-98ee-78b735775d2b", + "metadata": {}, + "outputs": [], + "source": [ + "import gradio as gr\n", + "from deal_agent_framework import DealAgentFramework\n", + "from agents.deals import Opportunity, Deal" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0534e714-5a9c-45c6-998c-3472ac0bb8b5", + "metadata": {}, + "outputs": [], + "source": [ + "with gr.Blocks(title=\"Deal Intel\", fill_width=True) as ui:\n", + "\n", + " with gr.Row():\n", + " gr.Markdown('
Deal Intel - Deal Hunting Agentic AI
')\n", + " with gr.Row():\n", + " gr.Markdown('
Autonomous agent framework that finds online deals, collaborating with a proprietary fine-tuned LLM deployed on Modal, and a RAG pipeline with a frontier model and Chroma.
')\n", + " \n", + "\n", + "ui.launch(inbrowser=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "18c12c10-750c-4da3-8df5-f2bc3393f9e0", + "metadata": {}, + "outputs": [], + "source": [ + "# Updated to change from height to max_height due to change in Gradio v5\n", + "# With much thanks to student Ed B. for raising this\n", + "\n", + "with gr.Blocks(title=\"Deal Intel\", fill_width=True) as ui:\n", + "\n", + " initial_deal = Deal(product_description=\"Example description\", price=100.0, url=\"https://cnn.com\")\n", + " initial_opportunity = Opportunity(deal=initial_deal, estimate=200.0, discount=100.0)\n", + " opportunities = gr.State([initial_opportunity])\n", + "\n", + " def get_table(opps):\n", + " return [[opp.deal.product_description, opp.deal.price, opp.estimate, opp.discount, opp.deal.url] for opp in opps]\n", + "\n", + " with gr.Row():\n", + " gr.Markdown('
\"Deal Intel\" - Deal Hunting Agentic AI
')\n", + " with gr.Row():\n", + " gr.Markdown('
Deals surfaced so far:
')\n", + " with gr.Row():\n", + " opportunities_dataframe = gr.Dataframe(\n", + " headers=[\"Description\", \"Price\", \"Estimate\", \"Discount\", \"URL\"],\n", + " wrap=True,\n", + " column_widths=[4, 1, 1, 1, 2],\n", + " row_count=10,\n", + " col_count=5,\n", + " max_height=400,\n", + " )\n", + "\n", + " ui.load(get_table, inputs=[opportunities], outputs=[opportunities_dataframe])\n", + "\n", + "ui.launch(inbrowser=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "87106328-a17a-447e-90b9-c547613468da", + "metadata": {}, + "outputs": [], + "source": [ + "agent_framework = DealAgentFramework()\n", + "agent_framework.init_agents_as_needed()\n", + "\n", + "with gr.Blocks(title=\"Deal Intel\", fill_width=True) as ui:\n", + "\n", + " initial_deal = Deal(product_description=\"Example description\", price=100.0, url=\"https://cnn.com\")\n", + " initial_opportunity = Opportunity(deal=initial_deal, estimate=200.0, discount=100.0)\n", + " opportunities = gr.State([initial_opportunity])\n", + "\n", + " def get_table(opps):\n", + " return [[opp.deal.product_description, opp.deal.price, opp.estimate, opp.discount, opp.deal.url] for opp in opps]\n", + "\n", + " def do_select(opportunities, selected_index: gr.SelectData):\n", + " row = selected_index.index[0]\n", + " opportunity = opportunities[row]\n", + " agent_framework.planner.messenger.alert(opportunity)\n", + "\n", + " with gr.Row():\n", + " gr.Markdown('
\"Deal Intel\" - Deal Hunting Agentic AI
')\n", + " with gr.Row():\n", + " gr.Markdown('
Deals surfaced so far:
')\n", + " with gr.Row():\n", + " opportunities_dataframe = gr.Dataframe(\n", + " headers=[\"Description\", \"Price\", \"Estimate\", \"Discount\", \"URL\"],\n", + " wrap=True,\n", + " column_widths=[4, 1, 1, 1, 2],\n", + " row_count=10,\n", + " col_count=5,\n", + " max_height=400,\n", + " )\n", + "\n", + " ui.load(get_table, inputs=[opportunities], outputs=[opportunities_dataframe])\n", + " opportunities_dataframe.select(do_select, inputs=[opportunities], outputs=[])\n", + "\n", + "ui.launch(inbrowser=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "48506465-1c7a-433f-a665-b277a8b4665c", + "metadata": {}, + "outputs": [], + "source": [ + "!python price_is_right_final.py" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f9dd0a27-7d46-4c9e-bbe4-a61c9c899c99", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d1504cb8-7bf7-4dc4-9b1a-eaba79404aac", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "3ed84afd-4a04-43d6-8a3b-5143deaf96b2", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.11" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/week8/community_contributions/Ensemble_with_xgboost/Build_Messaging_Planning_Agent.ipynb b/week8/community_contributions/Ensemble_with_xgboost/Build_Messaging_Planning_Agent.ipynb new file mode 100644 index 0000000..649a77d --- /dev/null +++ b/week8/community_contributions/Ensemble_with_xgboost/Build_Messaging_Planning_Agent.ipynb @@ -0,0 +1,119 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "23f53670-1a73-46ba-a754-4a497e8e0e64", + "metadata": {}, + "source": [ + "# Messaging Agent and Planning Agent\n", + "\n", + "Then we'll put it all together into an Agent Framework." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "80d683d9-9e92-44ae-af87-a413ca84db21", + "metadata": {}, + "outputs": [], + "source": [ + "from dotenv import load_dotenv\n", + "from agents.messaging_agent import MessagingAgent" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5ba769cc-5301-4810-b01f-cab584cfb3b3", + "metadata": {}, + "outputs": [], + "source": [ + "load_dotenv(override=True)\n", + "DB = \"products_vectorstore\"" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e05cc427-3d2c-4792-ade1-d356f95a82a9", + "metadata": {}, + "outputs": [], + "source": [ + "agent = MessagingAgent()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5ec518f5-dae4-44b1-a185-d7eaf853ec00", + "metadata": {}, + "outputs": [], + "source": [ + "agent.push(\"MASSIVE NEWS!!!\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "57b3a014-0b15-425a-a29b-6fefc5006dee", + "metadata": {}, + "outputs": [], + "source": [ + "import chromadb\n", + "DB = \"products_vectorstore\"\n", + "client = chromadb.PersistentClient(path=DB)\n", + "collection = client.get_or_create_collection('products')\n", + "from agents.planning_agent import PlanningAgent" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a5c31c39-e357-446e-9cec-b4775c298941", + "metadata": {}, + "outputs": [], + "source": [ + "planner = PlanningAgent(collection)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d9ac771b-ea12-41c0-a7ce-05f12e27ad9e", + "metadata": {}, + "outputs": [], + "source": [ + "planner.plan()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d91ac0bb-738e-4be5-9074-d583190b1e2a", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.11" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/week8/community_contributions/Ensemble_with_xgboost/Build_RAG_Frontier_Agent.ipynb b/week8/community_contributions/Ensemble_with_xgboost/Build_RAG_Frontier_Agent.ipynb new file mode 100644 index 0000000..69c6f58 --- /dev/null +++ b/week8/community_contributions/Ensemble_with_xgboost/Build_RAG_Frontier_Agent.ipynb @@ -0,0 +1,342 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "id": "fbcdfea8-7241-46d7-a771-c0381a3e7063", + "metadata": {}, + "outputs": [], + "source": [ + "# imports\n", + "\n", + "import os\n", + "import re\n", + "import math\n", + "import json\n", + "from tqdm import tqdm\n", + "import random\n", + "from dotenv import load_dotenv\n", + "from huggingface_hub import login\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import pickle\n", + "from openai import OpenAI\n", + "from sentence_transformers import SentenceTransformer\n", + "from datasets import load_dataset\n", + "import chromadb\n", + "from items import Item\n", + "from testing import Tester" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "98666e73-938e-469d-8987-e6e55ba5e034", + "metadata": {}, + "outputs": [], + "source": [ + "# environment\n", + "load_dotenv(override=True)\n", + "os.environ['OPENAI_API_KEY'] = os.getenv('OPENAI_API_KEY', 'your-key-if-not-using-env')\n", + "os.environ['HF_TOKEN'] = os.getenv('HF_TOKEN', 'your-key-if-not-using-env')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "9a25a5cf-8f6c-4b5d-ad98-fdd096f5adf8", + "metadata": {}, + "outputs": [], + "source": [ + "openai = OpenAI()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "dc696493-0b6f-48aa-9fa8-b1ae0ecaf3cd", + "metadata": {}, + "outputs": [], + "source": [ + "# Load in the test pickle file\n", + "with open('test.pkl', 'rb') as file:\n", + " test = pickle.load(file)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "33d38a06-0c0d-4e96-94d1-35ee183416ce", + "metadata": {}, + "outputs": [], + "source": [ + "def make_context(similars, prices):\n", + " message = \"To provide some context, here are some other items that might be similar to the item you need to estimate.\\n\\n\"\n", + " for similar, price in zip(similars, prices):\n", + " message += f\"Potentially related product:\\n{similar}\\nPrice is ${price:.2f}\\n\\n\"\n", + " return message" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "61f203b7-63b6-48ed-869b-e393b5bfcad3", + "metadata": {}, + "outputs": [], + "source": [ + "def messages_for(item, similars, prices):\n", + " system_message = \"You estimate prices of items. Reply only with the price, no explanation. Price is always below $1000.\"\n", + " user_prompt = make_context(similars, prices)\n", + " user_prompt += \"And now the question for you:\\n\\n\"\n", + " user_prompt += item.test_prompt().replace(\" to the nearest dollar\",\"\").replace(\"\\n\\nPrice is $\",\"\")\n", + " return [\n", + " {\"role\": \"system\", \"content\": system_message},\n", + " {\"role\": \"user\", \"content\": user_prompt},\n", + " {\"role\": \"assistant\", \"content\": \"Price is $\"}\n", + " ]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b26f405d-6e1f-4caa-b97f-1f62cd9d1ebc", + "metadata": {}, + "outputs": [], + "source": [ + "DB = \"products_vectorstore\"" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d26a1104-cd11-4361-ab25-85fb576e0582", + "metadata": {}, + "outputs": [], + "source": [ + "client = chromadb.PersistentClient(path=DB)\n", + "collection = client.get_or_create_collection('products')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "1e339760-96d8-4485-bec7-43fadcd30c4d", + "metadata": {}, + "outputs": [], + "source": [ + "def description(item):\n", + " text = item.prompt.replace(\"How much does this cost to the nearest dollar?\\n\\n\", \"\")\n", + " return text.split(\"\\n\\nPrice is $\")[0]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "9f759bd2-7a7e-4c1a-80a0-e12470feca89", + "metadata": {}, + "outputs": [], + "source": [ + "model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e44dbd25-fb95-4b6b-bbbb-8da5fc817105", + "metadata": {}, + "outputs": [], + "source": [ + "def vector(item):\n", + " return model.encode([description(item)])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ffd5ee47-db5d-4263-b0d9-80d568c91341", + "metadata": {}, + "outputs": [], + "source": [ + "def find_similars(item):\n", + " results = collection.query(query_embeddings=vector(item).astype(float).tolist(), n_results=5)\n", + " documents = results['documents'][0][:]\n", + " prices = [m['price'] for m in results['metadatas'][0][:]]\n", + " return documents, prices" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "6f7b9ff9-fd90-4627-bb17-7c2f7bbd21f3", + "metadata": {}, + "outputs": [], + "source": [ + "print(test[1].prompt)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ff1b2659-cc6b-47aa-a797-dd1cd3d1d6c3", + "metadata": {}, + "outputs": [], + "source": [ + "documents, prices = find_similars(test[1])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "24756d4d-edac-41ce-bb80-c3b6f1cea7ee", + "metadata": {}, + "outputs": [], + "source": [ + "print(make_context(documents, prices))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0b81eca2-0b58-4fe8-9dd6-47f13ba5f8ee", + "metadata": {}, + "outputs": [], + "source": [ + "print(messages_for(test[1], documents, prices))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d11f1c8d-7480-4d64-a274-b030d701f1b8", + "metadata": {}, + "outputs": [], + "source": [ + "def get_price(s):\n", + " s = s.replace('$','').replace(',','')\n", + " match = re.search(r\"[-+]?\\d*\\.\\d+|\\d+\", s)\n", + " return float(match.group()) if match else 0" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "06743833-c362-47f8-b02a-139be2cd52ab", + "metadata": {}, + "outputs": [], + "source": [ + "get_price(\"The price for this is $99.99\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a919cf7d-b3d3-4968-8c96-54a0da0b0219", + "metadata": {}, + "outputs": [], + "source": [ + "# The function for gpt-4o-mini\n", + "\n", + "def gpt_4o_mini_rag(item):\n", + " documents, prices = find_similars(item)\n", + " response = openai.chat.completions.create(\n", + " model=\"gpt-4o-mini\", \n", + " messages=messages_for(item, documents, prices),\n", + " seed=42,\n", + " max_tokens=5\n", + " )\n", + " reply = response.choices[0].message.content\n", + " return get_price(reply)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5b42e1b9-eaa0-4b45-a847-e8932367f596", + "metadata": {}, + "outputs": [], + "source": [ + "# The function for gpt-4.1\n", + "\n", + "# def gpt_4_1_rag(item):\n", + "# documents, prices = find_similars(item)\n", + "# response = openai.chat.completions.create(\n", + "# model=\"gpt-4.1\", \n", + "# messages=messages_for(item, documents, prices),\n", + "# seed=42,\n", + "# max_tokens=5\n", + "# )\n", + "# reply = response.choices[0].message.content\n", + "# return get_price(reply)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "3e519e26-ff15-4425-90bb-bfbf55deb39b", + "metadata": {}, + "outputs": [], + "source": [ + "gpt_4o_mini_rag(test[1])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "082c6a5a-0f2a-4941-a465-ffb3137a2e8d", + "metadata": {}, + "outputs": [], + "source": [ + "# gpt_4_1_rag(test[1])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ce78741b-2966-41d2-9831-cbf8f8d176be", + "metadata": {}, + "outputs": [], + "source": [ + "test[1].price" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "16d90455-ff7d-4f5f-8b8c-8e061263d1c7", + "metadata": {}, + "outputs": [], + "source": [ + "Tester.test(gpt_4o_mini_rag, test)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "26d5ddc6-baa6-4760-a430-05671847ac47", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.11" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/week8/community_contributions/Ensemble_with_xgboost/Build_RF_XGB_Ensemble.ipynb b/week8/community_contributions/Ensemble_with_xgboost/Build_RF_XGB_Ensemble.ipynb new file mode 100644 index 0000000..a582e92 --- /dev/null +++ b/week8/community_contributions/Ensemble_with_xgboost/Build_RF_XGB_Ensemble.ipynb @@ -0,0 +1,2137 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "40d49349-faaa-420c-9b65-0bdc9edfabce", + "metadata": {}, + "source": [ + "## Random Forests, XGBoost & Ensemble" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "fbcdfea8-7241-46d7-a771-c0381a3e7063", + "metadata": {}, + "outputs": [], + "source": [ + "# imports\n", + "\n", + "import os\n", + "import re\n", + "import math\n", + "import json\n", + "from tqdm import tqdm\n", + "import random\n", + "from dotenv import load_dotenv\n", + "from huggingface_hub import login\n", + "import numpy as np\n", + "import pickle\n", + "from openai import OpenAI\n", + "from sentence_transformers import SentenceTransformer\n", + "from datasets import load_dataset\n", + "import chromadb\n", + "from items import Item\n", + "from testing import Tester\n", + "import pandas as pd\n", + "import numpy as np\n", + "from sklearn.ensemble import RandomForestRegressor\n", + "from sklearn.ensemble import GradientBoostingRegressor\n", + "from sklearn.linear_model import LinearRegression\n", + "from sklearn.metrics import mean_squared_error, r2_score\n", + "import joblib\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "e6e88bd1-f89c-4b98-92fa-aa4bc1575bca", + "metadata": {}, + "outputs": [], + "source": [ + "# CONSTANTS\n", + "QUESTION = \"How much does this cost to the nearest dollar?\\n\\n\"\n", + "DB = \"products_vectorstore\"" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "98666e73-938e-469d-8987-e6e55ba5e034", + "metadata": {}, + "outputs": [], + "source": [ + "# environment\n", + "load_dotenv(override=True)\n", + "os.environ['OPENAI_API_KEY'] = os.getenv('OPENAI_API_KEY', 'your-key-if-not-using-env')\n", + "os.environ['HF_TOKEN'] = os.getenv('HF_TOKEN', 'your-key-if-not-using-env')" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "dc696493-0b6f-48aa-9fa8-b1ae0ecaf3cd", + "metadata": {}, + "outputs": [], + "source": [ + "# Load in the test pickle file:\n", + "with open('test.pkl', 'rb') as file:\n", + " test = pickle.load(file)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "d26a1104-cd11-4361-ab25-85fb576e0582", + "metadata": {}, + "outputs": [], + "source": [ + "client = chromadb.PersistentClient(path=DB)\n", + "collection = client.get_or_create_collection('products')" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "e00b82a9-a8dc-46f1-8ea9-2f07cbc8e60d", + "metadata": {}, + "outputs": [], + "source": [ + "result = collection.get(include=['embeddings', 'documents', 'metadatas'])\n", + "vectors = np.array(result['embeddings'])\n", + "documents = result['documents']\n", + "prices = [metadata['price'] for metadata in result['metadatas']]" + ] + }, + { + "cell_type": "markdown", + "id": "bf6492cb-b11a-4ad5-859b-a71a78ffb949", + "metadata": {}, + "source": [ + "# Random Forest\n", + "\n", + "We will now train a Random Forest model.\n", + "\n", + "Using the vectors we already have in Chroma, from the SentenceTransformer model." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "48894777-101f-4fe5-998c-47079407f340", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
RandomForestRegressor(n_jobs=-1, random_state=42)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ], + "text/plain": [ + "RandomForestRegressor(n_jobs=-1, random_state=42)" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "rf_model = RandomForestRegressor(n_estimators=100, random_state=42, n_jobs=-1)\n", + "rf_model.fit(vectors, prices)" + ] + }, + { + "cell_type": "markdown", + "id": "b1b1f080-0ab2-4b7f-8eb9-1d56d048a78d", + "metadata": {}, + "source": [ + "# Gradient Boosting" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "fb9fdec7-11f9-48ef-8a31-430b2fccc400", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
GradientBoostingRegressor(random_state=42)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ], + "text/plain": [ + "GradientBoostingRegressor(random_state=42)" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "gb_model = GradientBoostingRegressor(n_estimators=100, random_state=42)\n", + "gb_model.fit(vectors, prices)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "62eb7ddf-e1da-481e-84c6-1256547566bd", + "metadata": {}, + "outputs": [], + "source": [ + "# Save the model to a file\n", + "\n", + "joblib.dump(rf_model, 'random_forest_model.pkl')\n", + "joblib.dump(gb_model, 'gradient_boosting_model.pkl')" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "d281dc5e-761e-4a5e-86b3-29d9c0a33d4a", + "metadata": {}, + "outputs": [], + "source": [ + "# Load it back in again\n", + "\n", + "rf_model = joblib.load('random_forest_model.pkl')\n", + "gb_model = joblib.load('gradient_boosting_model.pkl')" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "5d438dec-8e5b-4e60-bb6f-c3f82e522dd9", + "metadata": {}, + "outputs": [], + "source": [ + "from agents.specialist_agent import SpecialistAgent\n", + "from agents.frontier_agent import FrontierAgent\n", + "from agents.random_forest_agent import RandomForestAgent\n", + "from agents.gradient_boosting_agent import GradientBoostingAgent" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "afc39369-b97b-4a90-b17e-b20ef501d3c9", + "metadata": {}, + "outputs": [], + "source": [ + "specialist = SpecialistAgent()\n", + "frontier = FrontierAgent(collection)\n", + "random_forest = RandomForestAgent()\n", + "gradient_boosting = GradientBoostingAgent()" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "8e2d0d0a-8bb8-4b39-b046-322828c39244", + "metadata": {}, + "outputs": [], + "source": [ + "def description(item):\n", + " return item.prompt.split(\"to the nearest dollar?\\n\\n\")[1].split(\"\\n\\nPrice is $\")[0]" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "bfe0434f-b29e-4cc0-bad9-b07624665727", + "metadata": {}, + "outputs": [], + "source": [ + "def rf(item):\n", + " return random_forest.price(description(item))" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "cdf233ec-264f-4b34-9f2b-27c39692137b", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[93m1: Guess: $291.59 Truth: $374.41 Error: $82.82 SLE: 0.06 Item: OEM AC Compressor w/A/C Repair Kit For F...\u001b[0m\n", + "\u001b[92m2: Guess: $204.82 Truth: $225.11 Error: $20.29 SLE: 0.01 Item: Motorcraft YB3125 Fan Clutch\u001b[0m\n", + "\u001b[91m3: Guess: $206.03 Truth: $61.68 Error: $144.35 SLE: 1.43 Item: Dorman 603-159 Front Washer Fluid Reserv...\u001b[0m\n", + "\u001b[93m4: Guess: $364.85 Truth: $599.99 Error: $235.14 SLE: 0.25 Item: HP Premium 17.3-inch HD Plus Touchscreen...\u001b[0m\n", + "\u001b[91m5: Guess: $219.07 Truth: $16.99 Error: $202.08 SLE: 6.27 Item: 5-Position Super Switch Pickup Selector ...\u001b[0m\n", + "\u001b[92m6: Guess: $57.33 Truth: $31.99 Error: $25.34 SLE: 0.32 Item: Horror Bookmarks, Resin Horror Bookmarks...\u001b[0m\n", + "\u001b[91m7: Guess: $272.17 Truth: $101.79 Error: $170.38 SLE: 0.96 Item: SK6241 - Stinger 4 Gauge 6000 Series Pow...\u001b[0m\n", + "\u001b[92m8: Guess: $235.98 Truth: $289.00 Error: $53.02 SLE: 0.04 Item: Godox ML60Bi LED Light Kit, Handheld LED...\u001b[0m\n", + "\u001b[91m9: Guess: $316.78 Truth: $635.86 Error: $319.08 SLE: 0.48 Item: Randall RG75DG3PLUS G3 Plus 100-Watt Com...\u001b[0m\n", + "\u001b[91m10: Guess: $175.79 Truth: $65.99 Error: $109.80 SLE: 0.94 Item: HOLDWILL 6 Pack LED Shop Light, 4FT 24W ...\u001b[0m\n", + "\u001b[92m11: Guess: $262.45 Truth: $254.21 Error: $8.24 SLE: 0.00 Item: Viking Horns V103C/1005ATK 3 Gallon Air ...\u001b[0m\n", + "\u001b[93m12: Guess: $253.81 Truth: $412.99 Error: $159.18 SLE: 0.24 Item: CURT 70110 Custom Tow Bar Base Plate Bra...\u001b[0m\n", + "\u001b[92m13: Guess: $174.96 Truth: $205.50 Error: $30.54 SLE: 0.03 Item: 10-Pack Solar HAMMERED BRONZE Finish Pos...\u001b[0m\n", + "\u001b[92m14: Guess: $279.61 Truth: $248.23 Error: $31.38 SLE: 0.01 Item: COSTWAY Electric Tumble Dryer, Sliver\u001b[0m\n", + "\u001b[93m15: Guess: $305.92 Truth: $399.00 Error: $93.08 SLE: 0.07 Item: FREE SIGNAL TV Transit 32\" 12 Volt DC Po...\u001b[0m\n", + "\u001b[92m16: Guess: $339.52 Truth: $373.94 Error: $34.42 SLE: 0.01 Item: Bilstein 5100 Monotube Gas Shock Set com...\u001b[0m\n", + "\u001b[91m17: Guess: $237.41 Truth: $92.89 Error: $144.52 SLE: 0.87 Item: Sangean K-200 Multi-Function Upright AM/...\u001b[0m\n", + "\u001b[93m18: Guess: $112.32 Truth: $51.99 Error: $60.33 SLE: 0.58 Item: Charles Leonard Magnetic Lapboard Class ...\u001b[0m\n", + "\u001b[91m19: Guess: $425.61 Truth: $179.00 Error: $246.61 SLE: 0.74 Item: Gigabyte AMD Radeon HD 7870 2 GB GDDR5 D...\u001b[0m\n", + "\u001b[93m20: Guess: $75.46 Truth: $19.42 Error: $56.04 SLE: 1.74 Item: 3dRose LLC 8 x 8 x 0.25 Inches Bull Terr...\u001b[0m\n", + "\u001b[93m21: Guess: $332.77 Truth: $539.95 Error: $207.18 SLE: 0.23 Item: ROKINON 85mm F1.4 Auto Focus Full Frame ...\u001b[0m\n", + "\u001b[93m22: Guess: $214.54 Truth: $147.67 Error: $66.87 SLE: 0.14 Item: AUTOSAVER88 Headlight Assembly Compatibl...\u001b[0m\n", + "\u001b[91m23: Guess: $179.36 Truth: $24.99 Error: $154.37 SLE: 3.75 Item: ASI NAUTICAL 2.5 Inches Opera Glasses Bi...\u001b[0m\n", + "\u001b[91m24: Guess: $283.14 Truth: $149.00 Error: $134.14 SLE: 0.41 Item: Behringer TUBE OVERDRIVE TO100 Authentic...\u001b[0m\n", + "\u001b[92m25: Guess: $49.14 Truth: $16.99 Error: $32.15 SLE: 1.05 Item: Fun Express Insect Finger Puppets - 24 f...\u001b[0m\n", + "\u001b[93m26: Guess: $75.03 Truth: $7.99 Error: $67.04 SLE: 4.56 Item: WAFJAMF Roller Stamp Identity Theft Stam...\u001b[0m\n", + "\u001b[92m27: Guess: $186.19 Truth: $199.99 Error: $13.80 SLE: 0.01 Item: Capulina Tiffany Floor Lamp 2-Light 16\" ...\u001b[0m\n", + "\u001b[92m28: Guess: $273.60 Truth: $251.45 Error: $22.15 SLE: 0.01 Item: Apple Watch Series 6 (GPS, 44mm) - Space...\u001b[0m\n", + "\u001b[92m29: Guess: $232.49 Truth: $231.62 Error: $0.87 SLE: 0.00 Item: ICON 01725 Tandem Axle Fender Skirt FS17...\u001b[0m\n", + "\u001b[91m30: Guess: $226.25 Truth: $135.00 Error: $91.25 SLE: 0.26 Item: SanDisk 128GB Ultra (10 Pack) MicroSD Cl...\u001b[0m\n", + "\u001b[92m31: Guess: $301.87 Truth: $356.62 Error: $54.75 SLE: 0.03 Item: Velvac 2020,L,C/Hr,W,E2003,102\",Bk - 715...\u001b[0m\n", + "\u001b[92m32: Guess: $233.55 Truth: $257.99 Error: $24.44 SLE: 0.01 Item: TCMT Passenger Backrest Sissy Bar & Lugg...\u001b[0m\n", + "\u001b[91m33: Guess: $169.42 Truth: $27.99 Error: $141.43 SLE: 3.14 Item: Alnicov 63.5MM Brass Tremolo Block,Tremo...\u001b[0m\n", + "\u001b[91m34: Guess: $266.18 Truth: $171.20 Error: $94.98 SLE: 0.19 Item: Subaru Forester Outback Legacy OEM Engin...\u001b[0m\n", + "\u001b[92m35: Guess: $219.00 Truth: $225.00 Error: $6.00 SLE: 0.00 Item: Richmond Auto Upholstery - 2012 Dodge Ra...\u001b[0m\n", + "\u001b[91m36: Guess: $202.91 Truth: $105.00 Error: $97.91 SLE: 0.43 Item: AP-39 Automotive Paint Primer Grey 2K Ur...\u001b[0m\n", + "\u001b[93m37: Guess: $220.41 Truth: $299.99 Error: $79.58 SLE: 0.09 Item: Road Top Wireless Carplay Retrofit Kit D...\u001b[0m\n", + "\u001b[93m38: Guess: $658.90 Truth: $535.09 Error: $123.81 SLE: 0.04 Item: Gibson Performance Exhaust 5658 Aluminiz...\u001b[0m\n", + "\u001b[91m39: Guess: $129.36 Truth: $12.33 Error: $117.03 SLE: 5.20 Item: Bella Tunno Happy Links - Baby Montessor...\u001b[0m\n", + "\u001b[91m40: Guess: $183.61 Truth: $84.99 Error: $98.62 SLE: 0.58 Item: CANMORE H300 Handheld GPS Golf Device, S...\u001b[0m\n", + "\u001b[91m41: Guess: $110.24 Truth: $15.99 Error: $94.25 SLE: 3.53 Item: DCPOWER AC Adapter Compatible Replacemen...\u001b[0m\n", + "\u001b[91m42: Guess: $180.79 Truth: $62.44 Error: $118.35 SLE: 1.11 Item: Sharp, VX2128V, Commercial Desktop Calcu...\u001b[0m\n", + "\u001b[93m43: Guess: $132.13 Truth: $82.99 Error: $49.14 SLE: 0.21 Item: Melissa & Doug Lifelike Plush Stork Gian...\u001b[0m\n", + "\u001b[91m44: Guess: $311.71 Truth: $599.95 Error: $288.24 SLE: 0.43 Item: Sony SSCS8 2-Way 3-Driver Center Channel...\u001b[0m\n", + "\u001b[91m45: Guess: $277.69 Truth: $194.99 Error: $82.70 SLE: 0.12 Item: ASUS Chromebook CX1, 14\" Full HD NanoEdg...\u001b[0m\n", + "\u001b[92m46: Guess: $317.88 Truth: $344.95 Error: $27.07 SLE: 0.01 Item: FiiO X7 32GB Hi-Res Lossless Music Playe...\u001b[0m\n", + "\u001b[92m47: Guess: $46.17 Truth: $37.99 Error: $8.18 SLE: 0.04 Item: TORRO Leather Case Compatible with iPhon...\u001b[0m\n", + "\u001b[92m48: Guess: $228.40 Truth: $224.35 Error: $4.05 SLE: 0.00 Item: Universal Air Conditioner KT 1031 A/C Co...\u001b[0m\n", + "\u001b[92m49: Guess: $747.66 Truth: $814.00 Error: $66.34 SLE: 0.01 Item: Street Series Stainless Performance Cat-...\u001b[0m\n", + "\u001b[92m50: Guess: $511.14 Truth: $439.88 Error: $71.26 SLE: 0.02 Item: Lenovo IdeaPad 3 14-inch Laptop, 14.0-in...\u001b[0m\n", + "\u001b[92m51: Guess: $310.99 Truth: $341.43 Error: $30.44 SLE: 0.01 Item: Access Bed Covers TonnoSport 22050219 - ...\u001b[0m\n", + "\u001b[91m52: Guess: $200.34 Truth: $46.78 Error: $153.56 SLE: 2.07 Item: G.I. JOE Hasbro 3 3/4\" Wave 5 Action Fig...\u001b[0m\n", + "\u001b[92m53: Guess: $146.38 Truth: $171.44 Error: $25.06 SLE: 0.02 Item: T&S Brass B-0232-BST Double Pantry Fauce...\u001b[0m\n", + "\u001b[91m54: Guess: $261.18 Truth: $458.00 Error: $196.82 SLE: 0.31 Item: ZTUOAUMA Fuel Injection Pump 3090942 309...\u001b[0m\n", + "\u001b[91m55: Guess: $225.15 Truth: $130.75 Error: $94.40 SLE: 0.29 Item: 2AP18AA#ABA Hp Prime Graphing Calculator...\u001b[0m\n", + "\u001b[91m56: Guess: $186.04 Truth: $83.81 Error: $102.23 SLE: 0.63 Item: Lowrance 000-0119-83 Nmea 2000 25' Exten...\u001b[0m\n", + "\u001b[91m57: Guess: $169.97 Truth: $386.39 Error: $216.42 SLE: 0.67 Item: Jeep Genuine Accessories 82213051 Hood L...\u001b[0m\n", + "\u001b[93m58: Guess: $209.56 Truth: $169.00 Error: $40.56 SLE: 0.05 Item: GODOX CB-06 Hard Carrying Case with Whee...\u001b[0m\n", + "\u001b[91m59: Guess: $146.74 Truth: $17.95 Error: $128.79 SLE: 4.22 Item: Au-Tomotive Gold, INC. Ford Black Valet ...\u001b[0m\n", + "\u001b[92m60: Guess: $222.65 Truth: $269.00 Error: $46.35 SLE: 0.04 Item: Snailfly Black Roof Rack Rail + Cross Ba...\u001b[0m\n", + "\u001b[91m61: Guess: $202.16 Truth: $77.77 Error: $124.39 SLE: 0.90 Item: KING SHA Anti Glare LED Track Lighting H...\u001b[0m\n", + "\u001b[91m62: Guess: $181.11 Truth: $88.99 Error: $92.12 SLE: 0.50 Item: APS Compatible with Chevy Silverado 1500...\u001b[0m\n", + "\u001b[93m63: Guess: $233.73 Truth: $364.41 Error: $130.68 SLE: 0.20 Item: Wilwood Engineering 14011291R Brake Cali...\u001b[0m\n", + "\u001b[92m64: Guess: $134.65 Truth: $127.03 Error: $7.62 SLE: 0.00 Item: ACDelco Gold 336-1925A Starter, Remanufa...\u001b[0m\n", + "\u001b[92m65: Guess: $636.90 Truth: $778.95 Error: $142.05 SLE: 0.04 Item: UWS EC10783 69-Inch Matte Black Heavy-Wa...\u001b[0m\n", + "\u001b[91m66: Guess: $452.42 Truth: $206.66 Error: $245.76 SLE: 0.61 Item: Dell Latitude E5440 14in Business Laptop...\u001b[0m\n", + "\u001b[91m67: Guess: $187.75 Truth: $35.94 Error: $151.81 SLE: 2.66 Item: (Plug and Play) Spare Tire Brake Light W...\u001b[0m\n", + "\u001b[91m68: Guess: $249.13 Truth: $149.00 Error: $100.13 SLE: 0.26 Item: The Ultimate Roadside Rescue Assistant\u001b[0m\n", + "\u001b[92m69: Guess: $224.20 Truth: $251.98 Error: $27.78 SLE: 0.01 Item: Brand New 18\" x 8.5\" Replacement Wheel f...\u001b[0m\n", + "\u001b[93m70: Guess: $234.18 Truth: $160.00 Error: $74.18 SLE: 0.14 Item: Headlight Headlamp LH Left & RH Right Pa...\u001b[0m\n", + "\u001b[91m71: Guess: $122.29 Truth: $39.99 Error: $82.30 SLE: 1.21 Item: Lilo And Stitch Deluxe Oversize Print La...\u001b[0m\n", + "\u001b[93m72: Guess: $250.75 Truth: $362.41 Error: $111.66 SLE: 0.13 Item: AC Compressor & A/C Clutch For Hyundai A...\u001b[0m\n", + "\u001b[93m73: Guess: $238.01 Truth: $344.00 Error: $105.99 SLE: 0.13 Item: House Of Troy PIN475-AB Pinnacle Collect...\u001b[0m\n", + "\u001b[91m74: Guess: $209.07 Truth: $25.09 Error: $183.98 SLE: 4.35 Item: Juno T29 WH Floating Electrical Feed Sin...\u001b[0m\n", + "\u001b[92m75: Guess: $171.57 Truth: $175.95 Error: $4.38 SLE: 0.00 Item: Sherman GO-PARTS - for 2013-2016 Toyota ...\u001b[0m\n", + "\u001b[91m76: Guess: $253.67 Truth: $132.64 Error: $121.03 SLE: 0.42 Item: Roland RPU-3 Electronic Keyboard Pedal o...\u001b[0m\n", + "\u001b[93m77: Guess: $280.83 Truth: $422.99 Error: $142.16 SLE: 0.17 Item: Rockland VMI14 12,000 Pound 12 Volt DC E...\u001b[0m\n", + "\u001b[92m78: Guess: $167.75 Truth: $146.48 Error: $21.27 SLE: 0.02 Item: Max Advanced Brakes Elite XDS Front Cros...\u001b[0m\n", + "\u001b[93m79: Guess: $197.53 Truth: $156.83 Error: $40.70 SLE: 0.05 Item: Quality-Built 11030 Premium Quality Alte...\u001b[0m\n", + "\u001b[91m80: Guess: $357.41 Truth: $251.99 Error: $105.42 SLE: 0.12 Item: Lucida LG-510 Student Classical Guitar, ...\u001b[0m\n", + "\u001b[91m81: Guess: $222.52 Truth: $940.33 Error: $717.81 SLE: 2.07 Item: Longacre 52-79800 Aluminum Turn Plates\u001b[0m\n", + "\u001b[91m82: Guess: $177.82 Truth: $52.99 Error: $124.83 SLE: 1.43 Item: Motion Pro 08-0380 Adjustable Torque Wre...\u001b[0m\n", + "\u001b[93m83: Guess: $270.79 Truth: $219.95 Error: $50.84 SLE: 0.04 Item: Glyph Thunderbolt 3 NVMe Dock (0 GB)\u001b[0m\n", + "\u001b[93m84: Guess: $280.41 Truth: $441.03 Error: $160.62 SLE: 0.20 Item: TOYO Open Country MT Performance Radial ...\u001b[0m\n", + "\u001b[93m85: Guess: $239.35 Truth: $168.98 Error: $70.37 SLE: 0.12 Item: Razer Seiren X USB Streaming Microphone ...\u001b[0m\n", + "\u001b[92m86: Guess: $41.61 Truth: $2.49 Error: $39.12 SLE: 6.26 Item: Happy Birthday to Dad From Your Daughter...\u001b[0m\n", + "\u001b[91m87: Guess: $198.54 Truth: $98.62 Error: $99.92 SLE: 0.48 Item: Little Tikes My Real Jam First Concert S...\u001b[0m\n", + "\u001b[92m88: Guess: $206.61 Truth: $256.95 Error: $50.34 SLE: 0.05 Item: Studio M Peace and Harmony Art Pole Comm...\u001b[0m\n", + "\u001b[91m89: Guess: $175.48 Truth: $30.99 Error: $144.49 SLE: 2.92 Item: MyVolts 12V Power Supply Adaptor Compati...\u001b[0m\n", + "\u001b[93m90: Guess: $379.12 Truth: $569.84 Error: $190.72 SLE: 0.17 Item: Dell Latitude 7212 Rugged Extreme Tablet...\u001b[0m\n", + "\u001b[93m91: Guess: $228.43 Truth: $177.99 Error: $50.44 SLE: 0.06 Item: Covermates Contour Fit Car Cover - Light...\u001b[0m\n", + "\u001b[93m92: Guess: $611.60 Truth: $997.99 Error: $386.39 SLE: 0.24 Item: Westin 57-4025 Black HDX Grille Guard fi...\u001b[0m\n", + "\u001b[92m93: Guess: $243.08 Truth: $219.00 Error: $24.08 SLE: 0.01 Item: Fieldpiece JL2 Job Link Wireless App Tra...\u001b[0m\n", + "\u001b[93m94: Guess: $275.13 Truth: $225.55 Error: $49.58 SLE: 0.04 Item: hansgrohe Talis S Modern Premium Easy Cl...\u001b[0m\n", + "\u001b[93m95: Guess: $332.03 Truth: $495.95 Error: $163.92 SLE: 0.16 Item: G-Technology G-SPEED eS PRO High-Perform...\u001b[0m\n", + "\u001b[92m96: Guess: $764.31 Truth: $942.37 Error: $178.06 SLE: 0.04 Item: DreamLine SHDR-1960723L-01 Shower Door, ...\u001b[0m\n", + "\u001b[91m97: Guess: $157.49 Truth: $1.94 Error: $155.55 SLE: 15.90 Item: Sanctuary Square Backplate Finish: Oiled...\u001b[0m\n", + "\u001b[92m98: Guess: $283.05 Truth: $284.34 Error: $1.29 SLE: 0.00 Item: Pelican Protector 1750 Long Case - Multi...\u001b[0m\n", + "\u001b[93m99: Guess: $214.80 Truth: $171.90 Error: $42.90 SLE: 0.05 Item: Brock Replacement Driver and Passenger H...\u001b[0m\n", + "\u001b[91m100: Guess: $232.53 Truth: $144.99 Error: $87.54 SLE: 0.22 Item: Carlinkit Ai Box Mini, Android 11, Multi...\u001b[0m\n", + "\u001b[91m101: Guess: $251.67 Truth: $470.47 Error: $218.80 SLE: 0.39 Item: StarDot NetCamLIVE2 YouTube Live Stream ...\u001b[0m\n", + "\u001b[91m102: Guess: $220.74 Truth: $66.95 Error: $153.79 SLE: 1.40 Item: Atomic Compatible FILXXCAR0016 16x25x5 M...\u001b[0m\n", + "\u001b[92m103: Guess: $128.52 Truth: $117.00 Error: $11.52 SLE: 0.01 Item: Bandai Awakening of S. H. s.h.figuarts s...\u001b[0m\n", + "\u001b[93m104: Guess: $236.39 Truth: $172.14 Error: $64.25 SLE: 0.10 Item: Fit System 62135G Passenger Side Towing ...\u001b[0m\n", + "\u001b[93m105: Guess: $295.98 Truth: $392.74 Error: $96.76 SLE: 0.08 Item: Black Horse Black Aluminum Exceed Runnin...\u001b[0m\n", + "\u001b[92m106: Guess: $53.66 Truth: $16.99 Error: $36.67 SLE: 1.23 Item: Dearsun Twinkle Star Color Night Light P...\u001b[0m\n", + "\u001b[93m107: Guess: $62.47 Truth: $1.34 Error: $61.13 SLE: 10.89 Item: Pokemon - Gallade Spirit Link (83/108) -...\u001b[0m\n", + "\u001b[92m108: Guess: $348.03 Truth: $349.98 Error: $1.95 SLE: 0.00 Item: Ibanez GA34STCE-NT GIO Series Classical ...\u001b[0m\n", + "\u001b[93m109: Guess: $247.10 Truth: $370.71 Error: $123.61 SLE: 0.16 Item: Set 2 Heavy Duty 12-16.5 12x16.5 12 Ply ...\u001b[0m\n", + "\u001b[93m110: Guess: $134.89 Truth: $65.88 Error: $69.01 SLE: 0.50 Item: Hairpin Table Legs 28\" Heavy Duty Hairpi...\u001b[0m\n", + "\u001b[92m111: Guess: $219.90 Truth: $229.99 Error: $10.09 SLE: 0.00 Item: Marada Racing Seat with Adjustable Slide...\u001b[0m\n", + "\u001b[91m112: Guess: $155.73 Truth: $9.14 Error: $146.59 SLE: 7.50 Item: Remington Industries 24UL1007STRWHI25 24...\u001b[0m\n", + "\u001b[91m113: Guess: $487.76 Truth: $199.00 Error: $288.76 SLE: 0.80 Item: Acer S3-391-6046 13.3-inch Ultrabook, In...\u001b[0m\n", + "\u001b[91m114: Guess: $254.11 Truth: $109.99 Error: $144.12 SLE: 0.69 Item: ICBEAMER 7\" RGB LED Headlights Bulb Halo...\u001b[0m\n", + "\u001b[93m115: Guess: $374.14 Truth: $570.42 Error: $196.28 SLE: 0.18 Item: R1 Concepts Front Rear Brakes and Rotors...\u001b[0m\n", + "\u001b[92m116: Guess: $264.19 Truth: $279.99 Error: $15.80 SLE: 0.00 Item: Camplux 2.64 GPM Tankless , Outdoor Port...\u001b[0m\n", + "\u001b[91m117: Guess: $114.52 Truth: $30.99 Error: $83.53 SLE: 1.65 Item: KNOKLOCK 10 Pack 3.75 Inch(96mm) Kitchen...\u001b[0m\n", + "\u001b[91m118: Guess: $224.50 Truth: $31.99 Error: $192.51 SLE: 3.69 Item: Valley Enterprises Yaesu USB FTDI CT-62 ...\u001b[0m\n", + "\u001b[91m119: Guess: $162.25 Truth: $15.90 Error: $146.35 SLE: 5.14 Item: G9 LED Light Bulbs,8W,75W 100W replaceme...\u001b[0m\n", + "\u001b[91m120: Guess: $141.30 Truth: $45.99 Error: $95.31 SLE: 1.23 Item: ZCHAOZ 4 Lights Antique White Farmhouse ...\u001b[0m\n", + "\u001b[91m121: Guess: $227.91 Truth: $113.52 Error: $114.39 SLE: 0.48 Item: Honeywell TH8320R1003 Honeywell VisionPr...\u001b[0m\n", + "\u001b[91m122: Guess: $306.45 Truth: $516.99 Error: $210.54 SLE: 0.27 Item: Patriot Exhaust H8013-1 1-7/8\" Clippster...\u001b[0m\n", + "\u001b[92m123: Guess: $217.02 Truth: $196.99 Error: $20.03 SLE: 0.01 Item: Fitrite Autopart New Front Left Driver S...\u001b[0m\n", + "\u001b[91m124: Guess: $162.74 Truth: $46.55 Error: $116.19 SLE: 1.53 Item: Technical Precision Replacement for GE G...\u001b[0m\n", + "\u001b[92m125: Guess: $288.98 Truth: $356.99 Error: $68.01 SLE: 0.04 Item: Covercraft Carhartt SeatSaver Front Row ...\u001b[0m\n", + "\u001b[93m126: Guess: $221.58 Truth: $319.95 Error: $98.37 SLE: 0.13 Item: Sennheiser SD Pro 2 (506008) - Double-Si...\u001b[0m\n", + "\u001b[93m127: Guess: $157.53 Truth: $96.06 Error: $61.47 SLE: 0.24 Item: Hitachi MAF0110 Mass Air Flow Sensor\u001b[0m\n", + "\u001b[91m128: Guess: $271.09 Truth: $190.99 Error: $80.10 SLE: 0.12 Item: AmScope SE305R-P-LED-PS36A 10X-30X LED C...\u001b[0m\n", + "\u001b[93m129: Guess: $185.29 Truth: $257.95 Error: $72.66 SLE: 0.11 Item: Front Left Driver Side Window Regulator ...\u001b[0m\n", + "\u001b[91m130: Guess: $174.57 Truth: $62.95 Error: $111.62 SLE: 1.02 Item: Premium Replica Hubcap Set, Fits Nissan ...\u001b[0m\n", + "\u001b[92m131: Guess: $46.20 Truth: $47.66 Error: $1.46 SLE: 0.00 Item: Excellerations Phonics Spelling Game for...\u001b[0m\n", + "\u001b[93m132: Guess: $275.28 Truth: $226.99 Error: $48.29 SLE: 0.04 Item: RC4WD BigDog Dual Axle Scale Car/Truck T...\u001b[0m\n", + "\u001b[93m133: Guess: $276.66 Truth: $359.95 Error: $83.29 SLE: 0.07 Item: Unknown Stage 2 Clutch Kit - Low Altitud...\u001b[0m\n", + "\u001b[91m134: Guess: $257.09 Truth: $78.40 Error: $178.69 SLE: 1.39 Item: 2002-2008 Dodge Ram 1500 Mopar 4X4 Emble...\u001b[0m\n", + "\u001b[92m135: Guess: $186.20 Truth: $172.77 Error: $13.43 SLE: 0.01 Item: Pro Comp Alloys Series 89 Wheel with Pol...\u001b[0m\n", + "\u001b[93m136: Guess: $242.47 Truth: $316.45 Error: $73.98 SLE: 0.07 Item: Detroit Axle - Front Rear Strut & Coil S...\u001b[0m\n", + "\u001b[91m137: Guess: $169.15 Truth: $87.99 Error: $81.16 SLE: 0.42 Item: ECCPP Rear Wheel Axle Replacement fit fo...\u001b[0m\n", + "\u001b[92m138: Guess: $269.79 Truth: $226.63 Error: $43.16 SLE: 0.03 Item: Dell Latitude E6520 Intel i7-2720QM 2.20...\u001b[0m\n", + "\u001b[91m139: Guess: $193.22 Truth: $31.49 Error: $161.73 SLE: 3.20 Item: F FIERCE CYCLE 251pcs Black Universal Mo...\u001b[0m\n", + "\u001b[92m140: Guess: $174.37 Truth: $196.00 Error: $21.63 SLE: 0.01 Item: Flash Furniture 4 Pk. HERCULES Series 88...\u001b[0m\n", + "\u001b[91m141: Guess: $253.55 Truth: $78.40 Error: $175.15 SLE: 1.36 Item: B&M 30287 Throttle Valve/Kickdown Cable,...\u001b[0m\n", + "\u001b[92m142: Guess: $129.12 Truth: $116.25 Error: $12.87 SLE: 0.01 Item: Gates TCK226 PowerGrip Premium Timing Be...\u001b[0m\n", + "\u001b[92m143: Guess: $139.68 Truth: $112.78 Error: $26.90 SLE: 0.05 Item: Monroe Shocks & Struts Quick-Strut 17149...\u001b[0m\n", + "\u001b[91m144: Guess: $169.66 Truth: $27.32 Error: $142.34 SLE: 3.23 Item: Feit Electric BPMR16/GU10/930CA/6 35W EQ...\u001b[0m\n", + "\u001b[92m145: Guess: $113.93 Truth: $145.91 Error: $31.98 SLE: 0.06 Item: Yellow Jacket 2806 Contractor Extension ...\u001b[0m\n", + "\u001b[93m146: Guess: $211.22 Truth: $171.09 Error: $40.13 SLE: 0.04 Item: Garage-Pro Tailgate SET Compatible with ...\u001b[0m\n", + "\u001b[93m147: Guess: $223.57 Truth: $167.95 Error: $55.62 SLE: 0.08 Item: 3M Perfect It Buffing and Polishing Kit ...\u001b[0m\n", + "\u001b[93m148: Guess: $74.91 Truth: $28.49 Error: $46.42 SLE: 0.89 Item: Chinese Style Dollhouse Model DIY Miniat...\u001b[0m\n", + "\u001b[92m149: Guess: $161.23 Truth: $122.23 Error: $39.00 SLE: 0.08 Item: Generic NRG Innovations SRK-161H Steerin...\u001b[0m\n", + "\u001b[91m150: Guess: $120.85 Truth: $32.99 Error: $87.86 SLE: 1.63 Item: Learning Resources Coding Critters Range...\u001b[0m\n", + "\u001b[91m151: Guess: $182.82 Truth: $71.20 Error: $111.62 SLE: 0.87 Item: Bosch Automotive 15463 Oxygen Sensor, OE...\u001b[0m\n", + "\u001b[92m152: Guess: $78.46 Truth: $112.75 Error: $34.29 SLE: 0.13 Item: Case of 24-2 Inch Blue Painters Tape - 6...\u001b[0m\n", + "\u001b[93m153: Guess: $211.75 Truth: $142.43 Error: $69.32 SLE: 0.16 Item: MOCA Engine Water Pump & Fan Clutch fit ...\u001b[0m\n", + "\u001b[91m154: Guess: $230.96 Truth: $398.99 Error: $168.03 SLE: 0.30 Item: SAREMAS Foot Step Bars for Hyundai Palis...\u001b[0m\n", + "\u001b[92m155: Guess: $404.52 Truth: $449.00 Error: $44.48 SLE: 0.01 Item: Gretsch G9210 Square Neck Boxcar Mahogan...\u001b[0m\n", + "\u001b[91m156: Guess: $271.13 Truth: $189.00 Error: $82.13 SLE: 0.13 Item: NikoMaku Mirror Dash Cam Front and Rear ...\u001b[0m\n", + "\u001b[91m157: Guess: $245.68 Truth: $120.91 Error: $124.77 SLE: 0.50 Item: Fenix HP25R v2.0 USB-C Rechargeable Head...\u001b[0m\n", + "\u001b[93m158: Guess: $267.75 Truth: $203.53 Error: $64.22 SLE: 0.07 Item: R&L Racing Heavy Duty Roll-Up Soft Tonne...\u001b[0m\n", + "\u001b[92m159: Guess: $306.13 Truth: $349.99 Error: $43.86 SLE: 0.02 Item: Garmin 010-02258-10 GPSMAP 64sx, Handhel...\u001b[0m\n", + "\u001b[93m160: Guess: $91.29 Truth: $34.35 Error: $56.94 SLE: 0.92 Item: Brown 5-7/8\" X 8-1/2\" X 3/16\" Thick Heav...\u001b[0m\n", + "\u001b[93m161: Guess: $258.04 Truth: $384.99 Error: $126.95 SLE: 0.16 Item: GAOMON PD2200 Pen Display & 20 Pen Nibs ...\u001b[0m\n", + "\u001b[93m162: Guess: $269.75 Truth: $211.00 Error: $58.75 SLE: 0.06 Item: VXMOTOR for 97-03 Ford F150/F250 Lightdu...\u001b[0m\n", + "\u001b[91m163: Guess: $323.40 Truth: $129.00 Error: $194.40 SLE: 0.84 Item: HP EliteBook 2540p Intel Core i7-640LM X...\u001b[0m\n", + "\u001b[92m164: Guess: $147.41 Truth: $111.45 Error: $35.96 SLE: 0.08 Item: Green EPX Mixing Nozzles 100-Pack-fits 3...\u001b[0m\n", + "\u001b[91m165: Guess: $176.03 Truth: $81.12 Error: $94.91 SLE: 0.59 Item: Box Partners 6 1/4 x 3 1/8\" 13 Pt. Manil...\u001b[0m\n", + "\u001b[93m166: Guess: $331.45 Truth: $457.08 Error: $125.63 SLE: 0.10 Item: Vixen Air 1/2\" NPT Air Ride Suspension H...\u001b[0m\n", + "\u001b[91m167: Guess: $160.27 Truth: $49.49 Error: $110.78 SLE: 1.35 Item: Smart Floor Lamp, 2700-6500K+RGBPink Mul...\u001b[0m\n", + "\u001b[91m168: Guess: $196.85 Truth: $80.56 Error: $116.29 SLE: 0.79 Item: SOZG 324mm Wheelbase Body Shell RC Car B...\u001b[0m\n", + "\u001b[92m169: Guess: $329.67 Truth: $278.39 Error: $51.28 SLE: 0.03 Item: Mickey Thompson ET Street S/S Racing Rad...\u001b[0m\n", + "\u001b[91m170: Guess: $202.99 Truth: $364.50 Error: $161.51 SLE: 0.34 Item: Pirelli 275/40R20 106W XL RFT P0 PZ4-LUX...\u001b[0m\n", + "\u001b[93m171: Guess: $281.98 Truth: $378.99 Error: $97.01 SLE: 0.09 Item: Torklift C3212 Rear Tie Down\u001b[0m\n", + "\u001b[92m172: Guess: $170.63 Truth: $165.28 Error: $5.35 SLE: 0.00 Item: Cardone 78-4226 Remanufactured Ford Comp...\u001b[0m\n", + "\u001b[91m173: Guess: $186.41 Truth: $56.74 Error: $129.67 SLE: 1.39 Item: Kidde AccessPoint 001798 Supra TouchPoin...\u001b[0m\n", + "\u001b[93m174: Guess: $216.29 Truth: $307.95 Error: $91.66 SLE: 0.12 Item: 3M Protecta 3100414 Self Retracting Life...\u001b[0m\n", + "\u001b[91m175: Guess: $174.78 Truth: $38.00 Error: $136.78 SLE: 2.27 Item: Plantronics 89435-01 Wired Headset, Blac...\u001b[0m\n", + "\u001b[91m176: Guess: $153.62 Truth: $53.00 Error: $100.62 SLE: 1.11 Item: Logitech K750 Wireless Solar Keyboard fo...\u001b[0m\n", + "\u001b[93m177: Guess: $361.87 Truth: $498.00 Error: $136.13 SLE: 0.10 Item: Olympus PEN E-PL9 Body Only with 3-Inch ...\u001b[0m\n", + "\u001b[91m178: Guess: $193.87 Truth: $53.99 Error: $139.88 SLE: 1.60 Item: Beck/Arnley 051-6066 Hub & Bearing Assem...\u001b[0m\n", + "\u001b[93m179: Guess: $240.58 Truth: $350.00 Error: $109.42 SLE: 0.14 Item: Eibach Pro-Kit Performance Springs E10-6...\u001b[0m\n", + "\u001b[93m180: Guess: $208.80 Truth: $299.95 Error: $91.15 SLE: 0.13 Item: LEGO DC Batman 1989 Batwing 76161 Displa...\u001b[0m\n", + "\u001b[93m181: Guess: $171.06 Truth: $94.93 Error: $76.13 SLE: 0.34 Item: Kingston Brass KS3608PL Restoration 4-In...\u001b[0m\n", + "\u001b[92m182: Guess: $335.46 Truth: $379.00 Error: $43.54 SLE: 0.01 Item: Polk Vanishing Series 265-LS In-Wall 3-W...\u001b[0m\n", + "\u001b[93m183: Guess: $237.21 Truth: $299.95 Error: $62.74 SLE: 0.05 Item: Spec-D Tuning LED Projector Headlights G...\u001b[0m\n", + "\u001b[92m184: Guess: $44.95 Truth: $24.99 Error: $19.96 SLE: 0.32 Item: RICHMOND & FINCH Airpod Pro Case, Green ...\u001b[0m\n", + "\u001b[91m185: Guess: $169.37 Truth: $41.04 Error: $128.33 SLE: 1.96 Item: LFA Industries 43B-5A-33JT 1/16-1/2-1.5-...\u001b[0m\n", + "\u001b[91m186: Guess: $172.91 Truth: $327.90 Error: $154.99 SLE: 0.41 Item: SAUTVS LED Headlight Assembly for Slings...\u001b[0m\n", + "\u001b[91m187: Guess: $118.32 Truth: $10.99 Error: $107.33 SLE: 5.28 Item: 2 Pack Combo Womens Safety Glasses Impac...\u001b[0m\n", + "\u001b[91m188: Guess: $158.34 Truth: $14.99 Error: $143.35 SLE: 5.29 Item: Arepa - Venezuelan cuisine - Venezuela P...\u001b[0m\n", + "\u001b[92m189: Guess: $119.00 Truth: $84.95 Error: $34.05 SLE: 0.11 Item: Schlage Lock Company KS23D2300 Padlock, ...\u001b[0m\n", + "\u001b[91m190: Guess: $191.56 Truth: $111.00 Error: $80.56 SLE: 0.29 Item: Techni Mobili White Sit to Stand Mobile ...\u001b[0m\n", + "\u001b[92m191: Guess: $141.72 Truth: $123.73 Error: $17.99 SLE: 0.02 Item: Special Lite Products Contemporary Wall ...\u001b[0m\n", + "\u001b[91m192: Guess: $268.10 Truth: $557.38 Error: $289.28 SLE: 0.53 Item: Tascam DP-24SD 24-Track Digital Portastu...\u001b[0m\n", + "\u001b[91m193: Guess: $219.48 Truth: $95.55 Error: $123.93 SLE: 0.68 Item: Glow Lighting 636CC10SP Vista Crystal Fl...\u001b[0m\n", + "\u001b[93m194: Guess: $204.85 Truth: $154.00 Error: $50.85 SLE: 0.08 Item: Z3 Wind Deflector, Smoke Tint, Lexan, Wi...\u001b[0m\n", + "\u001b[91m195: Guess: $300.74 Truth: $198.99 Error: $101.75 SLE: 0.17 Item: Olympus E-20 5MP Digital Camera w/ 4x Op...\u001b[0m\n", + "\u001b[91m196: Guess: $247.62 Truth: $430.44 Error: $182.82 SLE: 0.30 Item: PHYNEDI 1:1000 World Trade Center (1973-...\u001b[0m\n", + "\u001b[92m197: Guess: $72.39 Truth: $45.67 Error: $26.72 SLE: 0.20 Item: YANGHUAN Unstable Unicorns Adventure Car...\u001b[0m\n", + "\u001b[92m198: Guess: $227.17 Truth: $249.00 Error: $21.83 SLE: 0.01 Item: Interlogix NX-1820E NetworX Touch Screen...\u001b[0m\n", + "\u001b[91m199: Guess: $189.59 Truth: $42.99 Error: $146.60 SLE: 2.15 Item: Steering Damper,Universal Motorcycle Han...\u001b[0m\n", + "\u001b[92m200: Guess: $203.70 Truth: $181.33 Error: $22.37 SLE: 0.01 Item: Amprobe TIC 410A Hot Stick Attachment\u001b[0m\n", + "\u001b[91m201: Guess: $124.43 Truth: $6.03 Error: $118.40 SLE: 8.30 Item: MyCableMart 3.5mm Plug/Jack, 4 Conductor...\u001b[0m\n", + "\u001b[93m202: Guess: $85.76 Truth: $29.99 Error: $55.77 SLE: 1.06 Item: OtterBox + Pop Symmetry Series Case for ...\u001b[0m\n", + "\u001b[91m203: Guess: $480.64 Truth: $899.00 Error: $418.36 SLE: 0.39 Item: Dell XPS X8700-1572BLK Desktop ( Intel C...\u001b[0m\n", + "\u001b[93m204: Guess: $252.46 Truth: $399.99 Error: $147.53 SLE: 0.21 Item: Franklin Iron Works Sperry Industrial Br...\u001b[0m\n", + "\u001b[91m205: Guess: $109.06 Truth: $4.66 Error: $104.40 SLE: 8.81 Item: Avery Legal Dividers, Standard Collated ...\u001b[0m\n", + "\u001b[92m206: Guess: $235.94 Truth: $261.41 Error: $25.47 SLE: 0.01 Item: Moen 8346 Commercial Posi-Temp Pressure ...\u001b[0m\n", + "\u001b[91m207: Guess: $218.78 Truth: $136.97 Error: $81.81 SLE: 0.22 Item: Carlisle Versa Trail ATR All Terrain Rad...\u001b[0m\n", + "\u001b[91m208: Guess: $170.94 Truth: $79.00 Error: $91.94 SLE: 0.59 Item: SUNWAYFOTO 44mm Tripod Ball Head Arca Co...\u001b[0m\n", + "\u001b[91m209: Guess: $239.13 Truth: $444.99 Error: $205.86 SLE: 0.38 Item: NanoBeam AC NBE-5AC-Gen2-US 4 Units 5GHz...\u001b[0m\n", + "\u001b[93m210: Guess: $277.91 Truth: $411.94 Error: $134.03 SLE: 0.15 Item: WULF 4\" Front 2\" Rear Leveling Lift Kit ...\u001b[0m\n", + "\u001b[93m211: Guess: $212.26 Truth: $148.40 Error: $63.86 SLE: 0.13 Item: Alera ALEVABFMC Valencia Series Mobile B...\u001b[0m\n", + "\u001b[91m212: Guess: $121.62 Truth: $244.99 Error: $123.37 SLE: 0.48 Item: YU-GI-OH! Ignition Assault Booster Box\u001b[0m\n", + "\u001b[92m213: Guess: $123.70 Truth: $86.50 Error: $37.20 SLE: 0.13 Item: 48\" x 36\" Extra-Large Framed Magnetic Bl...\u001b[0m\n", + "\u001b[92m214: Guess: $305.07 Truth: $297.95 Error: $7.12 SLE: 0.00 Item: Dell Latitude D620 Renewed Notebook PC\u001b[0m\n", + "\u001b[91m215: Guess: $564.31 Truth: $399.99 Error: $164.32 SLE: 0.12 Item: acer Aspire 5 Laptop, AMD Ryzen 3 5300U ...\u001b[0m\n", + "\u001b[91m216: Guess: $249.27 Truth: $599.00 Error: $349.73 SLE: 0.76 Item: Elk 31080/6RC-GRN 30 by 6-Inch Viva 6-Li...\u001b[0m\n", + "\u001b[91m217: Guess: $239.21 Truth: $105.99 Error: $133.22 SLE: 0.65 Item: Barbie Top Model Doll\u001b[0m\n", + "\u001b[91m218: Guess: $348.61 Truth: $689.00 Error: $340.39 SLE: 0.46 Item: Danby Designer 20-In. Electric Range wit...\u001b[0m\n", + "\u001b[92m219: Guess: $337.12 Truth: $404.99 Error: $67.87 SLE: 0.03 Item: FixtureDisplays® Metal Truss Podium Doub...\u001b[0m\n", + "\u001b[92m220: Guess: $234.84 Truth: $207.76 Error: $27.08 SLE: 0.01 Item: ACDelco 13597235 GM Original Equipment A...\u001b[0m\n", + "\u001b[92m221: Guess: $191.47 Truth: $171.82 Error: $19.65 SLE: 0.01 Item: EBC S1KF1135 Stage-1 Premium Street Brak...\u001b[0m\n", + "\u001b[92m222: Guess: $304.47 Truth: $293.24 Error: $11.23 SLE: 0.00 Item: FXR Men's Boost FX Jacket (Black/Orange/...\u001b[0m\n", + "\u001b[93m223: Guess: $277.57 Truth: $374.95 Error: $97.38 SLE: 0.09 Item: SuperATV Scratch Resistant 3-in-1 Flip W...\u001b[0m\n", + "\u001b[93m224: Guess: $180.27 Truth: $111.99 Error: $68.28 SLE: 0.22 Item: SBU 3 Layer All Weather Mini Van Car Cov...\u001b[0m\n", + "\u001b[93m225: Guess: $103.97 Truth: $42.99 Error: $60.98 SLE: 0.76 Item: 2 Pack Outdoor Brochure Holder Advertisi...\u001b[0m\n", + "\u001b[92m226: Guess: $126.29 Truth: $116.71 Error: $9.58 SLE: 0.01 Item: Monroe Shocks & Struts Quick-Strut 17158...\u001b[0m\n", + "\u001b[93m227: Guess: $191.43 Truth: $118.61 Error: $72.82 SLE: 0.23 Item: Elements of Design Magellan EB235AL Thre...\u001b[0m\n", + "\u001b[93m228: Guess: $201.35 Truth: $147.12 Error: $54.23 SLE: 0.10 Item: GM Genuine Parts 15-62961 Air Conditioni...\u001b[0m\n", + "\u001b[91m229: Guess: $227.66 Truth: $119.99 Error: $107.67 SLE: 0.41 Item: Baseus 17-in-1 USB C Docking Station to ...\u001b[0m\n", + "\u001b[91m230: Guess: $207.65 Truth: $369.98 Error: $162.33 SLE: 0.33 Item: Whitehall™ Personalized Whitehall Capito...\u001b[0m\n", + "\u001b[92m231: Guess: $270.47 Truth: $315.55 Error: $45.08 SLE: 0.02 Item: Pro Circuit Works Pipe PY05250 for 02-19...\u001b[0m\n", + "\u001b[93m232: Guess: $264.43 Truth: $190.99 Error: $73.44 SLE: 0.10 Item: HYANKA 15 \"1200W Professional DJ Speaker...\u001b[0m\n", + "\u001b[92m233: Guess: $181.43 Truth: $155.00 Error: $26.43 SLE: 0.02 Item: Bluetooth X6BT Card Reader Writer Encode...\u001b[0m\n", + "\u001b[92m234: Guess: $321.29 Truth: $349.99 Error: $28.70 SLE: 0.01 Item: AIRAID Cold Air Intake System by K&N: In...\u001b[0m\n", + "\u001b[93m235: Guess: $300.28 Truth: $249.99 Error: $50.29 SLE: 0.03 Item: Bostingner Shower Faucets Sets Complete,...\u001b[0m\n", + "\u001b[91m236: Guess: $274.69 Truth: $42.99 Error: $231.70 SLE: 3.37 Item: PIT66 Front Bumper Turn Signal Lights, C...\u001b[0m\n", + "\u001b[92m237: Guess: $31.56 Truth: $17.99 Error: $13.57 SLE: 0.29 Item: Caseology Bumpy Compatible with Google P...\u001b[0m\n", + "\u001b[91m238: Guess: $217.25 Truth: $425.00 Error: $207.75 SLE: 0.45 Item: Fleck 2510 Timer Mechanical Filter Contr...\u001b[0m\n", + "\u001b[92m239: Guess: $273.88 Truth: $249.99 Error: $23.89 SLE: 0.01 Item: Haloview MC7108 Wireless RV Backup Camer...\u001b[0m\n", + "\u001b[93m240: Guess: $179.25 Truth: $138.23 Error: $41.02 SLE: 0.07 Item: Schmidt Spiele - Manhattan\u001b[0m\n", + "\u001b[91m241: Guess: $191.36 Truth: $414.99 Error: $223.63 SLE: 0.59 Item: Corsa 14333 Tip Kit (Ford Mustang GT)\u001b[0m\n", + "\u001b[92m242: Guess: $195.79 Truth: $168.28 Error: $27.51 SLE: 0.02 Item: Hoshizaki FM116A Fan Motor Kit 1\u001b[0m\n", + "\u001b[92m243: Guess: $212.44 Truth: $199.99 Error: $12.45 SLE: 0.00 Item: BAINUO Antler Chandelier Lighting,6 Ligh...\u001b[0m\n", + "\u001b[91m244: Guess: $231.50 Truth: $126.70 Error: $104.80 SLE: 0.36 Item: DNA MOTORING HL-OH-FEXP06-SM-AM Smoke Le...\u001b[0m\n", + "\u001b[91m245: Guess: $167.98 Truth: $5.91 Error: $162.07 SLE: 10.22 Item: Wera Stainless 3840/1 TS 2.5mm Hex Inser...\u001b[0m\n", + "\u001b[92m246: Guess: $221.62 Truth: $193.06 Error: $28.56 SLE: 0.02 Item: Celestron - PowerSeeker 127EQ Telescope ...\u001b[0m\n", + "\u001b[92m247: Guess: $285.70 Truth: $249.99 Error: $35.71 SLE: 0.02 Item: NHOPEEW 10.1inch Android Car Radio Carpl...\u001b[0m\n", + "\u001b[91m248: Guess: $254.74 Truth: $64.12 Error: $190.62 SLE: 1.87 Item: Other Harmonica (Suzuki-2Timer24- A)\u001b[0m\n", + "\u001b[91m249: Guess: $243.62 Truth: $114.99 Error: $128.63 SLE: 0.56 Item: Harley Air Filter Venturi Intake Air Cle...\u001b[0m\n", + "\u001b[91m250: Guess: $321.61 Truth: $926.00 Error: $604.39 SLE: 1.11 Item: Elite Screens Edge Free Ambient Light Re...\u001b[0m\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+0AAAK7CAYAAACH525NAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAy2FJREFUeJzs3Xd8VfX9x/HXzSSBJCSEJKBsQXEjuAeg4tY6cYurrXVU6qr+6q51Va2r1lEVxb1t66gL9yiKewsCopAwQhIImff8/jghuWEmkHAzXs/HIw/v/d5z7/3caxLyue/v93siQRAESJIkSZKkNich3gVIkiRJkqQVs2mXJEmSJKmNsmmXJEmSJKmNsmmXJEmSJKmNsmmXJEmSJKmNsmmXJEmSJKmNsmmXJEmSJKmNsmmXJEmSJKmNsmmXJEmSJKmNsmmXpHVswoQJRCKR+q+kpCR69erFEUccwffff7/c8VVVVZxyyin06tWLxMREttxyy5U+9vHHH9/osZf96ij69++/0ttmzZrF+PHjGTlyJN27dycSiTBhwoSVHv/KK6+w/fbbk56eTm5uLscffzxFRUXLHXfhhRey3377sd566xGJRDj++OPXuP5//vOfRCIRunXrtsLbp0yZwu677063bt3o3r07Bx98MNOmTWvSY/fv37/R//OuXbuy1VZbceuttxIEQaNjX3/99frjVvYe7brrrkQikeXe88WLF3PNNdewxRZbkJmZSUZGBoMGDWLs2LG88cYbyz3HE088scq6V/V9uzbvdaxp06Zx8MEH0717d7p168aYMWOYMmVKk+4bBAE333wzG220EampqfTq1Yvf/e53FBcXr/J+X331FampqUQiET788MPVPs/q3q/TTz99uZ/lUaNGMWrUqPrr5eXlXHrppbz++uurfb6WdPPNN7PddtuRm5tLamoqffv25YgjjuDLL79c4fG33HJL/fs5YMAALrvsMqqrq5v0XD/88APHHnssffv2JS0tjUGDBnHWWWcxf/78Rse9+eabDBs2jIyMDHbZZRe++uqr5R7rtNNOY+TIkcv9fEhSW5EU7wIkqbO699572WijjaioqOCdd97hL3/5C5MmTeKbb74hOzu7/rh//OMf3HHHHdxyyy0MHz58pY3eUmlpabz22mutXX6b9cMPP/Dggw+y5ZZbss8++/Dwww+v9Ng33niDvffem3333Zdnn32WoqIi/vjHP7Lbbrvx4YcfkpqaWn/s3/72NzbffHMOOOAA7rnnnjWu7+eff+acc86hd+/elJSULHf7N998w6hRo9hyyy157LHHqKio4OKLL2bnnXfmk08+oWfPnqt9jh133JHrrrsOgF9++YUbbriBM844g9LSUv7v//5vueMzMjK4++67l2uOf/zxR15//XUyMzMbjdfW1rLHHnvw+eefc+6557LNNtsA8P333/Pvf/+bt956i5EjRzb1Lal36KGHcvbZZy833pTXvDpz585l5513Jjs7m3vuuYcuXbpw1VVXMWrUKCZPnsyGG264yvufc8453HjjjZxzzjnsvvvufPXVV1x88cVMnjyZ9957j+Tk5OXuU1tby4knnkhubi6//PLLWr+GlbntttsaXS8vL+eyyy4DaNTMt7b58+ez9957s8UWW5Cdnc20adO4+uqr2Xbbbfnoo48avcd/+ctfuOiiizj//PPZY489mDx5MhdeeCE///wzd9555yqfZ+7cuWy33XZkZmby5z//mb59+/Lxxx9zySWXMGnSJD766CMSEhJYuHAhBx10EIcccgjXXnstN998MwcffDBffvkliYmJALz//vvcc889fPzxxx3qg01JHUwgSVqn7r333gAIJk+e3Gj8sssuC4DgnnvuaTR+8sknB2lpaU167HHjxgVdu3Zdo7qqqqqC6urqFd62ePHiNXrMpaLRaFBeXr5Wj/HWW28FO++8c9CtW7cACNLS0oKNNtoo+Otf/9rouNra2vrLkydPDoDg3nvvXeFjbr311sHGG2/c6HW/8847ARDcdtttK33crl27BuPGjVuj17HffvsF+++//0r/Xx122GFBbm5uUFJSUj82ffr0IDk5OTjvvPNW+/j9+vUL9t1330ZjJSUlQVZWVtC3b99G45MmTQqA4OSTTw6A4Lvvvmt0+4UXXhisv/76wd577x3069evfvy1115b4ffqUrHv1dLnePzxx1dZNxCcdtppq319a+rcc88NkpOTg+nTp9ePlZSUBLm5ucHYsWNXed9Zs2YFiYmJwRlnnNFo/KGHHgqA4M4771zh/f76178G6623XnDTTTet8Gd+RVb3fp122mnB6v58mzt3bgAEl1xyyWqfr7V99dVXARBcdNFF9WPz5s0LunTpEvzmN79pdOxf/vKXIBKJBF9++eUqH/Ouu+4KgOCVV15pNH7llVcGQDBlypQgCILg+eefD7p27RpUVVUFQRAEP//8cwAEX3/9dRAE4e+8zTbbrE28T5K0Kk6Pl6Q2YsSIEQAUFhbWj0UiEf75z3+yZMmS1U5jbo6lU3AnTpzI2WefzXrrrUdqaio//PADxx9/PN26dePzzz9njz32ICMjg9122w2ABQsWcOqpp7LeeuuRkpLCwIED+dOf/kRlZWWjx49EIpx++uncfvvtDB06lNTUVO677741rnf27Nnss88+VFZW8thjj9GrVy+efvppTj75ZObOndvo2ISEpv3T9vPPPzN58mSOPfZYkpIaJp7tsMMODBkyhKeffnqNHndVHnjgAd54443lktGlampq+M9//sMhhxzSKN3u168fo0ePXq6mpsrMzGTIkCGNvrdijRkzhj59+jSaQRCNRrnvvvsYN27ccq996RTkXr16rfDxWuK9amlPP/00u+66K/369asfy8zM5OCDD+bf//43NTU1K73v+++/T21tLfvss0+j8f322w+AJ598crn7fP/991x88cXcdttty81UaGmx0+OnT59ePzPhsssuW26Jwdy5c/nNb35Dnz59SE1NpWfPnuy444688sorrVLb0lpif8ZefPFFKioqOOGEExode8IJJxAEAc8888wqH3PprIasrKxG4927dwegS5cuAFRUVJCamlp//NJZShUVFQBcd911VFVVccEFF6zBK5Okdcfp8ZLURvz4448ADBkypH7svffe489//jOTJk2qn/I+aNCg1T7WihqQhISE5ZqpCy64gO23357bb7+dhIQE8vLygHAd/QEHHMBvf/tbzj//fGpqaqioqGD06NFMnTqVyy67jM0335y33nqLq666ik8++YTnnnuu0WM/88wzvPXWW1x88cUUFBTUP3ZtbW2T1o7G1vv+++9TVlbGHXfcwZZbbklKSgp77rkne+6552ofZ2W++OILADbffPPlbtt8881555131vixV6SoqIjx48dz9dVXs/7666/wmKlTp7JkyZKV1vTyyy9TUVFR35Q0VU1NDT/99FOj761YCQkJHH/88dx9991cccUVJCYm8tJLLzFr1ixOOOEEzjzzzEbHjxgxguTkZM4880wuvvhidt1115U28M0RBMEKv3cTExPrpy4HQUBtbW2THm9po7hkyRKmTp3KQQcdtNwxm2++OUuWLGHatGkrfX+qqqoAGi2XgLB5jEQifPbZZ8u9jpNPPpn99tuPAw44YI0+aItGoyt8L1b3s9OrVy9efPFF9tprL0466SROPvlkoKF5PvbYY5kyZQp/+ctfGDJkCAsXLmTKlCmN1oJHo1Gi0ehqa4xEIvXTzGPV1tZSU1PDjz/+yPnnn09eXl6jBn3pz95mm222XO25ubn1t6/MgQceSN++fTn77LO57bbb6NevH1OmTOHqq69m//33Z+jQoUD4fVpWVsY//vEPjjzySK6++mp69OjBhhtuyNSpU7niiit44YUXlvv/KkltjU27JMXJ0j9sl65pv+KKK9hll1044IAD6o/Zbrvt6NmzJwkJCWy33XZNetzFixevcH3tbrvttlyaNmjQIB5//PHljq2urubiiy9u9If2HXfcwWeffcZjjz3GYYcdBoQJbbdu3fjjH//Iyy+/zJgxY+qPX7RoEZ9//nmj9flLn3PGjBmrfR2XXHIJl156KQC9e/cG4KWXXlrlRnzNsbRJycnJWe62nJyc5Ta0WlunnnoqG264Ib/73e/WuKYgCCguLl5tgxzb/P7yyy9cccUVzJ8/n3/+858rvc8JJ5zAFVdcwYsvvsi+++7LPffcw8iRI1f4IVH//v25/fbbOfPMMznmmGOAsOEaM2YMJ598MjvvvPMq61uZ2267bYWzECZOnFj/PPfdd99yCe3KLG1wi4uLCYJgpe8rsMr/3xtvvDEA77zzDqNHj64ff/fddwmCYLn7/v3vf+fzzz/nsccea1KdK3L44Yev0f1SU1MZPnw4AOuvv/5yvzfeeecdTj75ZH7961/Xj/3qV79qdMzll19evyZ+Vfr168f06dOXG+/atWv97JshQ4bw+uuv06dPn/rb58+fT2pqKl27dl3uvk352cvKyuL999/nkEMOYdNNN60fP+yww5g4cWL99T59+nDTTTcxfvx4Tj31VLKysrj//vtJS0vjlFNO4cgjj2SXXXZZ7euUpHizaZekOFn2j+mhQ4fy7LPPNppGuibS0tJ48803lxtf0RTdQw45ZKWPs+xtr732Gl27duXQQw9tNH788cfzxz/+kVdffbVR077rrrsu17AD/Pvf/15uOv2KLG3UAbbddlvOPvtsLrjgAm699VYWLFjA5ZdfzpgxY9h+++1X+1irsrLNp1pyU6onn3ySf//7303e7GpVxzTl/s8///xyH9zcfvvt7Lvvviu9z4ABAxg1ahT33HMP2223Hc8+++wqm/wTTzyRQw45hOeff57333+f999/nwceeICJEydyzTXXcO655662zmWNHTt2hfcbOHBg/eX999+fyZMnN/uxYc3f1y222IJddtmFv/71r2y44YaMGTOGr776ilNOOYXExMRGM1hmzJjBBRdcwI033kh+fv4a1QlwzTXXsOuuuy43/te//nWtPgzYZpttmDBhAj169GD33Xdn+PDhy32v/OY3v6mf+r8qK0uo3333Xaqqqpg6dSp/+9vfGD16NK+++iqbbLJJ/TFr8z1eXFzMr371K8rLy3nwwQfp06cPX3zxBX/+85854IADeO655+p/j/7ud7/juOOO46effmLAgAGkpqYyceLE+g8gFyxYwBlnnMFLL71EZmYm5557LqeccspqX7skrUs27ZIUJ/fffz9Dhw6lrKyMRx99lDvuuIMjjzySF154Ya0eNyEhoX59/OqsLLFNT09frsmfP38+BQUFy/1BnZeXR1JS0nLp2Moee+ONN27y9PhY1113Haeffjovv/wy48eP58knn+SSSy7h4IMP5tFHH232hx09evQAVpywLliwYIWp7JpYtGgRp512GmeccQa9e/dm4cKFQMOU64ULF5KcnEzXrl1XW1MkEqlft7sqO+20E3/729+ora3l+++/56KLLuL0009nk002Yaeddlrp/U466SROOOEEbrjhBtLS0pb7gGZZWVlZHHnkkRx55JEAfPnll+y+++786U9/4te//nWTao3Vs2fP1X7v5uTkLLeWeXWys7OJRCIrfV+XPu6qPP744xx//PGMHTsWgJSUFP7whz/wyiuv1P8/hfD0YZtuuimHHHJI/Xh5eTkQfi+UlJQ0qf6BAweu8L1Y2530H330Ua644gr++c9/ctFFF9GtWzcOOuggrr32WgoKCgAaLWdZlZU111tttRUQfjB5wAEHsMEGG/B///d/PPvss0D4s1dRUUF5eTnp6emN7rtgwYL6mQIrc8011/DJJ58wY8aM+t8zO++8MxtttBG77rorDz74IOPGjas/vmvXrmy00UZA+LN19tlnc9NNN5Gdnc2xxx7LggUL+OGHH/juu+8YPXo0G264YaMZFZIUb21vpxhJ6iSGDh3KiBEjGD16NLfffjsnn3wyL7744mrPZ92SmpMy9+jRg8LCwuUa7qKiImpqasjNzW3SYw8aNIjk5OTVfl1++eXL3bd///78+te/pmfPnnz66afcfvvtPPXUU2v0ni2dVvv5558vd9vnn3/eaNrt2pg3bx6FhYVcf/31ZGdn1389/PDDLF68mOzsbI4++mggfG/S0tJWWtMGG2zQpPXsWVlZjBgxgm233ZZjjjmGl156ieTkZE499dRVrlU++OCDSU9P5+qrr+aII44gLS2tWa91k0024YgjjqC6uprvvvuuWfdtqvvuu69J3z+x6XFaWhobbLDBSt/XtLS0Rmn+iuTl5fH8889TWFjIp59+SlFREZdffjnfffddoynWX3zxBe+//36j/9ennXYaAKNHj260EV485ObmcuONNzJ9+nRmzJjBVVddxVNPPdXodH+XX355k97fpuyvkZGRwUYbbdTo+2HpWvZl/3/MmTOHefPmrfZn75NPPmG99dZb7oPBrbfeGmCVa+LPPvtshg8fXv9B0wsvvFA/dX7rrbdmjz324Pnnn1/t65KkdcmkXZLaiGuvvZYnn3ySiy++mIMPPrjN7cC922678dhjj/HMM8802tDr/vvvr7+9KdZkenwQBCv8EGDp9OGioqImPXes9dZbj2222YYHHniAc845p9F5m7/99lvGjx/f7MdckYKCAiZNmrTc+NVXX80bb7zBCy+8UP+BR1JSEvvvvz9PPfUU1157LRkZGQDMnDmTSZMm8Yc//GGNahg8eDDnnXcel112GY8++mh9w7KstLQ0Lr74Yt58883Vrr3PyMggJSVludu++eYboPH/v5a0ptPjDzroIG688UZ++umn+vXVZWVlPPXUUxxwwAFNnqmRl5dXn0LffPPNLF68mNNPP73+9kceeaR+d/KlXnzxRa655hpuv/32RlPEW8vSaetLlixZ5XF9+/bl9NNP59VXX2208eLaTo+PNW/ePD7//HN23HHH+rG99tqLLl26MGHCBLbddtv68QkTJhCJRDjwwANX+Zi9e/fm1Vdf5eeff2a99darH3/vvfcAVrrR46RJk3j88ccbNfVBELB48eL664sWLWrSTCBJWpds2iWpjcjOzuaCCy7gvPPO46GHHqrfeKu5otEo77///gpvGzZs2BrvlHzcccfx97//nXHjxjF9+nQ222wz3n77ba688kr22Wcfdt999yY9zrI7RjfFgw8+yLPPPsuxxx7LkCFDqK2tZdKkSVxyySV06dKFPfbYo9HxS5P3adOmAfDhhx/Wn+4pdsr3Nddcw5gxYzjssMM49dRTKSoq4vzzz2fTTTddbrOzN954o/70crW1tcyYMaP+eUaOHFk/bfnyyy/n8ssv59VXX2XkyJF06dKl/nRcsSZMmEBiYuJyt1122WVsvfXW7Lfffpx//vlUVFRw8cUXk5uby9lnn93s926pc845h9tvv53LLruMsWPHrnDXb4CzzjqLs846a5WPNWnSJM4880yOPvpodthhB3r06EFRUREPP/wwL774Iscdd9xyjdPKvidj37vCwsIVHpeZmVm/GVyPHj3qlxE0xznnnMPEiRPZd999ufzyy0lNTeXqq6+moqKifsPDpTbYYAMAfvjhh/qxu+66CwhnQyxcuJAXXniBu+++myuvvLJ+Ojgsv1cFUL9Z2/Dhw5u8dGVtZGRk0K9fP5599ll22203cnJyyM3NJTs7m9GjR3PUUUex0UYbkZGRweTJk3nxxRc5+OCD6+/fu3fvZn/oUlJSwpgxYzjqqKMYPHgwaWlpfPfdd9x0001UVlZyySWX1B+bk5PDhRdeyEUXXUROTg577LEHkydP5tJLL+Xkk0+u/38N4YeCJ554Ivfccw/HHXccEC5BePDBBxkzZgznn39+/Zr2K664gvz8/PqZK7EqKyv57W9/y6WXXsqAAQPqx/fcc08uv/xyMjMz+f7773n11Vc577zzmvXaJanVrftTw0tS53bvvfcGQDB58uTlbluyZEnQt2/fYPDgwUFNTU0QBEEwbty4oGvXrk167HHjxgXASr++//77IAiCYNKkSQEQPP744yt8jJU93/z584NTTjkl6NWrV5CUlBT069cvuOCCC4KKiopGxwHBaaed1qSam2Lq1KnB6aefHgwdOjTo1q1bAAQ5OTnBqFGjgtdee22541f1HizrpZdeCrbbbrugS5cuQU5OTnDccccFhYWFyx03cuTIlT7mpEmT6o+75JJLlhtbkVW9zx9++GGw2267Benp6UFmZmZw4IEHBj/88MOq36Q6/fr1C/bdd98V3vb3v/89AIL77rsvCIJVfx/E2nfffYN+/frVX//pp5+CCy+8MNhxxx2DgoKCICkpKcjIyAi23Xbb4JZbbqn/3o19jtW9d6s6Zscdd2zSa1+dH374ITjwwAODzMzMID09Pdhtt92Cjz76aLnj+vXr1+j1BkEQ3HHHHcHQoUOD9PT0oFu3bsHOO+8cPPPMM0163lX9zC9rdf9PTjvttOW+j0eOHBmMHDmy0dgrr7wSDBs2LEhNTQ2AYNy4cUFFRUVwyimnBJtvvnmQmZkZpKWlBRtuuGFwySWXBIsXL27Sa1mZioqK4OSTT67/GU1KSgrWX3/94Jhjjgm+/PLLFd7npptuCoYMGRKkpKQEffv2DS655JKgqqqq0TFL37t777230fiUKVOCgw46KFh//fWD1NTUYODAgcHJJ58czJw5c4XPdeGFFwZbbLFFUF1d3Wi8qKgoOPTQQ4OsrKygT58+wY033rjmb4IktZJIEDgHSJLUvvTv33+Fp5qSJEnqaNrWgklJkiRJklTPpl2S1O601CZxkiRJbZ3T4yVJkiRJaqNM2iVJkiRJaqNs2iVJkiRJaqNs2iVJkiRJaqOS4l1AWxCNRvnll1/IyMggEonEuxxJkiRJUgcXBAFlZWX07t2bhISV5+k27cAvv/xCnz594l2GJEmSJKmT+emnn1h//fVXertNO5CRkQGEb1ZmZmacq5EkSZIkdRRBAB+WwpPzYEm0YXwopfxxRJ/6fnRlbNqhfkp8ZmamTbskSZIkqUUsrIaJhfBFOZAOKUBmEhyVB4MC+COsdom2TbskSZIkSS0oCOC9UnisqHG6vm0mHJ4HXROhtLRpj2XTLkmSJElSCymuS9e/XNwwlpkEx+TDFt2a/3g27ZIkSZIkraUggLdL4Im5UBGTrm+XCWPr0vU1YdMuSZIkSdJamF8NE+fA1+UNY93r0vXN1iBdj2XTLkmSJEnSGggCeKsuXa+MSdd3zIJDe0L6GqbrsWzaJUmSJElqpnlVcH8hfBuTrmcnwbEFsEnXlnsem3ZJkiRJkpooCOCNhfDUvMbp+s5ZcEhPSGuBdD2WTbskSZIkSU0wty5d/y4mXc9JhuPyYWgLpuuxbNolSZIkSVqFIIDXFsLTc6E6aBjfpTsckgtdWjhdj2XTLkmSJEnSShRVwX1z4IclDWM96tL1jVopXY9l0y5JkiRJ0jKiAbxWDM/Ma5yuj+4OB/WE1IR1U4dNuyRJkiRJMeZUwn2FMC0mXc9NhnEFMCR93dZi0y5JkiRJEmG6/koxPDsPaurS9Qiwazb8KnfdpeuxbNolSZIkSZ3e7EqYMAemVzSM5aXAuHzYYB2n67Fs2iVJkiRJnVY0gP8ugP/Mb5yu71aXrqfEIV2PZdMuSZIkSeqUfqlL12fEpOv5KeHa9UFp8asrlk27JEmSJKlTqY1J12tj0vU9cmD/HpAc53Q9lk27JEmSJKnTmFURpus/VTaM9apL1we0kXQ9lk27JEmSJKnDq4nCiwvguQXhOnaAhAjsmQ37trF0PZZNuyRJkiSpQ/upLl2fFZOu906F4wugX5f41dUUNu2SJEmSpA6pJhom6y8uk67vlQP75kBSG03XY9m0S5IkSZI6nBl16fovMen6+qnh2vW+bTxdj2XTLkmSJEnqMGqi4a7w/y1unK7vmxMm7O0hXY9l0y5JkiRJ6hCmLwnT9dlVDWN96taur9+O0vVYNu2SJEmSpHatOgr/ng8vLYC6cJ3ECOzXA/bMCS+3VzbtkiRJkqR2a1pdul4Yk6736xKuXV8vNX51tRSbdkmSJElSu1MVhWfnwavFDel6Uky6ntCO0/VYNu2SJEmSpHblh3K4rxCKYtL1/nXpeu8OkK7HsmmXJEmSJLULlXXp+mvLpOsH5MKY7I6TrseyaZckSZIktXnflcP9c2BudcPYwDQYlw8FHSxdj2XTLkmSJElqsyqj8PRcmLSwYSw5Agfmwq4dNF2PZdMuSZIkSWqTvlkMEwthXky6PigtXLuenxK/utYlm3ZJkiRJUptSUQtPzYM3FjaMJUfgoJ4wunvHT9dj2bRLkiRJktqMr+vS9fkx6frgNDiuAPI6Sboey6ZdkiRJkhR3FbXwxFx4q6RhLCUBDs6FUd0h0onS9Vg27ZIkSZKkuPpyMUycA8U1DWMbpsNx+ZDbCdP1WDbtkiRJkqS4KK9L19+JSddTE+DQnrBzVudN12PZtEuSJEmS1rnPF8EDhbAwJl0fmg7HFkCP5PjV1dbYtEuSJEmS1pnyWnisCN4rbRjrUpeu72S6vhybdkmSJEnSOvHpIniwEEpi0vVNusIx+ZBjur5CNu2SJEmSpFa1uBYeLYIPlknXx+bBDpmm66ti0y5JkiRJajUfl8FDRVAak65vWpeuZ5uur5ZNuyRJkiSpxS2qgUeKYHJZw1h6IhzeE7Y1XW8ym3ZJkiRJUouaUgYPFUJZbcPY5t3g6DzobrreLDbtkiRJkqQWUVYDDxfBR8uk60fkwTYZputrwqZdkiRJkrRWgiBs1B8ugkUx6fqW3eDofMi081xjvnWSJEmSpDVWWhNOhf94UcNY10Q4Mg9GmK6vNZt2SZIkSVKzBQH8ryw8ldvimHR9q4ywYTddbxm+jZIkSZKkZimpgQcL4dOYdD0jEY7Mh+EZ8aurI7JplyRJkiQ1SRDAB6Xw6Fwoj0nXR2SEm81l2GG2ON9SSZIkSdJqLayGBwrh88UNYxmJ4UZzw0zXW41NuyRJkiRppYIA3iuFx4pgSbRhfJvMMF3vmhi/2joDm3ZJkiRJ0goVV8PEQvgyJl3PTIJj8mGLbvGrqzOxaZckSZIkNRIE8HYJPDEXKmLS9e0yYazp+jpl0y5JkiRJqje/GibOga/LG8a616Xrm5mur3M27ZIkSZIkggDeqkvXK2PS9R2y4LCekG66Hhc27ZIkSZLUyc2rCteufxOTrmcnwbEFsEnX+NUlm3ZJkiRJ6rSCAN5YCE/Na5yu75QFh/aENNP1uLNplyRJkqROaG4V3F8I38Wk6znJcGw+bGy63mbYtEuSJElSJxIE8NpCeGYeVMWk67t0h0NyoYvpepti0y5JkiRJnURRFdw3B35Y0jDWIxmOy4eNTNfbJJt2SZIkSergogG8Vhym69VBw/io7nBwT0hNiFtpWg2bdkmSJEnqwAqrYMIcmBaTrucmw7gCGJIev7rUNDbtkiRJktQBRQN4pRienQc1del6BBidDQfmmq63FzbtkiRJktTBzK4M0/XpFQ1jeSnh2vXBpuvtik27JEmSJHUQ0QD+uwD+M79xur5bNvwqF1JM19sdm3ZJkiRJ6gB+qUvXZ8Sk6/kp4dr1QWnxq0trx6ZdkiRJktqx2ph0vTYmXR+TAwf0gGTT9XbNpl2SJEmS2qlZFWG6/lNlw1ivunR9gOl6h2DTLkmSJEntTE0UXlwAzy0I17FDmK7vmQP7ma53KDbtkiRJktSO/FSXrs+KSdd7p8K4fOhvut7h2LRLkiRJUjtQE4XnF8ALMel6QgT2yoF9cyDJdL1DsmmXJEmSpDZuRl26/ktMur5+arh2vW+X+NWl1mfTLkmSJEltVE003BX+v8WN0/V9cmBv0/VOwaZdkiRJktqg6UvCdH12VcNYn7p0vY/peqdh0y5JkiRJbUh1FP49H15aAHXhOokR2LdHuH49MRLX8rSO2bRLkiRJUhsxbQncNwfmxKTrfbvA8QWwXmr86lL82LRLkiRJUpxVR+HZefBKcUO6nhQJz7m+h+l6p2bTLkmSJElxNLUuXS+MSdf7dwnXrvc2Xe/0bNolSZIkKQ6qovDMPHhtmXT9gFwYkx3uEi/ZtEuSJEnSOvZ9eZiuz61uGBuYBuPyocB0XTFs2iVJkiRpHamMwtNzYdLChrHkCPwqF3YzXdcK2LRLkiRJ0jrwbTncPwfmxaTrg9LCtev5KfGrS22bTbskSZIktaKKWnhqHryxsGEsOQIH9YTR3U3XtWo27ZIkSZLUSr5eDBMLYX5Muj44DY4rgDzTdTWBTbskSZIktbCKWnhiLrxV0jCWkgAH58Ko7hAxXVcT2bRLkiRJUgv6cjFMnAPFNQ1jQ9LDneFzTdfVTDbtkiRJktQCltTC43PhnZh0PTUBDukJu2SZrmvN2LRLkiRJ0lr6YlG4dn1hTLq+UXq4dr1HcvzqUvtn0y5JkiRJa6i8Fh4rgvdKG8a6JMChPWEn03W1AJt2SZIkSVoDny2CBwqhJCZd37grHJsPOabraiE27ZIkSZLUDItr4dEi+GCZdH1sHuyQabqulmXTLkmSJElN9EkZPFgEpTHp+qZd4Zh8yDZdVyuwaZckSZKk1VhUA48UweSyhrH0RBjbE7YzXVcrsmmXJEmSpFWYUgYPFUJZbcPY5t3g6DzobrquVmbTLkmSJEkrUFYDDxfBR8uk60fkwTYZputaN2zaJUmSJClGEISN+sNFsCgmXd+yGxydD5l2UVqH/HaTJEmSpDqlNeFU+I8XNYx1TYQj82CE6briwKZdkiRJUqcXBOEmc48Uhad0W2qrjLBhN11XvPitJ0mSJKlTK6mBBwvh05h0vVsiHJUPwzPiV5cENu2SJEmSOqkggA9K4dG5UB6Tro/ICDeby7BbUhvgt6EkSZKkTmdhNTxQCJ8vbhjLqEvXtzJdVxti0y5JkiSp0wgCeK8UHiuCJdGG8W0y4fCe0M0OSW2M35KSJEmSOoXiaphYCF/GpOuZSXBMPmzRLX51Sati0y5JkiSpQwsCeKcEHp8LFTHp+naZMDYvPKWb1FbZtEuSJEnqsBZUw/1z4OvyhrHuSXB0Pmxuuq52wKZdkiRJUocTBPBWCTwxFypj0vUdsuCwnpBuuq52wqZdkiRJUocyrypcu/7NMun6sfmwqem62hmbdkmSJEkdQhDAGwvhqXmN0/WdsuDQnpBmuq52yKZdkiRJUrs3twruL4TvYtL17CQ4rgA27hq/uqS1ZdMuSZIkqd0KApi0EJ6eB1Ux6fou3eGQXOhiuq52zqZdkiRJUrtUVBXuDP/9koaxHslwXD5sZLquDsKmXZIkSVK7Eg3gtWJ4Zh5UBw3jo7rDQabr6mBs2iVJkiS1G4VVMGEOTItJ13OTYVwBDEmPX11Sa7FplyRJktTmRQN4pRj+tUy6vms2HJgLqQnxq01qTXH91q6pqeHCCy9kwIABpKWlMXDgQC6//HKi0YYdJIIg4NJLL6V3796kpaUxatQovvzyy0aPU1lZyRlnnEFubi5du3blgAMOYNasWev65UiSJElqBbMr4dqZ8OTchoY9LwXO6QOH59mwq2OL67f3Nddcw+23386tt97K119/zbXXXstf//pXbrnllvpjrr32Wm644QZuvfVWJk+eTEFBAWPGjKGsrKz+mPHjx/P000/zyCOP8Pbbb7No0SL2228/amtr4/GyJEmSJLWAaAAvzocrZsCPFeFYBNg9Gy7qB4OdDq9OIBIEQbD6w1rHfvvtR35+PnfffXf92CGHHEJ6ejoTJ04kCAJ69+7N+PHj+eMf/wiEqXp+fj7XXHMNv/3tbykpKaFnz55MnDiRww8/HIBffvmFPn368Pzzz7Pnnnuuto7S0lKysrIoKSkhMzOzdV6sJEmSpCb7pTJcuz6jomEsPyVcuz4oLX51SS2lqX1oXJP2nXbaiVdffZXvvvsOgE8//ZS3336bffbZB4Aff/yROXPmsMcee9TfJzU1lZEjR/Luu+8C8NFHH1FdXd3omN69e7PpppvWH7OsyspKSktLG31JkiRJir/aAJ6vS9dnxKTre+SE6boNuzqbuG5E98c//pGSkhI22mgjEhMTqa2t5S9/+QtHHnkkAHPmzAEgPz+/0f3y8/OZMWNG/TEpKSlkZ2cvd8zS+y/rqquu4rLLLmvplyNJkiRpLcyqCNP1nyobxgrq0vWBNuvqpOLatD/66KM88MADPPTQQ2yyySZ88sknjB8/nt69ezNu3Lj64yKRSKP7BUGw3NiyVnXMBRdcwFlnnVV/vbS0lD59+qzFK5EkSZK0pmqi8OICeH5BmLRDmK7vmQP79YBkN5pTJxbXpv3cc8/l/PPP54gjjgBgs802Y8aMGVx11VWMGzeOgoICIEzTe/XqVX+/oqKi+vS9oKCAqqoqiouLG6XtRUVF7LDDDit83tTUVFJTU1vrZUmSJElqop/q0vVZMel671QYlw/9Tdel+K5pLy8vJyGhcQmJiYn1p3wbMGAABQUFvPzyy/W3V1VV8cYbb9Q35MOHDyc5ObnRMbNnz+aLL75YadMuSZIkKb5qouE516+c2dCwJ0Rgnx7wp7427NJScU3a999/f/7yl7/Qt29fNtlkEz7++GNuuOEGTjzxRCCcFj9+/HiuvPJKBg8ezODBg7nyyitJT0/nqKOOAiArK4uTTjqJs88+mx49epCTk8M555zDZpttxu677x7PlydJkiRpBWZUwH1z4OeYdH291HDter8u8atLaovi2rTfcsstXHTRRZx66qkUFRXRu3dvfvvb33LxxRfXH3PeeeexZMkSTj31VIqLi9l222156aWXyMjIqD/mb3/7G0lJSYwdO5YlS5aw2267MWHCBBITE+PxsiRJkiStQE0U/jMf/lscnoMd6tL1HNg7B5Jcuy4tJ67naW8rPE+7JEmS1LqmLwnXrs+uahhbPxWOL4A+puvqhJrah8Y1aZckSZLUsVVH4d/z4aUFsDQtTFyarvcIL0taOZt2SZIkSa1i2pJw7fqcmHS9b5dwZ/j1TdelJrFplyRJktSiqqPw7Dx4pbghXU+KhOdc3yPHdF1qDpt2SZIkSS1mal26XhiTrvfvEu4M3zs1fnVJ7ZVNuyRJkqS1VhWFZ+bBa8uk6wfkwpjscJd4Sc1n0y5JkiRprXxfHqbrc6sbxgbUpeu9TNeltWLTLkmSJGmNVEbh6bkwaWHDWHJdur676brUImzaJUmSJDXbt+Vw/xyYF5OuD0oL0/X8lPjVJXU0Nu2SJEmSmqyiFp6aB28sbBhLjsBBPWF0d9N1qaXZtEuSJElqkm8Ww/2FMD8mXR+cBscVQJ7putQqbNolSZIkrVJFLTwxF94qaRhLSYCDc2FUd4iYrkutxqZdkiRJ0kp9tThcu15c0zA2JB3G5UOu6brU6mzaJUmSJC1nSS08PhfeiUnXU+vS9ZHdTdeldSUh3gVIkiRJalu+WASXTm/csG+UDpf0h1HZNuxa9z6e/TEb3boRff/Wlxe+fyHe5axTJu2SJEmSACivhceK4L3ShrEuCXBoT9gpy2Zd8fP7F37P9wu+JwgCTnj2BOacMyfeJa0zNu2SJEmS+GwRPFAIJTFr1zfuCsfmQ05y/OqSAFISU4gQqb/cmdi0S5IkSZ3Y4lp4tAg+WCZdH5sHO2Sarqtt+Md+/+Dkf53M4urF3LzXzfEuZ52yaZckSZI6qU/K4MEiKI1J1zftCsfkQ7bputqQIT2G8OYJb8a7jLiwaZckSZI6mUU18EgRTC5rGEurS9e3N12X2hSbdkmSJKkTmVIGDxVCWW3D2Obd4Og86G66LrU5Nu2SJElSJ1BWAw8XwUcx6Xp6IhyRB9tkmK5LbZVNuyRJktSBBUHYqD9cBIti0vUtusHR+ZBlRyC1af6ISpIkSR1UaU04Ff7jRQ1jXRPhyDwYYboutQs27ZIkSVIHEwTwYV26vjgmXR/WDY7Kh8wO2gVM+GQCr/34GgcPPZgDNzow3uVILaKD/rhKkiRJnVNJDTxYCJ/GpOvd6tL14R04XX9p6kuc8OwJJEQSeOCzB/jklE/YPH/zeJclrTWbdkmSJKkDCAL4oBQenQvlMen6iIxws7mMDv6X/9QFUwGIBlEApi+cbtOuDiEh3gVIkiRJWjsLq+G2X+DeOQ0Ne0Yi/LY3/Lp3x2/YAcZuMpbBOYMB2Ga9bRgzcEycK5JaRif48ZUkSZI6piCA90rh8WXS9W0y4fCe0K0T/bXfI70HX532FXMWzaF3Rm8SIuaT6hg60Y+xJEmS1HEUV8MDhfDF4oaxzCQ4Og+2zIhfXfGUlJDE+pnrx7sMqUXZtEuSJEntSBDAu6XwWBFURBvGt8uEsXnhKd0kdRw27ZIkSVI7saAaJhbCVzHpevckODofNu8Wv7oktR6bdkmSJKmNCwJ4qwSenNs4Xd8hCw7rCemm61KHZdMuSZIktWHzq+H+OfBNecNY9yQ4Nh82NV2XOjybdkmSJKkNCgJ4YyE8NQ8qY9L1nbLg0J6QZroudQo27ZIkSVIbM68K7iuE72LS9ewkOLYANukav7okrXs27ZIkSVIbEQTw+sIwXa+KSdd36Q6H5EIX03Wp07FplyRJktqAoqpw7fr3SxrGeiTDcfmwkem61GnZtEuSJElxFA3gtWJ4Zh5UBw3jo7rDQabrUqdn0y5JkiTFSWEV3DcHpsak67nJcFwBbJgev7oktR027ZIkSdI6Fg3glWL41zLp+ujucFBPSE2IW2mS2hibdkmSJGkdml0J9xfCtJh0vWcyjCuAwabrkpZh0y5JkiStA9EAXq5L12vq0vUIsFs2/CoXUkzXJa2ATbskSZLUyn6pDNeuT69oGMtPCdP1QWnxq0tS22fTLkmSJLWS2gD+uwCem984XR+TAwf0gGTTdUmrYdMuSZIktYJZFXBfIcyMSdcL6tL1gabrkprIpl2SJElqQbUBvDAfnl8QXoYwXd8jB/Y3XZfUTDbtkiRJUgv5qSJcu/5TZcNYrxQ4vgD6m65LWgM27ZIkSdJaqonCCwvCdD1al64nRGDPbNivBySZrktaQzbtkiRJ0lqYWQET5sDPMel679QwXe/XJX51SeoYbNolSZKkNVAThecWwIvLpOv75MDeOabrklqGTbskSZLUTNOXhDvD/xKTrq9fl673MV2X1IJs2iVJkqQmqo7Cv+fDSwugLlwnIQL75sBepuuSWoFNuyRJktQE05aEO8PPqWoY69sFxuXD+qbrklqJTbskSZK0CtVR+Nd8eDkmXU+MhLvC75kTXpak1mLTLkmSJK3E1Lp0vTAmXe/XJVy73js1fnVJ6jxs2iVJkqRlVEXh2XnwanFDup4Ugf17wB454Tp2SVoXbNolSZKkGN+Xw/2FUBSTrg/oAuMKoJfpuqR1zKZdkiRJAiqj8PRceH1h43T9V7mwe7bpuqT4sGmXJElSp/ddebh2fV51w9igtDBdz0+JX12SZNMuSZKkTqsyCk/VpetLJUfgwFzY1XRdUhtg0y5JkqRO6ZvF4dr1+THp+gZ16Xqe6bqkNsKmXZIkSZ1KRS08OQ/eXNgwlpIAB+XC6O4QMV2X1IbYtEuSJKnT+Gox3D8Himsaxoakw3H50NN0XVIbZNMuSZKkDm9JLTw+F94paRhLTYCDc2Fkd9N1SW2XTbskSZI6tC8WwQOFjdP1jdLh2HzINV2X1MbZtEuSJKlDKq9L199dJl0/tCfsnGW6Lql9sGmXJElSh/PZIniwEBbGpOtD0+HYAuiRHL+6JKm5bNolSZLUYSyuhceK4P3ShrEuCXBYT9jRdF1SO2TTLkmSpA7h07q166Ux6fomXcO169mm65LaKZt2SZIktWuLauCRIphc1jCWlgBj82D7TNN1Se2bTbskSZLarY/LwrXrZbUNY5t1hWPyobvpuqQOwKZdkiRJ7U5ZXbr+YUy6np4Ih/eEbU3XJXUgNu2SJElqVz4qg4cKYVFMur5FNzg6H7L861ZSB+OvNUmSJLULpTXwcBFMiUnXuybCEXmwdYbpuqSOyaZdkiRJbVoQhNPgHy4KT+m21LBucFQ+ZPoXraQOzF9xkiRJarNKa8KN5j5Z1DDWLRGOzIPhpuuSOgGbdkmSJLU5QQD/Kws3myuPSddHZITT4TP8K1ZSJ+GvO0mSJLUpC6vhwSL4LCZdz0gMp8JvlRG/uiQpHmzaJUlS+xUE8OmfYMYj0HtvGH4zJCTGuyqtoSCA90vhsbmN0/Wt69L1bv7lKqkT8lefJElqvwpfg6+uCi9/fxvk7QL9Do9vTVojxdXwQCF8sbhhLDMJjs6DLU3XJXViNu2SJKn9itas+rravCCAd0vhsSKoiDaMb5sJh+eFp3STpM7Mpl2SJLVfvcbA4NNg5mPQay/oNzbeFakZFlTDxEL4KiZdz0qCY/Jh827xq0uS2hKbdkmS1H5FEmDrW8MvtRtBAG+XwBNzG6frO2TBYT0h3XRdkurZtEuSJGmdmV8N98+Bb8obxronwbH5sKnpuiQtx6ZdkiRJrS4I4M0SeHIuVMak6zvWpetppuuStEI27ZIkSWpV86rgvkL4LiZdz06CYwtgk67xq0uS2gObdkmSJLWKIIDXF8JT86AqJl3fOQsO7QldTNclabVs2iVJktTiiqrCtevfL2kY65Ecrl0farouSU1m0y5JkqQWEw1g0kJ4ei5UBw3jo7rDQbmm65LUXDbtkiRJahGFVXDfHJgak67nJsNxBbBhevzqkqT2zKZdkiRJayUawKvF8Oy8xun66O5wUE9ITYhbaZLU7tm0S5IkaY3NroT7C2FaTLreMxnGFcBg0/VOpbq2mnd+eofeGb0Z0mNIvMuROgybdkmSJDVbNICXi+Ff86CmLl2PALtmw4G5kGK63qkEQcC+D+3Ly9NeJiGSwDOHP8P+G+4f77KkDsGmXZIkSc3yS2W4dn16RcNYXgocXwCD0uJXl+JnXvk8Xp72cnglgIe+eMimXWohNu2SJElqkmgA/10A/5nfOF3fPRt+lQvJpuudVk5aDoOyBzGteBpRouyw/g7xLknqMGzaJUmStFqzKuC+QpgZk64XpIRr1wearnd6iQmJvH3i2zzw2QP0y+rHoRsfGu+SpA7Dpl2SJEkrVRvAiwvgufnhZQjT9T1yYP8eputqUNCtgHN2OCfeZUgdjk27JEmSVuininDt+k+VDWO96tau9zddl6R1wqZdkiRJjdRE4YUF8PyCcB07QEIE9syG/XpAkum6JK0zNu2SJEmqN7MuXZ8Vk673Tg3T9X5d4leXJHVWNu2SJEmiJgrPLQjXr8em63vnwD45puuSFC827ZIkSZ3c9CXhzvC/xKTr69el631M1yUprmzaJUmSOqnqaHjO9f8ugLpwnYQI7JsDe5muS1KbYNMuSZLUCf24JFy7PruqYaxPXbq+vum6JLUZNu2SJEmdSHUU/jUfXo5J1xMj4a7we+aElyVJbYdNuyRJUicxtS5dL4xJ1/t1CdP13qnxq0uStHI27ZIkSR1cVRSenQevFjek60kR2L8H7JETrmOXJLVNNu2SJEkd2PflcH8hFMWk6wO6wLgC6GW6LknxUfYDTL6sSYfatEuSJHVAlVF4Zh5MWiZd/1Uu7J5tui5JcfX6flD0fZMOtWmXJEnqYL4rD9euz6tuGBuYBuPyocB0XZLir3wmBNEmHWrTLkmS1EFURuGpufD6woax5AgcmAu7mq5LUtux+RXwztlNOtSmXZIkqQP4ZnG4dn1+TLq+QVq4dj0vJX51SZJWYOhZ0PNQ+HW/1R6asA7KWaWff/6ZY445hh49epCens6WW27JRx99VH97EARceuml9O7dm7S0NEaNGsWXX37Z6DEqKys544wzyM3NpWvXrhxwwAHMmjVrXb8USZKkda6iFh4shL/NamjYUxLg8Dw4p48NuyS1WSndm3RYXJv24uJidtxxR5KTk3nhhRf46quvuP766+nevXv9Mddeey033HADt956K5MnT6agoIAxY8ZQVlZWf8z48eN5+umneeSRR3j77bdZtGgR++23H7W1tXF4VZIkSevG14vhshnw5sKGsSHpcHG/cDp8xOnwktTuRYIgCFZ/WOs4//zzeeedd3jrrbdWeHsQBPTu3Zvx48fzxz/+EQhT9fz8fK655hp++9vfUlJSQs+ePZk4cSKHH344AL/88gt9+vTh+eefZ88991xtHaWlpWRlZVFSUkJmZmbLvUBJkqRWsKQWnpgLb5c0jKUmwMG5MLK7zboktQdN7UPjmrT/61//YsSIERx22GHk5eUxbNgw7rrrrvrbf/zxR+bMmcMee+xRP5aamsrIkSN59913Afjoo4+orq5udEzv3r3ZdNNN649ZVmVlJaWlpY2+JEmS2oMvF8Nl0xs37BvVpeujTNclqcOJa9M+bdo0/vGPfzB48GD++9//csopp/D73/+e+++/H4A5c+YAkJ+f3+h++fn59bfNmTOHlJQUsrOzV3rMsq666iqysrLqv/r06dPSL02SJKlFldeGp3G7eRYU14RjqQlwdD6MXx9yXbsuSR1SXHePj0ajjBgxgiuvvBKAYcOG8eWXX/KPf/yD4447rv64yDIfGQdBsNzYslZ1zAUXXMBZZ51Vf720tNTGXZIktVmfL4IHCmFhTcPY0HQ4tgB6JMevLklS64tr0t6rVy823njjRmNDhw5l5syZABQUFAAsl5gXFRXVp+8FBQVUVVVRXFy80mOWlZqaSmZmZqMvSZKktmZxLdw7G279uaFh75IAx+bDmevbsEtSZxDXpn3HHXfk22+/bTT23Xff0a9feK66AQMGUFBQwMsvv1x/e1VVFW+88QY77LADAMOHDyc5ObnRMbNnz+aLL76oP0aSJKm9+XQRXDod3o/ZemeTrnBpf9ipu2vXJamziOv0+D/84Q/ssMMOXHnllYwdO5b//e9/3Hnnndx5551AOC1+/PjxXHnllQwePJjBgwdz5ZVXkp6ezlFHHQVAVlYWJ510EmeffTY9evQgJyeHc845h80224zdd989ni9PkiSp2RbXwiNF8L+YZj0tAcbmwfaZNuuS1NnEtWnfeuutefrpp7ngggu4/PLLGTBgADfeeCNHH310/THnnXceS5Ys4dRTT6W4uJhtt92Wl156iYyMjPpj/va3v5GUlMTYsWNZsmQJu+22GxMmTCAxMTEeL0uSJGmNfFwGDxZCWW3D2GZd4Zh86O5UeEnqlOJ6nva2wvO0S5KkeCqrCdP1D8saxtIT4fCesK3puiR1SE3tQ+OatEuSJHV2H5XBw8uk61t0C0/lluVfapLU6flPgSRJUhyU1cBDRTAlJl3vmghH5MHWGabrkqSQTbskSdI6FAThNPiHi8JN55Ya1g2OyodM/zqTJMXwnwVJkqR1pLQm3Gjuk0UNY90S4cg8GG66LklagTU6T/tbb73FMcccw/bbb8/PP/8MwMSJE3n77bdbtDhJkqSOIAjgg1K4ZHrjhn14Rnje9RFuNidJWolmN+1PPvkke+65J2lpaXz88cdUVlYCUFZWxpVXXtniBUqSJLVnC6vhtl/gntlQXjcdPiMRftsbftMbMpz3KElahWY37VdccQW33347d911F8nJDScM3WGHHZgyZUqLFidJktReBQG8VwKXzYDPYtL1revS9a0y4laaJKkdafZnu99++y277LLLcuOZmZksXLiwJWqSJElq14qr4YFC+GJxw1hmEhyVB8Ns1iVJzdDspr1Xr1788MMP9O/fv9H422+/zcCBA1uqLkmSpHYnCODdUnisCCqiDePbZsLheeEp3SRJao5mN+2//e1vOfPMM7nnnnuIRCL88ssvvPfee5xzzjlcfPHFrVGjJElSm7egLl3/MiZdz0qCo/Nhi27xq0uS1L41u2k/77zzKCkpYfTo0VRUVLDLLruQmprKOeecw+mnn94aNUqSJLVZQQBvl8ATcxun69tnwtg8SDddlySthUgQBMGa3LG8vJyvvvqKaDTKxhtvTLdu7fcj5NLSUrKysigpKSEzMzPe5UiSpHZifjVMnANflzeMdU+CY/Jhs/b7p5EkaR1oah/a7N3jTzzxRMrKykhPT2fEiBFss802dOvWjcWLF3PiiSeuVdGSJEntQRDAGwvhsumNG/Yds+CS/jbskqSW0+ykPTExkdmzZ5OXl9dofN68eRQUFFBTU9OiBa4LJu2S1EFMnQpPPQXDh8Ouu8a7GnVQ86rg/kL4NqZZz06CYwtgk67xq0uS1L40tQ9t8pr20tJSgiAgCALKysro0qVL/W21tbU8//zzyzXykiStMwsWwIgRUFISxqAvvAB77RXvqtSBBAG8vhCemgdVMWvXd86CQ3tCF9euS5JaQZOb9u7duxOJRIhEIgwZMmS52yORCJdddlmLFidJUpN98w0sXBheTkiAd96xaVeLKaqC++fA90saxnKS4bh8GGq6LklqRU1u2idNmkQQBOy66648+eST5OTk1N+WkpJCv3796N27d6sUKUnSam25JQwZAt99B8nJcNBB8a5IHUAQwGsL4em5UB2zoHBkdzg413RdktT6mty0jxw5EoAff/yRPn36kJDQ7D3sJElqPenp8NFHYcI+dCj07RvvitTOFVbBfXNgaky6npsMx+bDRqbrkqR1pNnnae/Xrx8QnvJt5syZVFVVNbp98803b5nKJElqrm7dYM89412F2rloAK8Ww7PzGqfro7vDQT0h1dxCkrQONbtpnzt3LieccAIvvPDCCm+vra1d66IkSZLiYU4l3FcI02LS9Z7JcFwBDEmPX12SpM6r2Z8Vjx8/nuLiYt5//33S0tJ48cUXue+++xg8eDD/+te/WqNGSZKkVhUN4L8L4M8zGhr2CLBbNlzU34ZdkhQ/zU7aX3vtNZ599lm23nprEhIS6NevH2PGjCEzM5OrrrqKfffdtzXqlCRJahW/VIZr16dXNIzlpcC4fNjAZl2SFGfNbtoXL15cfz72nJwc5s6dy5AhQ9hss82YMmVKixcoSZLUGpam6/+ZDzV1a9cjwO7ZcEAupLh2XZLUBjS7ad9www359ttv6d+/P1tuuSV33HEH/fv35/bbb6dXr16tUaMkSVKL+rkuXZ8Rk67np8DxBTAwLX51SZK0rGY37ePHj2f27NkAXHLJJey55548+OCDpKSkMGHChJauT5IkqcXUBvDiAnhufngZwnR9jxzYvwckm65LktqYSBAEweoPW7ny8nK++eYb+vbtS25ubkvVtU6VlpaSlZVFSUkJmZmZ8S5HkiS1glkVMGEO/FTZMNYrBcYVwADTdUnSOtbUPrTZSfuy0tPT2Wqrrdb2YSRJklpFTRReWADPLwjXsQMkRGDPbNjXdF2S1MY1u2kPgoAnnniCSZMmUVRURDQabXT7U0891WLFSZIkrY2ZFeHa9Vkx6Xrv1HDter8u8atLkqSmanbTfuaZZ3LnnXcyevRo8vPziUQirVGXJEnSGquJwnMLwvXrsen63jmwTw4kma5LktqJZjftDzzwAE899RT77LNPa9QjSZK0VmbUrV3/JSZdX78uXe9jui5Jamea3bRnZWUxcODA1qhFkiRpjVVHw3Ouv1TcOF3fNwf2Ml2XJLVTzf7n69JLL+Wyyy5jyZIlrVGPJElSs/24BP4yo/F0+D6p8Ke+sF+uDbskqf1qdtJ+2GGH8fDDD5OXl0f//v1JTk5udPuUKVNarDhJkqRVqY7Cv+bDywtg6TlsEyOwXw/YMye8LElSe9bspv3444/no48+4phjjnEjOkmSFDdTl4Q7wxdWNYz16xKed3291PjVJUlSS2p20/7cc8/x3//+l5122qk16pEkSVqlqig8Ow9eLW5I15MisH8P2CMnXMcuSVJH0eymvU+fPmRmZrZGLZIkSav0fTncXwhFMel6/y7hzvC9TNclSR1Qs7dluf766znvvPOYPn16K5QjSZK0vMooPFoE1//U0LAnReCQnvDHvjbskqSOq9lJ+zHHHEN5eTmDBg0iPT19uY3oFixY0GLFSZIkfVcerl2fV90wNjANxuVDgc26JKmDa3bTfuONN7ZCGZIkSY1VRuGpufD6woax5AgcmAu7Zrt2XZLUOTS7aR83blxr1CFJklTvm8Xh2vX5Men6BmlwXAHkp8SvLkmS1rUmNe2lpaX1m8+Vlpau8lg3qZMkSWuqohaenAdvLmwYS47AwT1hdHfwTLOSpM6mSU17dnY2s2fPJi8vj+7du6/w3OxBEBCJRKitrW3xIiVJUsf3dV26viAmXR9cl67nma5LkjqpJjXtr732Gjk5OQBMmjSpVQuSJEmdy5JaeHIuvFXSMJaaAAfnwsjupuuSpM6tSU37yJEj6y8PGDCAPn36LJe2B0HATz/91LLVSZKkDu3LxTBxDhTXNIxtmA7H5UOu6bokSc3fiG7AgAH1U+VjLViwgAEDBjg9XpIkrVZ5LTw+F95dJl0/tCfsnGW6LknSUs1u2peuXV/WokWL6NKlS4sUJUmSOq7PF8EDhbAwJl0fmg7HFkCP5PjVJUlSW9Tkpv2ss84CIBKJcNFFF5Genl5/W21tLR988AFbbrllixcoSVJ79nnh51z/3vWsl7EeF+5yIWnJafEuKW7Ka+HRIng/5kQ0XRLgsJ6wo+m6JEkr1OSm/eOPPwbCpP3zzz8nJaVhoVlKSgpbbLEF55xzTstXKElSO1UTrWG3+3djwZIFBARU1Vbx1z3+Gu+y4uLTunS9NCZd36QrHJMPOabrkiStVJOb9qW7xp9wwgncdNNNno9dkqTVqKypZG75XAASIgn8uPDHOFe07i2uS9c/iEnX0xJgbB5sn2m6LknS6iQ09w733ntvo4a9tLSUZ555hm+++aZFC5Mkqb3rmtKV83Y4D4D05HTO2v6sOFe0bn1cBpdOb9ywb9YVLu0POzgdXpKkJokEQRA05w5jx45ll1124fTTT2fJkiVsscUWTJ8+nSAIeOSRRzjkkENaq9ZWU1paSlZWFiUlJc4gkCS1uHnl8+ia3LXTrGcvq4FHiuDDsoax9EQ4vCdsa7ouSRLQ9D602Un7m2++yc477wzA008/TRAELFy4kJtvvpkrrrhizSuWJKmDyk3P7TQN+0dlcNn0xg37Ft3gkn6wnem6JEnN1uymvaSkhJycHABefPFFDjnkENLT09l33335/vvvW7xASZLU9pXVwB2/wJ2/QFltONY1EU7qBb/rDd3dbE6SpDXS7PO09+nTh/fee4+cnBxefPFFHnnkEQCKi4s9T7skSZ1MEISp+sNF4aZzSw3rBkflQ2az/9KQJEmxmv1P6fjx4zn66KPp1q0b/fr1Y9SoUUA4bX6zzTZr6fokSVIbVVoDDxXCx4saxromwlF5MDzDqfCSJLWEZjftp556Kttuuy0zZ85kzJgxJCSEM+wHDhzomnZJkjqBIID/lYWncotN14dnwJF5kGG6LklSi2n27vEdkbvHS5LUNAur4cEi+CwmXc9IhCPzw6ZdkiQ1TYvvHr/xxhuzYMGC+uu/+c1vmDt3bv31oqIi0tPT17BcSZLUlgUBvF8Cl81o3LBvnQGX9LdhlySptTS5af/mm2+oqampv/7II49QVtZwPpcgCKioqGjZ6iRJUtwtrIZbf4Z750B53XT4zCQ4pTec3Nvp8JIktaY1/md2RbPqI+44I0lShxEE8F4pPFYES6IN49tmwuF54aZzkiSpdfnZuNQZzJsH06bBlltCSkq8q5HUDhRXw8RC+HJxw1hmEhyTD1t0i19dkiR1Nk1u2iORyHJJusm61A588QVsvz0sWgRbbw1vv23jLmmlggDeLoEn5kJFTLq+XSaMNV2XJGmda3LTHgQBu+22G0lJ4V2WLFnC/vvvT0rdH/+x690ltSEPPwzl5eHlyZPhk09gm23iWpKktml+NUycA1+XN4x1r0vXNzNdlyQpLprctF9yySWNrv/qV79a7phDDjlk7SuS1LKGDYNoFBISIC0NBg6Md0WS2pgggLfq0vXKmHR9xyw4tCekm65LkhQ3nqcdz9OuTuCJJ2DKFDjySNhss3hXI6kNmVcF9xfCtzHpenYSHFsAm3SNX12SJHV0Te1D3YhO6gwOPTT8kqQ6QQBvLISn5jVO13fOgkN6QprpuiR1Lv/4B9xyS7gH0u23hzM01SbYtEuS1MnMrUvXv4tJ13OS4bh8GGq6Lkmdz/ffw6mnhpe/+QY23xzOPju+NameTbskSZ1EEMBrC+HpuVAdszhul+5wSC50MV2XpM6purrhciQClZXxq0XLsWmXJKkTKKqC++bAD0saxnrUpesbma5LUue28cZw8cVw880wfHhD6q42wY3ocCM6SVLHFQ3gtWJ4Zl7jdH10dzioJ6QmxK00SZI6tRbdiO7mm29u8hP//ve/b/KxkiSp9cyphPsKYVpMup6bDOMKYEh6/OqSJElN16SkfcCAAU17sEiEadOmrXVR65pJuySpI4kG8EoxPDsPaur+lY8Au2bDr3JN1yVJagtaNGn/8ccfW6wwSZLUemZXwoQ5ML2iYSwvBcblwwam65IktTtrvBFdVVUVP/74I4MGDSIpyf3sJEmKp2gA/10A/5nfOF3frS5dTzFdlySpXWr2P+Hl5eWcdNJJpKens8kmmzBz5kwgXMt+9dVXt3iBkiRp1X6phKtnhpvNLW3Y81Pg3L5wWJ4NuyRJ7Vmz/xm/4IIL+PTTT3n99dfp0qVL/fjuu+/Oo48+2qLFSZKklasN4Pn5cMUMmFE3HT4C7JEDF/WDQWlxLU+SJLWAZs9rf+aZZ3j00UfZbrvtiEQi9eMbb7wxU6dObdHiJEnSis2qCNeu/1TZMNYrJdwZfoDNuiRJHUazm/a5c+eSl5e33PjixYsbNfGSJKnl1UThxQXw3IJwHTuE6fpeObBvD0h2KrwkSR1Ks/9p33rrrXnuuefqry9t1O+66y623377lqtMkiQ18lMFXDUT/j2/oWHvnQoX9IMDe9qwS5LUETU7ab/qqqvYa6+9+Oqrr6ipqeGmm27iyy+/5L333uONN95ojRolSerUaqJhsv5iTLqeEKlL13MgyWZdkqQOq9n/zO+www688847lJeXM2jQIF566SXy8/N57733GD58eGvUKElSpzWjAv4yM9xwbmnDvn4qXNA3PJWbDbskSR1bJAiCIN5FxFtpaSlZWVmUlJSQmZkZ73IkSaImGp5z/b/FjdP1fXJgb9N1SZLavab2oU2aHl9aWtrkJ7bpldqZb76BN96AXXeFwYPjXY0kYPqScGf42VUNY31Sw53h+3RZ+f0kSVLH06SmvXv37k3eGb62tnatCpK0Dn37LWy5JVRWQno6fP45DBwY76qkTqs6Gm4y99ICWDoNLjEC+/WAPXPCy5IkqXNpUtM+adKk+svTp0/n/PPP5/jjj6/fLf69997jvvvu46qrrmqdKiW1jrffDht2gPJyeO89m3YpTqbVpeuFMel6vy5hur5eavzqkiRJ8dXsNe277bYbJ598MkceeWSj8Yceeog777yT119/vSXrWydc065Oa9o02HxzWLwYMjPhiy+gT594VyV1KlVReHYevFrckK4nxaTrCabrkiR1SE3tQ5vdtKenp/Ppp58yeJm1r9999x1bbrkl5eXla1ZxHNm0q1ObMQPefx923BHWXz/e1Uidyg/lcF8hFMWk6/3r0vXepuuSJHVoLboRXaw+ffpw++23c/311zcav+OOO+hjQie1P/36hV+S1pnKunT9tWXS9QNyYUy26bokSWrQ7Kb9b3/7G4cccgj//e9/2W677QB4//33mTp1Kk8++WSLFyhJUkfyXTncPwfmVjeMDUyDcflQYLouSZKWsUbnaZ81axa33XYb33zzDUEQsPHGG3PKKae026Td6fGSpNZWGYWn58KkhQ1jyRE4MBd2NV2XJKnTabU17R2RTbskqTV9sxgmFsK8mHR9UFq4dj0/JX51SZKk+Gm1Ne0ACxcu5O677+brr78mEomw8cYbc+KJJ5KVlbXGBUuS1NFU1MJT8+CNhQ1jyRE4qCeM7m66LkmSVq/ZSfuHH37InnvuSVpaGttssw1BEPDhhx+yZMkSXnrpJbbaaqvWqrXVmLRLklra13Xp+vyYdH1wGhxXAHmm65IkdXqtNj1+5513ZoMNNuCuu+4iKSkM6mtqajj55JOZNm0ab7755tpVHgc27ZKkllJRC0/MhbdKGsZSEuDgXBjVHSKm65IkiVZs2tPS0vj444/ZaKONGo1/9dVXjBgxwvO0S5I6rS8Xw8Q5UFzTMLZhOhyXD7mm65IkKUarrWnPzMxk5syZyzXtP/30ExkZGc2vVJKkdq68Ll1/JyZdT02AQ3vCzlmm65Ikac01u2k//PDDOemkk7juuuvYYYcdiEQivP3225x77rkceeSRrVGjJElt1ueL4IFCWBiTrg9Nh2MLoEdy/OqSJEkdQ7Ob9uuuu45IJMJxxx1HTU34F0pycjK/+93vuPrqq1u8QEmS2qLyWnisCN4rbRjrUpeu72S6LkmSWsgan6e9vLycqVOnEgQBG2ywAenp6S1d2zrjmnZJUnN8uggeLISSmHR9k65wTD7kmK5LkqQmaNXztAOkp6ez2WabrendJa3OnXfCNdfAppvC/fdDVla8K5I6vcW18GgRfLBMuj42D3bINF2XJEktr8lN+4knntik4+655541LkZSnZ9/hlNOgSCA6dPhuuvgz3+Od1VSp/ZxGTxUBKUx6fqmdel6tum6JElqJU1u2idMmEC/fv0YNmwYazijXlJTRaNhww5hdBeNxrceqRNbVAOPFMHksoax9EQ4vCdsa7ouSZJaWZOb9lNOOYVHHnmEadOmceKJJ3LMMceQk5PTmrVJnVefPnDjjXD11eH0+LPPjndFUqc0pQweKoSy2oaxzbvB0XnQ3XRdkiStA83aiK6yspKnnnqKe+65h3fffZd9992Xk046iT322INIO44a3IhOkhSrrAYeLoKPlknXj8iDbTJM1yVJ0tprah+6xrvHz5gxgwkTJnD//fdTXV3NV199Rbdu3da44HiyaZckQbgq5aOysGFfFJOub9kNjs6HzDXevlWSJKmxVt89PhKJEIlECIKAqOttJUntXGlNOBX+40UNY10T4cg8GGG6LkmS4iShOQdXVlby8MMPM2bMGDbccEM+//xzbr31VmbOnNluU3ZJUucWBOEp3C6d3rhh3yoDLu0PW7vZnCRJiqMmJ+2nnnoqjzzyCH379uWEE07gkUceoUePHq1ZmyRJraqkBh4shE9jmvWMRDgyH4ZnxK8uSZKkpZq8pj0hIYG+ffsybNiwVW4699RTT7VYceuKa9olqXNZmq4/OhfKY9auj8gIN5vLcO26JElqZS2+pv24445r1zvES5IEsLAaHiiEzxc3jGUkhhvNDTNdlyRJbUyTm/YJEya0YhmSJLWuIID3SuGxIlgSs3/qNplhut41MX61SZIkrYwTACVJHV5xNUwshC9j0vXMJDgmH7ZwH1VJktSGNWv3eEmS2pMggLcWhjvDxzbs22WGO8O3hYZ9UdUiDn/8cDa8dUPu/OjOeJcjSZLamDbTtF911VVEIhHGjx9fPxYEAZdeeim9e/cmLS2NUaNG8eWXXza6X2VlJWeccQa5ubl07dqVAw44gFmzZq3j6iVJbc38arhpVrh+vaJuOnz3JDh9PTihV9uZDn/j+zfyxNdP8N387/jtf37LzJKZ8S5JkiS1IW2iaZ88eTJ33nknm2++eaPxa6+9lhtuuIFbb72VyZMnU1BQwJgxYygrK6s/Zvz48Tz99NM88sgjvP322yxatIj99tuP2traZZ9GktQJBAG8uRAumw5flzeM75AFl/SHzdpAuh6rqraq0fWaaE2cKpEkSW1R3Jv2RYsWcfTRR3PXXXeRnZ1dPx4EATfeeCN/+tOfOPjgg9l000257777KC8v56GHHgKgpKSEu+++m+uvv57dd9+dYcOG8cADD/D555/zyiuvxOslSZLiZF4V3DgrPPd6ZV26np0Ev18fxhVAehtJ12ON3248o/uPpmd6T67e7WoGZg+Md0mSJKkNiXvTftppp7Hvvvuy++67Nxr/8ccfmTNnDnvssUf9WGpqKiNHjuTdd98F4KOPPqK6urrRMb1792bTTTetP2ZFKisrKS0tbfQlSWq/ggBeL4bLZ8A3Men6TnXp+iZd41baauWk5fDKca9QdG4Rf9zpj/EuR5IktTFx3T3+kUceYcqUKUyePHm52+bMmQNAfn5+o/H8/HxmzJhRf0xKSkqjhH7pMUvvvyJXXXUVl1122dqWL0lqA+ZWwf2F8F1Ms56TDMfmw8ZtuFmXJElqirg17T/99BNnnnkmL730El26dFnpcZFIpNH1IAiWG1vW6o654IILOOuss+qvl5aW0qdPnyZWLklqC4IAXlsIz8yDqpjzru/SHQ7JhS5tcCq8JElSc8Wtaf/oo48oKipi+PDh9WO1tbW8+eab3HrrrXz77bdAmKb36tWr/piioqL69L2goICqqiqKi4sbpe1FRUXssMMOK33u1NRUUlNTW/olSZLWkaIquG8O/LCkYaxHMhyXDxuZrkuSpA4kbmvad9ttNz7//HM++eST+q8RI0Zw9NFH88knnzBw4EAKCgp4+eWX6+9TVVXFG2+8Ud+QDx8+nOTk5EbHzJ49my+++GKVTbskqX2KBvDKArh8euOGfVT3cO26DbskSepo4pa0Z2RksOmmmzYa69q1Kz169KgfHz9+PFdeeSWDBw9m8ODBXHnllaSnp3PUUUcBkJWVxUknncTZZ59Njx49yMnJ4ZxzzmGzzTZbbmM7SVL7VlgFE+bAtJhmPTc53BV+SHr86pIkSWpNcd2IbnXOO+88lixZwqmnnkpxcTHbbrstL730EhkZGfXH/O1vfyMpKYmxY8eyZMkSdtttNyZMmEBioosZJakjiAbwSjE8Ow9qgnAsAozOhgNzITXu50GRJElqPZEgCIJ4FxFvpaWlZGVlUVJSQmZmZrzLkSTVmV0ZpuvTKxrG8lLCteuDTdclSVI71tQ+tE0n7ZKkzikawH8XwH/mN07Xd8uGX+VCium6JEnqJGzaJUltyi916fqMmHQ9PyVcuz4oLX51SZIkxYNNuySpTaiNSddrY9L1MTlwQA9INl2XJEmdkE27JCnuZlWE6fpPlQ1jverS9QGm62oPFs+EhFRIy493JZKkDsamXZIUNzVReHEBPLcgXMcOYbq+Zw7sZ7qu9uLzP8PnFwMJsMOD0P+IeFckSepAbNolSXHxU126PismXe+dCuPyob/putqTr6+puxCFb66zaZcktSibdknSOlUThecXwAsx6XpCBPbKgX1zIMl0Xe1N5lBYMAUIIHPjeFcjSepgbNolSevMjLp0/ZeYdH391HDtet8u8atLWivbT4RXdobKeVD2LdQsgSSni0iSWoZNuySp1dVEw13h/1vcOF3fJwf2Nl1Xezf37bBhB5j/P5j9X+hzYFxLkiR1HDbtkqRWNX1JmK7PrmoY61OXrvcxXVdH0LVv3YUIEEDXPvGsRpLUwdi0S5JaRXUU/j0fXloAdeE6iRHYt0e4fj0xEtfypJbTaw/Y9p8w+2XocxDkDI93RZKkDsSmXZLU4qYtgfvmwJyYdL1vFzi+ANZLjV9dUqsZdFL4JUlSC7NplyS1mOooPDsPXiluSNeTIuE51/cwXZdaRhAN180HUei9N0TcFEKSOjKbdklSi5hal64XxqTr/buEa9d7m65LLefjc+GbG8LLg0+Frf8e33okSa3Kpl2StFaqovDMPHhtmXT9gFwYkx3uEq8OqLoMvr8dEpJgg1M8xdm6NPPJhss/PWnTLkkdnE27JGmNfV8eputzqxvGBqbBuHwoMF3v2N45Cn55Hghg/mTY8aF4V9R5rLcffF/XqPfeL761SJJanU27JKnZKqPw9FyYtLBhLDkCv8qF3UzXO4f5/wOidZc/iGspnc7wmyB/NBCF9Q+KdzWSpFbmziWS2od//QtGjoTf/Q7Ky+NdTaf2bTlcPr1xwz4oDS7qD2NybNg7jSGnNVwefNrKj1PLS0iEvodA38PC5QmSpA7N3/SS2r758+HQQ6G6Gt5+GwoK4JJL4l1Vp1NRC0/NgzcWNowlR+CgnjC6u816p7PZxeE5ySOJkLVxvKuRJKnDsmmX1PaVl4cNO0AkAsXF8a2nE/p6MUwshPkxa9cHp8FxBZCXEr+6FGfdN4t3BZIkdXhOj5fU9vXpAxdeCElJMGQInHVWvCvqNCpq4YE5cOOshoY9JQGOyIOz+9iwS5IktbZIEATB6g/r2EpLS8nKyqKkpITMzMx4lyNpZYIgTNq1Tny5GCbOgeKahrEh6eHO8Lk265IkSWulqX2o0+MltR827OvEklp4fC68U9IwlpoAh/SEXbL83yCpA4lG4ZVXICUl3OzUX3CS2iCbdklSvS8WwZXfzeTpqa8TjUYZPWAUe/bqz3EF0CM53tVJUgs74wy47bbw8kUXweWXx7ceSVoB17RLkiivhQmz4Zaf4aUZ/6OiuoKq6hKmfHI249e3YZfUQT3ySMPlhx+OXx2StAo27ZLUyX22CC6dDu+VhtdTklKIlH9NZOaf6VnzjbNFJXVce+7ZcHmvveJXhyStgtPjJamTWlwLjxbBB6UNY10S4MYthzPhzTuoWn9LbtjzhvgVKEmtbcKEsFlPSYHDDot3NZK0Qu4ej7vHS+p8PimDB4ugNGZn+E27wjH5kO1UeEmSpFbn7vGSpOUsqoFHimByWcNYWgIcngfbZbbuxsm10Vouf+Ny/vfL/zhxyxM5bBNTLUmSpNWxaZekTmJKGTxUCGW1DWObd4Oj86D7OkjX7/3kXi5/M9yZ+aWpL7FVr60YlDOo1Z93dtlsflz4IyN6jyAl0RPMS5Kk9sWmXZI6uLIaeLgIPopJ19MT4Yg82CZj3Z2WuGhxEQmRBKJBlGgQZf6S+QxiED8W/8iSmiUMzR1KpIWL+WDWB4y6bxQVNRVsv/72vHnCmyQl+E+fJElqP9w9XpI6qCCAD0vDneFjG/Ytu8Gl/WHbVp4Ov6yTtzqZjXI3AuCYzY9hRO8RTPhkAoNuHsQmt23CBa9e0OLP+dDnD1FdWw3Ae7Pe49t537b4c0iSJLUm4wZJ6oBKa8Kp8B8vahjrmghH5sGIdZiux8rrmscXv/uCqtoqUpNSAbjlf7cQENRfvnr3q1v0Obdeb2tq/1dLQiSB7l260zerb4s+fqdVsxiiNZCSFe9KVqymHL69GWrLYcjvoUtuvCuSJGmN2bRLUgcSBOEmc48Uhad0W2qrjLBhz4zzb/1IJFLfsAOM6D2Cj2d/TCQSYYv8LVr8+Y7e7Gi6JHXhi6IvOHqzo8lIzWjx52h1896Hzy+DLvmw1Q2QmhPfemY9C2+PDZv2ETfDkNPiW8+KTD4Nfrw//HRqzmuwx9vxrkiSpDXmKd/wlG+SIBpEufH9G/m08FNOGnYSu/TbJd4lNVtJDTxYCJ/GpOvdEuGofBjeRnvVipoK/v6/v7O4ejGnbX0aPdJ7xLuktiWIwpM9oWohRICBJ8K2d8W3phe2guKPw8vJ3eGw4riWs0LPbwkLPw0vJ2XC2JK4liNJ0op4yjdJaoa7p9zN2S+dTUIkgUe+eISZ42eS3y0/3mU1SRDAB6Xw6Fwoj0nXR2SEm81ltOHf9F2SunD2DmfHu4y2K6iF6lIgCkECVMyNd0XQbSAs/Cy83LVffGtZmQ3PhA9OAgLY6A/xrkaSpLXShv+Uk6R1Z1rxNBIjidQGtVTVVjFn0Zx20bQvrIYHCuHzxQ1jGXXp+lZtNF1XMyQkh1Pip5wdTovf7OJ4VwTb3AFpvaF2CWx6YbyrWbFBJ0DBblBbAZlD4l2NJElrxenxOD1eEkxdMJUd79mRwsWFHLjhgTx5+JMkRNruCTaCAN4rhceKYEm0YXybTDi8J3TzI9mOJVoLkYT47CAoSZJahdPjJYDZs+GMM6C4GK66CrbZJt4VqY0alDOImX+YybzyefTq1qvFzxfekoqrYWIhfBmTrmcmwTH5sEW3+NWlVpSQGO8KJElSnNi0q2M780x45pkwlvzVr8ImXlqJlMQUemf0jncZKxUE8E4JPD4XKmLS9e0yYWxeeEq3llBdW83EzyZSWVPJuC3HkZ6c3jIPLEmSOrdPP4Xrr4feveHiiyHdvzGawqZdHVtxcdjpRKNQWhpebsMJqrQyC6rh/jnwdXnDWPckODofNm/hdP3MF8/kHx/+gwgRXvjhBf515L9a9gkkSVLnU1MDu+/e8Pd5TQ1cd128q2oXbNrVsV15JRx4IJSUwN//bsOudicI4K0SeGIuVMak6ztkwWE9Ib0F0vXPCz/ns8LP2GPQHvTs2pNJ0yeFz03AWzPfWvsnkCRJqqyEefPCywkJMGNGfOtpR9ruLktSS9h6a/j5Z1i0CMaNi3c1UrPMq4IbZ4XnXl/asHdPgjPWg3EFLdOwvz3zbYbdMYxjnj6Gre7cirLKMk7Y8oT628dt4c+NpBUIArj1Vjj4YHjooXhXI6k96NoVLrig4fLZnvK1qdw9HnePl9S2BAG8sRCemtc4Xd8pCw7tCWktuCfZn179E1e/czXRIHyid098l+37bM+Hv3xIZU0lO/TZoU1vyicpTv79bzjggHAGWxDAlCkwbFi8q5LUHhQXQ1oadOkS70rirql9qEm7JLUhc6vghlnwcFFDw56dBGeuD8cWtGzDDjBm0Jj6ywXdCtgkbxMARvQewY59d7Rhl7RiP/8c/ndp9vPLL/GrRVL7kp1tw95MJu2YtEuKvyCASQvh6XlQFZOu79IdDsmFLi3crJdWllITrSEnLYePZ3/MJ3M+YZ/B+5DfLb9ln0hSy1u4EG6+GRIT4fe/h4yM+NQwciR89hnsuis8/zykpq77OiSpHfM87ZLUThRVhTvDf7+kYaxHMhyXDxt1bfnne+abZxj7+FhqojX8bc+/ceZ2ZzKsl9NapXbjyCPhpZfCyx9/DE88se5r6N4dPvkk3Og1K8uNXiWpFTk9XpLiJBrAKwvg8umNG/ZR3eHifq3TsAP8+c0/Ux2tJiDgktcvaZ0nkdR6PvkkPJVpNBo27fESiYTNuw27JLUqm3ZJioPCKvjrT/D4XKiuW6SUmwxn94Ej81t+OnysDbI3IDGSSGIkkQHdB6zwmNLKUoqXFLdeEdJSZWXwn//ADz/Eu5L246yzVnxZktQhOT1ektZSZU0lFTUVZHXJAuCruV/xwvcvsHO/ndlmvW0aHRsN4JVi+Ne8hmYdYNdsODAXUtfBR6m373c762euz+Lqxfzfzv+33O1PfPUERz15FLVBLbfsfQunbn1q6xfVEj67GL66BjKGwOgXIH39eFek1amoCE/N+e23kJwMr78OO+wQ76ravnPPDU+1lpAAA1b8wZskqeNwIzrciE7Smntn5jvs/eDelFWVcenISzl+y+MZ+vehLKlZQkIkgf+d/D+G9x4OwOxKuG8O/FjRcP+8lHDt+uD0OL2AFdjsts34Yu4XAOSm5zL33LlxrqgJFs+EZ/uFlyOJMOT3MPyG+Nak1fvoIxgxIrycmAh/+AP89a/xrUmSpHXEU75J0jpw7bvXsqhqEQCXv3k5H8z6gCU14QL1aBDl3Z/eJRrAi/PhihkNDXsE2D0bLurXthp2gEE5g1Y4fT4IAh7/8nGufedaZpfNjmOFK5CYBpG6yWNBACnd41qOmmjwYOjZM7xcWxvuRi5JkhpxerzU0VVWhunVhx/C6afDccfFu6LmqZwPU++G1FwYMA4SWnGx9xrol9WPSCRChAi56bmMGjCK/K75FC4upFtKN7bqvx9Xz4QZMel6fgqMK4BBaXEre5XuPuBu/vzmn6msqeRPu/ypfvy2ybdx+gunEyHCPz78B9+f8T1JCW3kn5EuPWGnx+Dr6yFrYxh6TrwrUlNkZoZp+1NPwRZbwKhR8a5IkqQ2x+nxOD1eHdwNN8A554TpYyQC06ZB//7xrqrpXtgKij8ForDJn2CLK+JdUSOLqhZx2euXMWfxHM7d4Vw2z9+c+eXzeeen9ynpuh3vlfegtu63bAQYkwMH9IDkdjjP6ZinjuHhLx4mGoQnkp999mwKuhXEuSpJkqT2yfO0SwqVlYXNehCEX4sXx7uipovWQHHM6YzmvRe/WlaiW0o3/rpH4zW4SxJ68FnqvvwU81YX1KXrA9tout4UR212FA9/8TAAuw3Yjfyu+XGuSJIkqeOzaZc6utNOg+efh88+C6fHb7xxvCtquoQkGHAc/Hg/EIGBJ8a7olWqicKLC+D5BTRK1/fMgf3aaboea5/B+/Dt6d8yq3QWO/bZkUi8zs085xX46A+Qkg3bT4BuA+NThyRJ0jrg9HicHi+1aUEU5v8vbNAyN4x3NSv1UwVMmAOzKhvGeqfCuHzo347T9TYnCODJXKgqhkgC9N4HRv4r3lVJkiQ1m9PjJXUMkQTI3S7eVaxUTTRM1l9YEJ6DHSAhAnvlwL45kNTO0/VWsfgnSMmC5DX8kDSoAYLwK1rTkpVJkiS1OTbtkrSGZlSE513/OSZdXy81XLver0v86mrTJp8G398Giekw+kXI27l5949EYPv74cMzwtkXW13XOnVKkiS1ETbtktRMNVH4z3z4b3HjdH2fHNi7g6frk3+ezLPfPssu/XZhj0F7NO/OVSVhww5QWwHf3dL8ph1g/V+FX5IkSZ2ATbskNcP0JeHa9dlVDWPrp8LxBdCng6frPxb/yE737kRNtIa/vPUX3jj+DXbpt0vTHyCpK6TmQdX8cK+CjCGtV6wkSVIHYdMuqU2bVz6Pu6fcTW56LsdveTyJCYlxqaM6Cv+eDy8tCFdTAyQuTdd7hJc7ui/nfklVbcOnFVNmT2le056QBLu/HibsaevB0HNbvkhJkqQOxqZdUpu2x8Q9+LTwU6JBlB8X/sgVu16xzmuYtiRcuz4nJl3v2yXcGX79Dp6ux9ql3y5skLMBPyz4gZwuORy40YHNf5CsobD1bS1emyRJUkdl0y411a23wuWXw6BB8NRT0KtXvCvq8GqiNXw85+P66+/Nem+dPn91FC75Ygq3/fAdqYld2HXAruR0yWS/HrBHTudI12Nlpmby6Smf8smcTxiaO5TstOyWeeBF08M17lkbtczjSZIkdSAdeLskqQXNmwe//z3MnQuTJ8NVV8W7ok4hKSGJ47Y4DoAIEU4adtI6e+6pS+Dy6QHXff0JJRWlzC0v4rMZ/+JP/TrPdPgVSU9OZ4c+O7Rcwz71XvjXQHhuKHx6Ycs8ZkuLVsP3d8DXN0B16Zo9RhDAgo+hbGrL1iZJkjo8k3apKRITISEBamvD6ykp8a2nEyirLOOcl8/hl9JfuHXvWxkzaAxDerT+xmVVUXhmHrxWDFHq1q8H1UTmP8egSAq9U49p9Ro6le9uoX6XgG9vgi3W/fKH1froD/D934EI/PI87PZK8x/jw9Prds6PwPb3wYBjW7pKSZLUQdm0S02RnQ0TJ8IVV8CGG8L//V+8K1q1Dz6Axx+H7beHQw6JdzVr5PI3LuefU/5JEAS8O+td5g6b2+rP+X15uHZ9bnV4PUKEIzfYjknvH09Bl4DrxzzU6jV0Cj//BxZ+Af0Oh+ytoPiT8Pzr3Tdft3XMfQ++uR669ofN/wxJaSs57p26CwHMW4MlGkEAP9zR8Bjf32HTLkmSmsymXWqqI48Mv9q6n36CkSOhpgauvx7+8x/Yd99189xBNJw+nJwVNmFrYf6S+USIECVKeXU5FTUVpCent1ChjVVG4em5MGlhw1hyBA7Ihd2HbEzC8P+1yvO2a1XF8NZhYcO94Zmw2UVNu9+Mx+Cdw4EIfHMd7PMVZG4INYthwzNas+LGapbApD2gpjy8npACW1654mM3ODlMygEGndz854pEIHsYLJgCBNBjmzUqWZIkdU427W3d1Klw8cWQnAxXXgm9e8e7IrV1P/wAlZXh5UgEPvus9Zv2ee/DGwdC5VwgCgVjYOR/IHHNlxH8ccc/8sq0V/i59GdO3eZUFlctpltKN1LW4jFX5NtyuH8OzKtuGBuUBuMKIN9VECv37a1QNCn8oObzi6Hf2LD5Xp1570IkEYJaqJwPlYWwcRxO/VZbDjWLwsuRRFjyy8qPHXIa5I0MG/weW6/Z8416IUzbU7rDBr9Zs8eQJEmdkhvRtXVjx8Kjj8IDD8Dxx8e7mpYVBPDjj1C6hhs7acW22w622CK8nJ0dfg+1to/Pg8oiwlXgwJyXoXDSWj3khrkbMmP8DH4z/Dfc+r9b6XtjX7pc0YVLX790rcsFqKiFhwrhhp8aGvbkCIzNg3P62LCvVmJKwwnrARKSm3a/vmMhUvdPT/YwyIzTjvGpPWDoH8PLKTkw9OxVH999U8jdZs1nkHTJhU3/FH4A0NT3SpIkCYgEQRCs/rCOrbS0lKysLEpKSsjMzIx3OY317g2zZ4eXN9kEvvgivvW0lCCAY4+FBx+Erl3htddgG6eMNtuSJXDnnVBWBklJUFAQvq+1tfDll+Hp6Vr6ezpaC0Wvh41OzrBw7PX9ww26ljbtRGDvTyB77dYo10RrSPlzCgGNf03NP28+OWk5a/y43yyG+wthfky6PjgNjiuAvDbSrC+sWEhiJJGM1Ix4l7JiNYvhf7+FBR+F0+MHn9L0+y6eCWU/QM8dIDHOJ7qvWQwJXSAhMb51SJKkTqepfajT49u6v/4VTjwx3L28I51mbPbssGEHqKiA22+3aV8Tv/41PPRQ+CHIUt99Fy6lGDZszR5zxqMw6xnotScMPH752989CmY+Fl7e5q5wve/Wt7Hg3d9w4XfvURbpwkU7/ZEha9mwQ3jKt6E9h/L13K/rG/euyV1JW9mGYatRUQtPzIW3ShrGUhLg4FwY1X2tl+G3mDs+vINTnz+VxEgiDx78IIdtcli8S1peUlfY4YE1u2/XvuFXW5DUNd4VSJIkrZLT49u6o48Op4+XlMD++8e7mpaTnR1+JSZCNBruyK7me//9xg07wFtvrf5+ZVPhu9vCTcRizZ8M7xwRbhb2/gkw57XGt0drYebjDden133w0rUPp5V05875i3h43jz2f+P2Zr+UlXnl2Fc4d4dz2bnPzuy9wd48d9RzpCU3v2n/ajFcOr1xwz4kHS7pB6Oz207DDnDRpIuIBlGqo9Vc/sbl8S5H6nyi0XAjz+OPh7ffjnc1kqROzqS9PUhNjXcFLS8tDd54I0zYBw2C3/8+3hXFx//+F/5BuPfeMHRo8+//u9/BOec0Hlvd3gflP8MLW4abcEWSYM8PIGer8LbFM+oOii5zvU5CIvTYDubXnfYqf1T9TTNLZhINogQEzCqb1fzXshK9MnpxzZhr1vj+S2rh8bnwTkyznlqXro/s3raa9aX6d+/PgiULABiQPSDO1Uid0B13hL9bExPDfWVmzYIePeJdlSSpk7JpV/xsthn8/e/xriJ+PvwwPI96NAoXXQRffw19mzll+OyzYc89oXIxzH8JMnrBdieu+j4LPmrYNTuogaI3G5r23ntDztawYDJkbQp9Dlr+/ru+CD9OhJQe4Y7hdS4ZdQkHPXoQFTUVXLP7mjfZLemLRTCxEBbWNIxtlB6uXe+xkr3AokGUT+Z8Qs/0nvTJ6rNuCl3GU4c/xZ/f+DOpSalcPPLiuNQgdWpTp4YNe21t+DVnjk27JClu3IiONr4RnTqum2+GM89suP7MM/CrX63ZY72+P/zyn/DysL/C0HNWfmzFXHhuk/D0bIlpsNdHkBWT8gdRqCiC1J7N3pyrsqaSmmgNXVNab51wEATMKJlBdpdssrpkrfCY8lp4rAjeizkxQZcEOLQn7LSaU8gf9eRRPPzFwyRGEnnmiGfYb8h+LfwKJLV5334LO+8Mc+fCIYfA44+3zWk5kqR2ral9qGvapXjZa69w53wId33fccc1e5wgqNu5vc6sZ1d9fJeesO8XsNPjsO9XjRt2CE/HlVawRrtppyaltmrDDvDb//yWATcNoNf1vXh75vJrTT9bFK5dj23YN+4Kl/SHnbuv+u/ussoyHv7iYSBM3O/++O4WrV1aY8XF4aaTU6bEu5LOYcMN4aef4OefbdglSXHn9HgpXoYMCdOcjz8Op8mv6dTLSCTc6X32C+H19ZqQDHfJg76HrtnzxdGCJQu4a8pdAFTWVvL3yX9np747AbC4Fh4tgg+WSdfH5sEOmU37m7trSlcGZg9k+sLpRIMow3sNb42XITVPRQVsvXU4ZTsSgeefDz/0U+tKTQ1PuypJUpzZtEvxtN564dfa2uUp+OkZSMmGXnus/eO1URkpGeR1zWN++XyiQZQNe4RnHfikDB4sgtKYteubdoVj8iF7JWvXVyQhksCbx7/JXVPuondGb04adlILvwI1WfnP4akHu28BeTvFu5r4+uGHsGEHSEiwaZckqZNxTTuuaV+t//0PTj0VUlLgrrtgk03iXZE6sW/mfcOt/7uVvll9+fXWf+DJeclMLmu4Pa0uXd++iem62qDqUvjXYKgsCq+PegF6d+ImtaIiPLvE9Onh9eeeg332iWtJkiRp7TW1D7Vpp5M17YWFYUqzxRaw1VZNu8+QIQ0pz7bbwrvvtl59y4pGw2RJWsaUMnioEMpqG8Y27wZH50H3ZqTraoPmT4b/blN3JSHcWHFY2zgjQdzMnw//+U/YvG+zzeqPlyRJbZ4b0Wl5ZWUwbBiceGK4PnLSpKbdr7w8bJ6jUVi8uHVrXGrhwvADgqQkOPbY8Llbwi23wO67w403hhu4qd0pq4E7f4E7fmlo2NMT4cRecGpvG/YOIWtT6DYovBxJgPUPaL3nmvk4PL8lvHUYVBW33vOsrR49YNw4G3ZJkjoh17R3Jl9+CbNnN1x/+WUYPXr19+vWreHyupqJcO+9MHly2Fg/8AD85jfh6XfWxqRJ8Pvfh5dffTWc5j9mzNrXqnUiCOCjMni4CBbFpOtbdIOj8yHL32YdR1LdqQgLJ4VnN8jcsGn3CwL48HT44U7IHgajX4DUVWzwWFUC7xwFQQ2UfAFd+8FW17XMa4i3f/0LPvsMDj8cBg+OdzWSJGktmLR3JptuCuuv33C9qRsZFcekTwsWtGxNK5OT0zgJz85e+8ecO3fV19VmldaEyfpdsxsa9q6JcHIv+F1vG/a4CgKYci483h0m7QXVZau9S5OkZEGfA5vesAMUfwLf3xY24Qs+gh/uWPXxQQ0EMZ8A1S5Zk0rbnscfh1/9Ci65BLbbDkpK4l2RWloQtNwMNElSm2fT3pl06xaeXuyBB+CTT2CXXZp2vyuuCNeVJyfDpZe2ZoUNjjkGLrwQRo2Ce+4JP3BYWwcc0JCs77orHHRQ8+5/883hFNVttgnP3atWFwQwuTQ87/rHixrGh3WDS/vD1m42F3/FU+Cb66C6BGa/BD/cFb9akjOApd8QASRnrfr41B4w/EZI7h4m85tcsGbPGwRta7nNBx9AYmLY1C1YAD/+GO+K1JLefht69oT0dJgwId7VSJLWATeio5NtRLemSkrCxj0jI96VrL3q6vADiOaYNw/y8sI/zBMT4Xe/C9fHq9WU1MCDhfBpTLPeLRGOzIPhGTbrbcbCL+D5zequRGDErTDk1Ibbgyh8/VeY/yEMPAHWa+Vdz6fdHybsPbaBYddCQitvcvDSS+EU9Gg0/EB0//1b9/maYvLk8EPZiopww9H332/+7zy1XbvsAu+8E37PZWRAaWm8K5IkraGm9qFOKlXTZK0msYqnG26AiRPD9Pzaa8OmelXW5I/XxMTwQ4vauqm0Xbo0/zHUJEEAH5TCo3OhPGbm8ogMOCIPMvyt1bZ03xSG3wTf3wE9d4RBy5zbftoE+OR8IAKznoYDpkHXvq1Xz8Djwq91Zfz48EPNIIAzzmgbTfvWWzec232bbWzYO5rc3PBTy4SEcPaXJKnD889ftR8VFfCPf4T//d3voHv38BzyZ58d3v7JJ+Hu+Mcc0/LPnZ0NDz4IV14ZngLv//6v5Z+jnZhWPI2ESAL9u/dv8cdeWA0PFsFnMel6RiIclQ9bdYBJHh3Whr8Pv1ak/CfClVjRcP14RWHrNu3rWnZ22DwFQbgXR1ux3nrhlzqe224LPzguKQn/TZIkdXg27Wo/Tjst3FU+EoFXXgl3gF/2FHSteUq6ww8Pvzqx6969jnNfPheAW/a+hdO3Ob1FHjcI4L1SeHyZdH2bTDi8J3TrjL+pZv0LPrsk3NF8239Cl9x4V7RmBp0E0+6DxT/C+gdD9lbxrqhl3X8//OEP4VTl6zrIzvNq2woK4KGH4l2FJGkdck07rmlvNzbdNDxtHYSnnispCf9QPuWUcC3pyJHw5JPh5jxqFb2v783sReFpAwd0H8C0M6et9WMWV8MDhfBFzOctmUlwdB5s2VnT9ZpyeCIHopUQSYQNfgNb37bunr9yPnx+OUQrYJM/rX0yHq2FmlJIaYGzQEiSJHUQTe1D3T1ebce994bT208+GZas4NRLp53WcPn0uoQ3IQHuvBPKy+GFF9pHw16zGN48CJ7qFTZG7ciWBVuSEEkgIZLAsIJha/VYQQDvlIQ7w8c27NtlhjvDd9qGHcJp5NHqhuu1Fa34XEF4vvLYz28/+DV8/3eYenf4vbq2EhJt2Jd1553hhmKXXuqpuyRJ0iqZtGPS3iqCAP7+d3j55fDUascfv+rjp0+HgQPD+0UicM01cO65yx/33XdQWRmm7u11+/Bv/gZTzgbqfvT2+ggyNoDktv+9t7BiITe9fxMJkQTGbzeejNQ166wXVMPEQvgqplnvngRH58Pm3Vqo2LZg5hNQ9Bb0PRTydm7efb+/Az79P0jvC7s8Dd36t3x91aXwyujwtG15I2HUC5CUBs9vCQs/DY9JyYZDF7T8c3dmU6bA8OEN1x9+GI44In71SJKkuHD3eMXXf/8b7qQM8K9/wcYbh7sYr0xFRUPSF4msfG36kCEtW2dcLDPB5fV9oWLO/7d33/FRVOsfxz+7mx5SCAkphA4C0qQpRQRRsICADZTqtaKocLGgV3+KBbBfr2K9XixYsICCnY4CIk2k915CIBASEkjZnd8fB7IJBEjZZDfwffvaF7OzZ2bOwiQvn3nOeQ7UHgxtP/TKwwiX5SLpSBKxobE47Kevvh8ZFMnTnZ8u8XUsC34/DJP2w7F8ycX2EXBzDIScpfD/mc9tMeb3MXy77lt6NejFk5c9ia0M/i5TMlO4+4e72XpoK6M6j6Jng56FN9w7DebdbIa3b3wHeqyFsLpFv1D9e8yrLO34xgTsAMlzYe8vUP16aPoUzL/FDGtv9lzZ9uF8dOhQwfcH9VBERERETk9Bu5SNPXvO/P5kDRvCE0/Af/4DzZq5A/6KKGMH/P2k2W7+/KnzgevdDSl/woE/ILQW7P/d7N/6MVz4KERcWK7dTc9K57KPLmN50nKaVm3KvNvnER7o+ax/Sg58kgTrMt37Iv1gYCw0KUV2fWPKRtanrCfXlcuTs83f+9K9S2md0Jpr6l9Tyl6fatScUUxZNwWn5eTmr2/m4KMHCQ0IPbVh6irAZoa644T0jcUL2stDcLXC31e/AW5MMX0PiCz6+VJXQ/IciO0CEY081ctzT+fOJrP+1VfQvn3ZrHghIiIi5wwF7VI2brrJLEuzdClcfjlcffXZj3n+efPylOxsk7Uu6RrFe/bAU0+ZtdmffRaqVy/acQv6m4Ac4Mhm6Da/4Od+wdDheOXf9W+aDCc2sPtBQPmvufvDhh9YnrQcgJXJK5mybgoDmw/0yLkX7lrIm4vG4R91JZUSBpJjuVPpHY5n14NLkV3/ffvvdPmkC7muXKqFFQxA07PTS37iMzia6663kOvKxWk5C29Y42ZY8yJkJUNkM6h6WZn0p1QSrjIF7vZOg8TrITrfaBj/Yk59OLwOfmkJrmywB0H3lWbah5zK4TBD4j/7zNTlEBERETkDBe1SNsLDYfFiOHIEKlUq/yHfX3xh5tE7HDBxIvQ8zRDmMxk4EObONdvr18OCBUU77uie49nV49tnUv9eU6n78Eqodw8Exxa/n6VUu3JtAOw2Oy7Llfe+tNKz0rni874crXIz1rFs2thW0CKuBZX9YGAcNC4kOV1c3677lhNlOXan76ZL7S7M2zGP7vW707th79JfoBBPXvYkS/YsYfvh7YzuMvr0oxJCq0OvLXBkC4Q3BHsJHx6Vtfr3mldpHZhvAnYwVecP/Fn+Qfuvv8K4cWY6znPPQUBA+V6/uBSwi4iISBGoEB0qRHdOSkyE3bvNdqNGsGZN8c9Rvz5s2mS2q1eHHTuKdtyOb2DB8eGu7SeYjGtxWZZZ1zqgCgREFP/4Ypq4aiI/bPiBa+pdQ/9m/Yt9fHJGMg6bgyohZqSAZcHXe/bTd85EsAVgs9loGN2QfzW9jJtiIKgU2fX8pqybQu8vewMQGxrLpgc3USngXKpkV4Ec2QY/NYPcdPCPNJn2kMTyu35KCsTHQ26uef/CC/Doo+V3fREREZFi0pJvcm754AMTfN96q8nenzB3LvTtC08/DTn5lsiKizNZdocDEhJKds0xY0ymzt8fxo4t+nE1boKb08yrJAE7wB+DYGpd+DYBDiws2TmK4ZYmt/DpDZ+WKGB/a9FbxL0SR9VXqjLh7wkkZ8OrO2HmkRgaxjQHIMjK4IWG8QyIK17AnuvKZfLayfy88WcKe77Yq2EvZg2axX+u/g9L7l6igN2bKtWCHmvg0m+g++ryDdgBUlPN7wDLMhnspKTyvb6IiIhIGVGmHWXafd6OHVCrlvt/xp95Bp580lRgTkgwc9ctq+AycVu3mjZ+fib4TkgwmfeoKLOW+2efwauvmqXj3nkHQk8zVvvoUXPu8lz//WgSfBtvtm0OqDUA2n1UftcvpthXYknOSAZsVKsxiN4dPiIn32+VViFp3BIXRLh/8Ycq95/Un89Xmfn/T3Z8kue6qJK5nIZlmQKWb70FNWvC7NlQ2zNTPURERETKgpZ883U//wxvvAGNG8Po0RAY6O0e+a7c3ILLwWVlme1Dh8xScWAy6jt3uo+pXdsE5mCOHTwYJkyAiAj4+msYNAhcLvj7b6hXzxScK0xwsOe/j/MYZOyESnWgsOXVAiLNsPicVLBcZj60D7ugygUcyHFgxQ7CUbVzXsAe7Q+D4qBBSMkfhH2/4fu87YmrJ5LryqVRTCMGNhtYJsu5SQVms5n57C+/DEFBXlk6UURERKQsKGj3hpQU6NXLBKO//gpVqsDjj3u7V76rTh2TLX/lFWjeHP75T7O/dm24804zdD4mBu6/v/Djd+0yATuYofUffmgCdjjzmvBlIXM3/HqxKVAX1Qa6/gaOoIJtHEFw5VyztnelOtDgwfLrXzG5LLi/21TS167CsvnTIv4iAC6PhOtjILCUE3B6XNCDL1Z9AcCuw7t4ecHLOC0n2c5s7mx5Z7HONWfbHL5Z8w2danbi5sYlnLYgvq8sHrSJiIiI97hc8MknsHcv3H47xJZ/4WZv0/B4vDA8futWE4iCyRA/8AD8+99lf92TzZsHa9dC794m6K2oUlNNhXq/0zyDysgww+MzMswP/QsvmCH1L71kqkxPmVJ+P/xrX4W/HgGO/9hdPg3iu3rs9O8vfZ+RM0ZSLawa393yHfWiyq56994s+GQfbHGvgEaMPwyOg/oemk2Q48xhyvoppGSmMOTHIQA4bA6GtB7CuGvHFfk8G1M2cuHbF2JZFk7LyS/9f+Gqeld5ppNnknME0jdAxIWnPpwpjpTFML+fGaVxyX8hoQhLKIqIiIicC0aPNtNe7Xa44AJTYPocGVGnQnTl5fBhMwx70aKiH1O7NgwbZm62GjXgQS9kUqdMgY4d4e67oU0b9zDzsrB7t3kw8cgjJsD2tMjI0wfsYOarz55tloAbOxZGjDA/+GlpMGeOWY+9vLLt4Q0Ay8xVtzmgkufm3GbmZHLfj/eReiyVdQfW8czcZzx27vxcFvx6EJ7f7g7Yj+UepVLGQgZFbqN+COxN30unjzpR4981+Hj5xyW+lr/Dn5suvIm7Wt1Fl1pdAAhwBDCo+aBinWfTwU0F1lRfs78EqwkUV+Ye+L4+/NIKfmwK2YdLfq4lD5il447uhj+LN8JAREREpEL780/zp8sF69aZmlPnGQ2PL42cHGjb1tw8AJMnw/XXF+3Y1183mV5/f+88KZo+3WT5nU7Yvh22bDFZ57Jw/fWwbJnZ3rbNzCkvby1bmmH0+R0+bB5YbNxolopautT8WZaq9YB2E2D/71Cjj0fXsXbYHAQ4AjiWax7AhPiF4HQ52Zexj7hKcdhtpX9GtycLPk6Cbfme8VSyZfLNrM4cPLiYd/yCWXzXYt5a/Bbzd8zHaTm5Y+od9G7Ym4igki9dZ7fZmTZwGn/v+5vq4dWJCS3eyJBOtTrRPLY5f+/7m/hK8fRp3KfEfSmy3VPg2PEK5kc2wb6ZUP2Gkp3LHmh+T1iA3cfXHj+XWRb89ZepQdK4sbd7IyIicn4YPBh+/NEE7X36lG+BaB+hTHtp7NjhDtjtdvjpp+IdHxDgvaEd113nLu7WsKEpxlZWNm0yDwecTtiwoeyuU1wzZpiAHcwcmSlTyue6tQfAxe9B3BUePW2gXyCT+kyiVUIrejboySMdHqHZu82o9lo1Lv7vxWRkl3w0gdOCn1Jg9HZ3wG4DukVBR2s2Bw8uBuBo7lF+3fwrNtz3tc1m80jROIfdQcv4lsUO2AFC/ENYfNdiVt+3mk0PbqJaeLVS9+esIpuZP212M6oi/KSHYmnrYeE/YNlDkJN25nNd8j5Et4eoltDhi7Lpr5zd449Dq1Zm1Yk33vB2b0RERM4PN94I69fDH3/AF+fn/wdpTjulmNOekwNNm5qbCGDSJLihhJk0b1ixwvT9qqugLOfy/+c/pnicw2GmEvQphyxnUaxda/79wDxQmDcPOnQovO2eX2DPjxB/lcmWe8rRve6grfloqNzcY6ce/9d47ph6R977r2/+mpsuvKnY59l1DD7eBzvyZdfjAszc9TrBsCd9Dw3HNSQ9Ox2HzcHCOxdSPbw6AyYPYEvqFp7p/AwDmg3wxFeqeHb/BPtmQWJPqHqZe79lwdTakLnLbNf9B1zywenPI76hcmX3FJ9GjcycOhEREZESKmocqqCdUhaiS02F77+H+vXNUHkp3P79Zt555cre7klBc+fC1KlwxRVw7bWFtzm4DH5pjcktu6DrHxDjoX/r326A3VNN4BZaA3pt9cx5gdlbZ9Plky7YbXZclotv+35LWEAYl9a4lEC/sy8x6LTg5xT46aDZBnd2/boq4J9vnM7mg5v5ZdMvtK/enhbxLTz2Hc5ZlgsmBoGVA9ggtgtcMcPbvZKzufpqM7XIskz12pOn3IiIiIgUg4L2Yij36vHi29a8bJZbi25nsp+7voUF/d2fx1wGXed65lo/NIK041Ms/MKgz1mGSRfTJ39/wrTN06hbuS5j5o0h15VL22ptmXf7PByFrRF/3M5jZu76ziz3vvgAuC0OamlFLc9YPRb+fgIcwdBpqsenS0gZSE+H9983c9rvusv8KSIiIlJCCtqLoUyD9v37TfX0pk3N8HDxbakr4afjc5GxQavXofZA+LY6OPPNCb/5MPiX4l7Z8ytsGQ87vnLva/0mXHCateZL6e7v72b8X+PzqqdvemATdaPqntIu1wU/HzTZddfx3wx2G1xVGXpUAT9VwSgeywJX1umXe8s+BPYg8NOTEBEREZHzjZZ88wWLF0PNmtCihRlW6XJ5u0dyNseD2jyuXAioDA0eBGymoFhwAjhCS36NvdNhztUFA3aAKmU3vaJD9Q44LSc2bCSEJRRaiG3HMRizA35IcQfsCYHwWA3oHaOAvdiyD5nl3r4Mht+uN/fSyQIqn/sBe1qaKfJ4ovaHiIiIiBSLlnwrSx99BNnZZnvGDFNF/YILvNOXLVtM4blOnXxvXrkvqXwRNHkaNr0L0W2h/j1mf7NnILCKKRx2wVA4w9Dyszq4GDM7PN8gl6g2Hi1Cd7LBFw2mcnBl1h9Yz61NbyXIz535zXXBjwfhl5Oy69dGwTVRvhusO11OXpz/Isv2LuP2Frdzbf3T1CTwlq2fwqHlZnvXd5A89/wbAn/smFlWccMGU9Ni1izo2NHbvRIRERGpUBS0l6WLLjJVyR0OU509IcE7/Vi2DNq1Mw8QqleHVavKtlp8RddslHnlZ/eHRg+d2nbb55D8O9TsA7GXF+38iTeY+cy5RyC0LrT9wCznZfcvbc/PqGeDntCg4L5tR01l+D355q4nBpq569VPM6K7MMv2LuOTvz+hWWwz/nHRPzyyxNvZjP9rPE/MegIbNqasn8KWB7dQPaJ6mV+3yIKqUuDBTGDxl6qr8NascS/z6HKZjLuCdhEREZFi8WoObezYsbRp04awsDCqVq1K7969WX/SEErLshg1ahQJCQkEBwfTuXNnVq9eXaBNVlYWDzzwANHR0YSGhtKzZ0927dpVnl+lcHfeabLtDz8MCxZApUre6ccPP5jl6QB27jRBvK85dAjGj4fffvN2T4pu94+mQN3m/8KsbpC+uWjHRTSEnpvhyrnQfQXEdgZHwGmbf7/+e+r8pw6t32/NhhTPrHOf44LJ++GFHe6A3W4zVeEfr1G8gD0lM4WOH3Zk3KJx3DH1DiasmOCRPp7NrrRdOGwOLCxyXbnsz9xfLtctshp9oPlYiL8a2n0ClZud/ZiKbv16+Pe/YdEi875+fYiNNdsuF1xexAdbIiIiIpLHq0H73LlzGTp0KAsXLmT69Onk5ubSrVs3MjLcBb9eeuklXnvtNcaNG8fixYuJi4uja9eupKen57UZPnw43377LRMnTmTevHkcOXKEHj164HQ6C7ts+bHZYPBgeOEFaNjQe/3o1Mm9XbkyNGlS9GPT0sw67hER8MgjprCWp+XmmpEAd9xh+jpxouevURquHNjyiXm5ctz709YBNjMP3sqFI1uKfs6gqmbdbr+QMzazLIsB3w5ga+pW/kr6i4emFZLtL6YtR+H57fDrQXceuEYQPFEDekQXfzj8zrSdZOZk4rScOGwOViWvKnUfi+KuVnflZdb7XNiHi+IuKpfrFpnNBo0fg8t/NsUMz3W7dkHLljBihPl5XrQIwsJg6VIYN84sr9i9u7d7KSIiIlLh+FT1+P3791O1alXmzp3LZZddhmVZJCQkMHz4cEaOHAmYrHpsbCwvvvgi99xzD4cPHyYmJoYJEybQt29fAPbs2UP16tX56aefuOqqq8563Qqz5JtlwVNPwXffwfXXwzPPmMCgKBYuhCVLoEcPqFWr6Nd89VV49FF3Eb0lS6BVq+L2/My2b3f3yW6HQYPgww89e43S+OM22Pqx2a49GNp9ZLYzd8EvF8OxvRDVCrrOO32V8BKyLIvKL1YmLSsNu81O9wu6M+WWKSU6V44LpqbA9HzBusNmqsJfFWW2S8LpctJ1Qldmb5tNeGA4C25fQOOqjUt2shJcOz07ncigyHK5npzB999Dz57u96+9Bv/8p/f6IyIiIuLjihqH+tSc9sOHDwMQFRUFwNatW0lKSqJbt255bQIDA+nUqRMLFizgnnvuYenSpeTk5BRok5CQQJMmTViwYEGhQXtWVhZZWe5JvGlpnl0bu8z89BM8/7zZXrXKZLOuuaZox7Zta17FFRRUMLseVMqgdOFCePllSEyE0aPNlIHERGjWzBTKc7kK/o+/L0iaUfh2SKIZ5p65AyrVA1c25GaAXykqy5/EZrMx8aaJDP9lOFHBUbzW7bUSnWfzUbPu+r5s976aQWbuekIpl5p22B1MHzid9SnrqRZWjYigiNKdsJjXVsDuI9q3h7g4SEqCkBC41scKA4qIiIhUUD4TtFuWxYgRI7j00ktpcnz4dlJSEgCxJ+ZEHhcbG8v27dvz2gQEBFD5pIrosbGxecefbOzYsTzzzDOe/gplLzPzzO/Lwp13wt9/w/z5cMst8MYbpgr0009D1arFO1d2tln67sTUBofDZOMcDpg3D375BerU8Xwmv7Rq9Ye1L7m38/MLhvAGsGsKzOtrhslf/B7UveOMp3RZLuy2oo1Dv7re1ay7f11Jek62C6YcgJmH3Nl1v+Nz17tFmXnsnuCwO7gw5kLPnEwqpipVzMPEBQvMMpeJid7ukYiIiMg5wWeC9vvvv58VK1Ywb968Uz47uRK1ZVlnrU59pjaPP/44I0aMyHuflpZG9eo+VHX6dHr3hr594ccf4brryicjHRgI779vttu3dxeY2rIFfv65eOfKyjJz5C3LDIPfu9f9WVgY3HyzZ/rsaRe9AAnHRzRU7VR4mxVPgev46I3lj58xaB85fSSv/PEK9aLqMW3ANGpG1vRwh42NmfDJPkjOl12vHQSD4yC+lNl1kUJVqWJ+N4mIiIiIx/jECswPPPAAU6dOZfbs2STmy87ExcUBnJIxT05Ozsu+x8XFkZ2dzaFDh07b5mSBgYGEh4cXeJW7mTNNMJySUvRj/P1Nkbb0dPj8c/P+hAMHzDz3Fi3MnPeysG2bWcLO6TRBe3GFhZkMvd1u/uf+0Uc93sUyYbOZCu+xnU9fQyCkOtgc5hVy+gdA21O389KCl3BZLjYf3MzrC1/3eHezXDBxH7y60x2w+9ngxhh4tIYCdhERERGRisSrQbtlWdx///1MnjyZWbNmUbt27QKf165dm7i4OKZPn563Lzs7m7lz59K+fXsAWrVqhb+/f4E2e/fuZdWqVXltfM6nn8KVV8I995h56bm5pT/nqFGmENTy5SYbn68Cv8c8/7wZyu7vD88+W7JzPP00HDlisuwtWpy9/dKlZim4fftO/SxjJ+yaClnFePBRVtqOh7p3mirhHSedtlloQCj+dn9s2LCwiAqOYsaWGUzbPA2X5Sp1NzZkwrPbYHaqezh83WB4qpZnh8OLnHMyMmDWrIIjgERERER8gFeHxw8dOpTPP/+cKVOmEBYWlpdRj4iIIDg4GJvNxvDhwxkzZgz169enfv36jBkzhpCQEPr165fX9o477uChhx6iSpUqREVF8fDDD9O0aVOuvPJKb36905sxw2SbXS7YuBH27IEaNU7ffvt2EyyfaY7osWPu7dxckw33tNtvh5tuMn0vzZrzwcFFazdzJnTtaobTx8ebNaDDwsxnaevh55bgzISgOOi+CgKrlLxPpRVUFS5+96zNokOimdRnEq//+ToXRl9I6rFUuk7oCsADFz/AG9e8UaLLZx1fd31Oqnufvw16R0OXygrWRc4oI8M8RNy40RTR+/PP4i2NKSIiIlKGvJppf+eddzh8+DCdO3cmPj4+7/Xll1/mtXn00UcZPnw49913H61bt2b37t1MmzaNsBPBG/Dvf/+b3r1706dPHzp06EBISAjff/89DofDG1/r7K6/3l2RvWVLqFbNvD969NS2L79slkOrUQM++OD05/y//zMV2KOi4K23oKyG/IeHly5gL47p093D0ffuhbVr3Z/t+dkE7ADHkmD//PLpkwdc1+A6Zg6ayZvXvsmkte6s/FervyrR+dZlwDPbCgbs9Y5n169Udl3k7JYsMQE7mN/D337r3f6IiIiI5ONT67R7i1fWaf/7b9i61WSSjx6Fyy83lZdvvBG+/NJk1sFUaN+/32xfcIHJNp+Ny2XOHxdnMtQV1W+/mb8Xl8s8tFizBkKPL6eWshh+bQu4wBEC1603S7BVMPf+eC/vLjEZ+gFNBzDhhglFPvaYEyYdgN9S3fsC7HB9NFweeer0+xxnDkeyj1A5uOBKCyLnvX37oF49k3G3LJg2zfxuFhERESlDRY1DfaIQ3XmpeXNTDT40FD7+GFavNvsnTTJLJp3QpIkJ4O12c8zZWJYZwt6yJdSsaeZoloVffjFZ/aio4leRL6rLLjNz9D//HJYtcwfsAFXawFULoeW/4Zq/KmTADvDmNW8ysNlAbNj4Zs03/Lrp1yIdtyYDRm0rGLBfEAJP1TTD4U8O2NfuX0vivxOJeimKIT8M8Vj/vc6yYNsXsOJpSN/k7d5IRRUba1bGeP55M8JHAbuIiIj4EGXa8VKmPb9PP4WBA822zWYyyg0bmvcpKWYt84AAGDHCPaf7dPbtMxl2MIH+LbfAZ58VvS+WdfoK6fk1aGCGk1qWqQS/aRNERhb9OpIndHQombmZ2LDRvnp75t1+6rKHJxx1wtf7Yf5h975AO9wQDZ0iT/9PN/THoby39D2clql1sG3YtjJbaq5cbR4Pf94B2CEwCnptB78Qb/dKREREROSslGmvSPr1Mxmea681WeUTATuYgHj0aFN1/WwBO5jMd0KCyc67XCbjXhRbtpjh9wEB8MwzZ2+fP0BPSSmfNeN91NGco2w9tJWSPv+qFl4Nh82B3WY/YyC96oiZu54/YG94PLveuZDsen7VI6rjslzYbXaC/YKJDIosUV99Tspis8weLsg6AJm7vd0jERERERGPUqYdH8i0e9rWraZoXe3apuK73W4KuY0YAWlpMGbMqUPt77vPrBt/our83r3ujH1hNmyASy6B1FTz3t8f3nsPHnrIzKP/9lvzEMATkmZB+gaofiMExXjmnB6y6eAm2v+vPfsz99O1Tld+7v8zDnvxCiBuTNnI6N9HEx4YzjOdnzllznnm8ez6gpOy6zfFQMeIog2MyHZmM/q30axPWc/9F9/PpTUuLVYffdb+BTCzC7iyoGonuGIW2PQsUkRERER8X1HjUAXtlGHQvnu3Gfa+c6cJlG++2XPnLq7rrzfruFuWKeq2dWvBz598EsaONZ/7+0NyMkREnPmc779v1poH83BgwgTIyTFZ/ptugokTS9/vbV/AArO8H5XqQPe14Ago/XkLXGMirHsFwi+ENm+Df9Gr4z8560nGzhubt8b64rsW0zqhtce6tuIIfLYPUnPd+xqFwMA4qOLvsctUbEf3QsYOiGoFdq+uYikiIiIiUmQaHu8LnnrKVEDftAkGDCi4lron7d8PnTqZSvP//nfhbQ4cMMPlXS44ePDUzx9/HO6805znu+/OHrAD3H03rFwJ8+fDO++YofUn0r5FXYv9bPbNJO82PbIFju7yzHlPOJYMC/rDwaWw7TNY+0qxDq8fVR+X5cJhcxDoCCQx3DMF8TKc8OFeeGu3O2APssPAWBiWqIC9gOB4iL5EAbuIiIiInJP0f7llyeVyb1uWe232ffvM3PWaNU0GPP/4ZsuC7GwIDCz6dV5+2QTOTqcZAt+nj1n7Pb+xY021+owMeOMNePNNU6W+Xz+47jpTmf299858HcsyDyK++870+5lnTHX7EyZNMhn7+HhzPU9IvN4UGwOofBGEeLh4mvMYcPzfyWYDZ0axDh/UfBCZOZks27uMwRcNJq7SGaYUFNHfR+DTfZCWL7veONQE7JU9HKwfyz3GrrRd1I6sXexh/SIiIiIiUvY0PJ4yHB6/c6ep3r5rlwli+/UzgXXDhrB5swmC33rLzCc/0b5LF5OZHzIE3n67aBOWTwxtd7nM/PXdu0+dj25ZMHy4qSR/wQXwxx+mLcC6dVC//tmv8+OP0KOH+/1PP8E11xTpr6JUUldC+maI7wp+oWdvX1yrnoc1L0J4Q+g01WRuveBILkxMhsXp7n3BduhTFdqFF+1WyO/VBa/yxaovuKruVTzX5TnsJ8313pW2i4v/ezF7j+zlkmqXMPe2uQT6FeNhkYiIiIiIlJiGx/uC6tVNBnz7dhOwgxmmvmmTCaLtdvj9d3f7t95yzzV/911Yv75o13nkEZP5btAA/ve/wgvIzZljMuwpKSZgB/dw+d1FrLidmXnm92UlsilU7102ATtAkyehTzpcvdhrAftf6Wbd9cXpkOvKxWU5aRoKo2pB+yIWm8tv/o75PDz9YZbuXcqYeWOYtGbSKW2+WPkFSUeSAPhz95/M23H6pebEh+Xmmqkt1arBP/9ZcISPiIiIiFR4CtrLW9WqcPnl7ve33lrwsxP/w+3nV/R1zyMi4JtvTMb8ttsKb+N/0rjqqlXNn127QocOZ7/G55/D11/DxRdDpUqm30VZ5s2VC8v/BTOvMEXlzlNHso8wbtE4PvzrQ3Jd7nHv6bnw3z3w7h5Id8KKfSsYv3Qcn8/oRnPnPCJLOBw+PTv9jO8BGkQ3wMLCYXPgZ/ejduXaJbuYeNfXX5uHdXv2wOuvw/Tp3u6RZx09Wnb1QEREREQqAM1pLw8ZGaZy/Jw5UK+emfu9fTskJhZck/3++03V9hUrYPBgs3b7/v3wr3+dukRbcXXoYNZ6//RTE6i//rpZ/i06+uxp3IULoX9/086yYNasgg8eAJKSzDz5iAh48EEICjL7t4yHNcfnt++bDVXaQFi90n2XCuiGL29gxpYZWFj8ve9vXr/6dZamw+f74MjxVfYsy8WiDf+FpE846kzn+d/8+HXgryW6Xtc6XenftD/frPmGy2tfzq1Nbj2lTc8GPfm498fM3zGfvk36UqdyndJ8RfGWk39+izssw5d98gnccYdZkeKLL8yIIhEREZHzjOa0U8hcgpwcGDrUBNn/+IeprF4ar71m1i8/oWVLWLr0zMfcc49Zax0gJsasm+6t/xn/+mtT3O6Ejz4yDxXya9nSPGxwudzz8QFWj4G//4+8Ym9XLTKBewVhWRYvL3iZeTvm0b9pf/o26Vui84SMDuFo7lEAmiZ0YGj3eSzLl/wOdUDfGIvr/5fIviNJ2LAxqPkgxvca74mvIeey3FxTF+Pnn83P6SuvnDuBe0KC+d0H0KgRrFnj3f6IiIiIeFBR57Qr016YTz6B//7XbP/rX3DlldCmFIHmyc9FUlLOfsyu40ubuVxmHrzTaYbMe8O115rvv3ixyfgXlu1avdr0EWD5cvf+unfB9q8gdQXU+YdZS7sCmbhqIiNnjATghw0/0Cy2GY1iGhX7PLdddBvvLHkHwlpTpeGbBQL2FpWgXyyE+9n4pf/PjP5tNNEh0Yy+YrSnvoacy/z84P33vd2LspGYaEYfgakRIiIiInIeUtBemOxs91DwE+9LY8gQM+d84UIzt/zNN89+zBNPmCJ26ekwZoz3AnYwy8EtXGgeHkRHu6vO5zdsmFl6zm6HBx5w7w+KgWuXg8sJFXBJsb1H9mLDhnX8v30Z+0oUtI/t9hbBNUewLSeS6JBoACo54Naq0CrMnRhtFtuML2/+0pNfQaTi+vprM63Hzw+ee87bvRERERHxCg2Pp5BhCUePmjncv/1mhoGfbrhpZibMnQt165pl1M7mRCbaUcTgNSfHvEJCzHuXywT869bBXXeZIem+wrJgwwZTpO7kNeIrsAOZB+j8UWdW719NzwY9mdRnEn72oj9AsSxYlG6Wcst0uve3DoNbqkKYHpuJiIiIiJyXijo8XkE7JVynPTfXVFL/6y8ThP/6K1xxRdl29M03TZE3hwOCg2HjRggLM5nw89yyvct4ZcErJIYnMqrzKEL8Qzx2bsuyyMjJoFJApWIdl5oDnyXDiiPufWEOMxS+ZZjHuiciIiIiIhWQ5rSXtc2bTcB+wjfflH3Qvn69CdidTjhyBGrUMKnc//0PBg0q22v7sBxnDl0ndCX1WCpwvHhct5c9dn6bzVasgN2yYGEafLW/YHa9zfHseiX91ImIiIiISBFpnfb8vv4ali0rWtsVK9zD3J1O6NSp7Pp1wl13ubPqlSqZofO5uaZYnq9LXQ2bx0PGTo+f+mjuUQ4ePYjLMhXqd6Z5/hpFdSgHxu2Gj5LcAXu4H9ybAHcmKGAXEREREZHiUdCe3513QuvW8NNPBffv3QvTpsHhw+a9ZcHtt5tg3WaDtm3hllvKvn/Nm8Pu3SbL366deWjgcEDNmmV/7dI4uAx+bgF/3gE/N4djyR49fXhgOI9f+nje9kPtHjrLEZ5nWTD/MIzaBqsy3PsvCYdRteAiDYcXEREREZESUN7vZDYb/PijWeYMTHG1Vq3McPTq1U2GPSLCVEm32cyf8fHl179Klczrk09MVeXcXBg1qvyuXxL7ZoGVY7azD0HKEqh2rUcvMeaKMYzsMJJg/2ACHAEePffZHMyBCftgTb5gPcIPBsRCs+JNgxcRERERESlAmfaTuVxw1VXu999/bwJ2gJ07YcECE6xPnGgqxrdta6rLl7e4OHjvPTOf3eEwWfjAQPi//yv/vpxNXFew+5vtwCpQpRRr3p9BRFBEuQbslgW/p8Iz2woG7O0jTHZdAbuIiIiIiJSWqseTr2rf228T3qKFCcRPmD8fOnY028HBphhcYqJ3Ono6jz4Kr73mXlJuyxaoXdu7fTpZ2nqTYY/rAsHlODKhjKTkwCdJsC7TvS/SDwbGQhMF6yIiIiIichaqHl8S/fvDyX9ZHTqYtdgXLIAePXwvYAfT5xPPXhwO97ruviS8gXlVcJYFvx2GSfshy+Xe3yECbo6BYIf3+iYiIiIiIuceBe1F0bGjO9vui0aMgB07YNUqsx0b6+0eeYxlWew4vIOo4CjCAr1bze1ANny8Dzbky65X9oOBcdA41Hv9EhERERGRc5eCdk/48ksYPx4uucQUh3OUc7o1JATef798r1lOBn83mAkrJlApoBKzBs2iTbWymQ9/JpYFc1Jh8gHIzpdd7xgBN8VAUCn+udcfWM/EVRNpEd+Cng16lrqvIiIiIiJyblHQXlobN8Ktt5rIbto0s/zaHXd4u1fnhD3pe5iwYgIAR3OO8s6Sd8o9aE/ONnPXNx5176vib+auNypldv3Q0UNc8sElpGen47JcTOoziRsa3VC6k4qIiIiIyDlF1eNL6+BB93xyux2SPbsG+fmsclBlKgdVxmFz4LJcXFDlgnK7tsuCmYfg2W0FA/bOkfBUzdIH7ACbD23mcNZhXJYLu83Oot2LSn9SERERERE5pyjTXlpt2sDAgTBhAjRuDHfeWXbXSk83S9DVqVOwwv05Ktg/mDm3zeGdxe9QN6ouw9sOP2P7rNwsXpr/EjvTdvLgJQ/SpGqTEl13XzZ8nASb8wXr0f4wKA4aeLDGX7PYZlwUdxHLk5YT6Aikb+O+nju5iIiIiIicE7TkG0UvtX9GOTng7+/ZjuXndEKLFrBypXn/5ZfQp0/ZXc+HuCwXP2z4AYAeF/TAbit8gMiTs55kzO9jsNvsRAVHsXvEbvwdRf83OZFdn3IAcvL9VFweCdfHQGAZjEs5lnuMxbsXU79KfeIqxXn+AiIiIiIi4pO05Ft5K8uAHWDPHnfAbrfDjz+eN0H7gz8/yFuL3wJgaJuhjLt2XKHtNh3chM1mw2k52Z+5n4ycDCIdkUW6xt4s+GQfbMmXXY/xh8FxUL8MV9AL8guiY00fXplARERERES8SnPaK4qEBDP8HsDlgmuu8W5/ytF3674rdPtkD17yIMF+wYAJ7iODIs96bpcFvx6E57e7A3YbcEVleKpW2QbsIiIiIiIiZ6NMe0XhcMD8+TB1qpnT3qFD6c6X/DscXgPVr4egqp7pYxnp1bAXby9+O2/7dNpXb0/Sw0mkZaWREJbA9tTtbEvdRtvEtgT6BZ7Sfk+Wmbu+7Zh7X9UAuC0O6gZ7/GuIiIiIiIgUm+a046E57RXJzu/g9+vNdkh1uG4DOIK82qUzcbqcfL/hewCuu+A6HPazL4w+d9tcuk7oSo4rh3aJ7fj9H7/nHXciu/5DCuQev/ttwJWVoVc0+Gv8iYiIiIiIlDHNaZfTS5oBNgdYTsjcCUe2QMSFRT8+9yj8/S84shkaPgSxncqur4DD7qB3w97FOmbiqom4LBcAf+z6gy2HtlC/Sn12HYOP98GOfNn1uAAzd72OsusiIiIiIuJjlFMsiYo+OCGxl/s7hDeCSvWKd/zq0bD+Ddj9A8y5FnIzPN/HUmqb2Ban5cRusxMbGkt8WCI/psCYHe6A3QZcFQVP1lTALiIiIiIivkmZ9uI4dMgUgFu82KzNPn68qeRe0cR3hWv/hrT1ZtsRULzjjyWBzQaWC5yZJmj3Cy2bvp5kf8Z++k/uz/Kk5fRq0Iu3u79d6LJug5oPIjwwnHUH1tG5wUBe3xPMziz35/HH567XUrAuIiIiIiI+TEF7cXz4ISxaZLLUH38Md91V+oJw3hLZxLxKouFDsOcnOJoEjR4t10J2z//2PNO3TAfgg78+AOC/Pf97SjubzcZ1Da7HLwY+OWjmsQPYbXBVZehRBfwq4PMWERERERE5vyhoL46oqIJD4yMjvdYVr4poBL13gSu73AvYZTuzC7yfs21Ooe12HDOV4Xfly64nBJrsek3frbknIiIiIiJSgHKNhcnNhX79ICQEbrwRso5HfgMHwuOPQ8eOZmj8iXXTz0c2e17A/sfOPxg1ZxTzd8wv88ueXJCuTuU6Bd7numDKARi7wx2w223QvQo8UUMBu4iIiIiIVCzKtBfmp5/giy/M9uTJMGmSCeIdDhgzpuyvf/SouU5SEowYAY0alf01S2hV8io6ftgRC4vnfnuOZXcvo3lc8zK7XrPYZvjb/XFaTlyWi75N+uZ9tu2oqQy/J192PfF4dr26gvWKY+dOSE6GFi0qZs0IEREREREPUtBemNDQM7/3lC++gPffhzZtYPRo8D9eUO2JJ+A//zHF3n78EXbt8tngZXnScpyWM+/9sr1lG7THh8Xz64BfGb98PC3jWnLbRbeR4zJrrv96EE5MXrDboHsUXB2luesVyi+/wHXXmdEuN94I33zj7R6JiIiIiHiVgvbCdOkCzz1nMuw9ekDPnmZ/UhKkpUH9+iagLo0tW6B/fzNHfs4cqF0b7r3XfLZ5s9nvcplrZmdDkO+litOy0liyewmh/qFk5GRQNbQqV9e7usyve3nty7m89uUAbD1q5q7vzTfVvfrx7Hqi7/2VydmMHw/O4w+BJk2CgwdNLQkRERERkfOUcpCFsdngySfhr79M8G6zwdSpUL06NGgAw4aV/hqpqe6idnY7pKS4PxsxAoKPr0X2yCM+GbADDPlhCG8ufpOjOUdpWKUh6+9fT3xYfLlcO8cFk/bDizvcAbvDBr2i4fGaCtgrrFatzM+F3Q41a0JEhLd7JCIiIiLiVTbLyl8O/fyUlpZGREQEhw8fJjw8vPBG3brBjBkmoLDZTPbbrxQDFSwLhgyBDz6AZs1g2jSIiXF/fuQIZGRAbGzJr1HGWrzbguX7lgMQERhB6mOp5XLdzcez6/vyZddrBpnsekJguXRByorLZZZW3LkT7rjDPCgTERERETkHFSkORcPji65ZMxO0OxxQt675s6S+/hqefhrq1IE9ewoPzCtVMi8fNvLSkQyYPACn5eSJjk+U+fWyj1eGn3nIPXfdzwbXVYFuUWYeu6elHkvlo+UfERUcRf+m/XHYS/HvLmdnt5tgXUREREREAGXagSI+4cjOhjfegP374YEHIDGxZBc7csTM0c3JMYH/kCEwblzJOw+w51c4tAyq3wTh9Ut3rmI6kHmAHGdOmQ+L35gJn+yD5HzZ9VrHs+vxZZhdv+SDS1i8ezEWFk92fJLnujxXdhcTEREREZHzhjLtnhYQAA8/XHCfZcHq1RAdDXFxRTuPy+UutAXmYUBp7P4R5vYAbLDmRei5BQLLr3BXdEh0mZ4/ywXfHYDZJ2XXe0XDlZXLJrt+gsty5QXsAL/v+L3sLiYiIiIiIlIIFaI7mWXBd9/BK6/A3r1nbjtwIDRtCjVqmDnpRREeDu++a4bEt2oF//d/pevvgT8w/4wW5ByG9A2lO58P2ZAJz26DWfkC9jrB8H81y244fH52m51+TfvlvR/cfHDZXlBEREREROQkGh7PScMSvvoK7rrLFJurXh02bjRZ9pOlpkLlymbbZjNrSn/9dbn2G4CDf8G09uA6BhEXwtVLwVGxS6dnuWDyfpiT6t7nb4Pe0dCljLPrJ3NZLubvmE/l4Mo0qdqk/C4sIiIiIiLnNA2PL6l580wxLJcLduyAffsKr2AdFmb279ljhrs3a1b+fQWIagE9N0LaeohuV+ED9nUZZu56So57X71gGBwHVQt5dlLW7DY7HWt2LP8Li4iIiIiIoKD9VLfeChMmmO2OHaFatcLbORzw22/w3numKN2QIWXTH8sFSTPB7g9VO5ms/slCEs2rAjvmhEkH4LdU9z5/G9wQA5dHFv61RUREREREznUaHk8hwxI2bjRZ9o4dCx8aX54WD4WNb5vtJv8HzZ71bn/KwNrj2fWD+bLrF4TAoFiI8fJfv4iIiIiISFnQ8PjSqF/fvHzB9onu7W1fnFNB+1EnfLMf5h127wu0ww3R0ClS2XUREREREREF7b4uvps7cI+/yrt98aDVGTAhCQ7luvc1OJ5dj1Z2XUREREREBFDQ7vvafgzx15g57TX6eLs3pZbphK/3w4KTsus3xUDHCGXXRURERERE8lPQ7uscAVBnkLd74RErj8Cn+yA1X3a9UQgMjIMq/t7rl4iIiIiIiK9S0C5lLsMJXyXDwjT3viA73BwDHZRdFxEREREROS0F7VKm/j6eXU/Ll11vHAoDY6GysusiIiIiIiJnpKDd27JTYdN/wT8M6t5h5q6fAzKcMDEZFuXLrgfboU9VaBeu7LqIiIiIiEhRKGj3trk9Yf98wAWHV0PrN73do1L7Kx0+2wfpTve+pqEwIBYiz41nEiIiIiIiIuVCQbu3HVwMuMz2gT+82pXSSs812fUl6e59IQ7oGwOXKLsuIiIiIiJSbAravSE7FRxB5lX3Ttgwzuyvd7dXu1UaS9Phi5Oy680rQf9YiNBdJiIiIiIiUiIKp8rbymdh5dPgFwqdf4JWb0DtQeBXCSIaebt3xZaeC58nw7J82fVQB9xSFdqEKbsuIiIiIiJSGgray5MrB1Y9Y7ZzM2HNi9D5MqjSxrv9KgHLMsPgv0g2RedOaFEJ+sVCuO4sERERERGRUlNoVZ5sfhAUC8eSTdQbWsvbPSqRtFxTaG75Efe+Sg64tSq0UnZdRERERETEYxS0lyebDS6fDmtfgqCq0ORpb/eoWCwLFqWbYnOZ+bLrrcJMwB6mu0lERERERMSjFGaVt8jG0O5jb/ei2FJz4LNkWJEvux7mMEPhW4aV7bVTMlN47Y/X8LP78VD7hwgPDC/bC4qIiIiIiPgIBe1yRpYFC9Pgq/0Fs+ttwkyxuUrlcAf1/aYvc7bNwcJiVfIqJvWdVPYXFRERERER8QEK2s8maSYcXAY1boRKdU7f7shWWD7SbF/0IlSqfWqbw2vhwAKIvQIq1SqT7nrSoRz4dB+synDvC/eDflWhRRln1/NbmbwSp2WeGKxIXlF+FxYREREREfEyBe1nsvsnmNsdsMGasdBzMwRULrzt/H5wcLHZztwF3RYU/Dx1NfzSElzZ4BcGPdZASGKZdr+kLAsWpMFXyXDM5d5/STj0rWqWdCtPIzuM5KFpD2HDxqPtHy3fi4uIiIiIiHiRgvYz2T8PsAMuyD4Eaeshum3hbbOS4Xg2mGP7Tv08eY4J2AFy0+HAn1Cj6EG70+XkoWkP8fOmn+nbuC/PdH4GWxmUaT94PLu+Ol92PcIP+sdC80oev1yRjGg3gpsuvAmHzUG18Gre6YSIiIiIiIgX2L3dAZ9W/Qaw+5vtsAYQ2fz0bVu+Bo4Q82r52qmfx3YBe5DZ9o+E6HbF6sqktZP4z5//YUPKBp777Tlmb5tdrOPPxrLg91R4ZlvBgL1dOIyq5b2A/YQaETUUsIuIiIiIyHlHmfYzqdIarlsPh9dBTAfwCz5928RecHOa2bYXMn48ohF0XwUHFkJsZwhJKFZXsp3ZZ3xfGik5MCEJ1ma690X6wYBYaOrlYF1EREREROR8pqD9bEJrmldRFBas5xdW17xKoE/jPvy44Ud+3fwrNze+mW51u5XoPPlZFvx2GCbth6x8c9c7RMBNMRBSznPXRUREREREpCAF7RVEgCOAL276wmPnO5ANn+yD9fmy65X9YGAcNA712GVERERERESkFBS0n2csC+akwuQDkJ0vu97xeHY9SNl1ERERERERn6GgPb/5/eCSZyCqlbd7UiaSs+GTJNh41L0vyh8GxUIjZddFRERERER8joL2/Hb/BLMXwQ37oAyWU/MWy4JZqfDtfsix3Ps7RcIN0cqui4iIiIiI+CoF7QVYkH0QrFyw+Xu7Mx6xLxs+ToLN+bLr0f4wMBYaKrsuIiIiIiLi0xS052ezw0UvuddmL0PrDqzjo+UfcWHMhQxsNhCbhzP7LgtmHoIpBwpm1y+PhOtjINDu0cuJiIiIiIhIGVDQnt8NSVA5pswvcyT7CO3/1560rDSclpNsZzZ3trzTY+dPyoKP98GWfNn1GH8YFAcXhHjsMiIiIiIiIlLGFLTn5wgs9iFZuVnM3zmfWpG1qFO5TpGO2Z22m0PHDplL2hwsT1pe7OsWxmXB9EMw9QDkHs+u24AulaFXtLLrIiIiIiIiFY2C9lJwWS66fNyFBbsW4Gf349cBv9KldpezHle/Sn261OrCrG2zCHQEMqj5oFL3ZU+Wmbu+7Zh7X9UAGBwL9ZRdFxERERERqZAUtJfCttRtLNi1AADLspi4amKRgna7zc60gdNYsW8FieGJxISWfEi+y4JfD8IPKQWz61dWhp7REKDsuoiIiIiISIWloL0UEsISiA2NZV/GPpyWk3aJ7Yp8rMPuoEV8i1Jdf/fx7Pr2fNn12AC4LQ7qBJfq1CIiIiIiIuIDFLSXkmVZhW6XJacFvxyEH1PMNpjsercouK4K+Cu7LiIiIiIick5QeFcKe9L3kJyZDJiCcgt3LyzV+ZwuJy/Me4EBkwfw2/bfCm2z/aiTq36bw4OLZrAjbTcA8QEwsgbcEKOAXURERERE5FyiEK8UakXW4tLqlwJgs9m4tcmtBT7fnrqdth+0JfG1RD5d8elZz/f24rd5fObjfLHqC6769CpSMlPyPst1wfcHYMDSNczcvZ4th7bw88YfaBeayhM1obaGw4uIiIiIiJxzNDy+FOw2OzMHz+SPnX9QM7ImtSJrFfj86TlPs2TPEpyWk9un3M6NjW4k2P/00fW21G04bA6clpNjucdIzkimSkgVdhwzc9d3ZUF6ViY2mw0razeupI9oc8Wl+Nsjy/aLioiIiIiIiFco055Pn6/70Pjtxny9+usiHxPgCKBTrU6nBOwAfnb3MxGbzYbNZjvjue5pfQ9VQqoAcEvjW6hXpSFTDsDYHSZgB2hctRGVM/+A7aPpf0FHLoy5sMh9FRERERERkYrFZpVX9TQflpaWRkREBPbH7bgCXfjb/Ul5NIWwwLBSnXdP+h4GfzuYnWk7GXPFGG5odMNZj8l2ZpN6LJWjjqp8lGTWXz8hMdBUho8PyCU9K53KwZVL1T8RERERERHxjhNx6OHDhwkPDz9tOw2PL4TTcuKyXKU+T0JYAtMHTS/WMTZbAPMzqzLtkFmDHcBug+5RcHUU+NkB/BSwi4iIiIiInAcUtOfTIr4FO7N28tzlzxERFFHu19961Mxd35vt3lf9eHY9MajcuyMiIiIiIiJepqA9n1mDZ51xWEJZyXHB1BSYfhBOzFVw2KBHFbgqymyLiIiIiIjI+UdBu5dtPp5d35cvu14zCAbHQbVA7/VLREREREREvE9Buwf8tv03Plz+IRfFXsQDlzyA3Xb2ovzZLphyAGYecmfX/WxwXRXoFmXmsYuIiIiIiMj5TUF7Ke07so+uE7ridDn5yPqISgGVuKPlHWc8ZmMmfLIPkvNl12sFHa8Mr+y6iIiIiIiIHKegvZT2HtlLttNE3w6bg82HNp+2bZYLvjsAs0/KrveKhisrK7suIiIiIiIiBSloL6Vmsc3ocUEPftjwA9Eh0dzRovAs+4ZMM3f9QI57X51gGBwLccqui4iIiIiISCEUtJeS3WZn6i1T2Z2+m5iQGAL9CkbgWS6YvB/mpLr3+dugdzR0UXZdREREREREzkBBuwfYbDYSwxNP2b8uw8xdT8mXXa8XDIPiIDagHDsoIiIiIiIiFZKC9jJwzAmTDsBvqe59/ja4IQYujwSbsusiIiIiIiJSBAraPWzt8ez6wXzZ9frHs+tVlV0XERERERGRYlDQ7iFHnTBpP/x+2L0v0A43REOnSGXXRUREREREpPgUtHvA6gyYkASHct37GoTAoFiIVnZdRERERERESkhBeylkOuHr/bDgpOz6TTHQMULZdRERERERESkdBe0ltPIIfLoPUvNl1xuFwMA4qOLvvX6JiIiIiIjIuUNBezFlOuHLZFiY5t4XZIebY6CDsusiIiIiIiLiQQrai+Hv49n1tHzZ9cahMCAWopRdFxEREREREQ9T0F4EGcez63/my64H26FPVWgXruy6iIiIiIiIlA0F7WfxVzp8nlwwu970eHY9Utl1ERERERERKUMK2k8jPRcmJsOSdPe+EAf0jYFLlF0XERERERGRcqCgvRBL0+GLfZDudO9rXgn6VVV2XURERERERMqP3dsd8JS3336b2rVrExQURKtWrfj999+LfY70XHhvD7y/xx2whzrgjni4N0EBu4iIiIiIiJSvcyJo//LLLxk+fDhPPPEEf/31Fx07duSaa65hx44dxTrPmO2wLN9w+BaVYFQtuFjD4UVERERERMQLbJZlWd7uRGldcskltGzZknfeeSdvX6NGjejduzdjx4496/FpaWlERERw25LDBFQKJ9RhhsK3ClOwLiIiIiIiIp53Ig49fPgw4eHhp21X4ee0Z2dns3TpUh577LEC+7t168aCBQsKPSYrK4usrKy894cPHzbnOpJG80pwcxSEAenphR4uIiIiIiIiUippaWZN8bPl0St80H7gwAGcTiexsbEF9sfGxpKUlFToMWPHjuWZZ545Zf/nnavzOfDPsuioiIiIiIiIyEnS09OJiIg47ecVPmg/wXbSOHbLsk7Zd8Ljjz/OiBEj8t6npqZSs2ZNduzYcca/LJGKLC0tjerVq7Nz584zDr8Rqeh0r8v5QPe5nA90n8u5zrIs0tPTSUhIOGO7Ch+0R0dH43A4TsmqJycnn5J9PyEwMJDAwMBT9kdEROgXgpzzwsPDdZ/LeUH3upwPdJ/L+UD3uZzLipI0rvDV4wMCAmjVqhXTp08vsH/69Om0b9/eS70SERERERERKb0Kn2kHGDFiBAMHDqR169a0a9eO999/nx07djBkyBBvd01ERERERESkxM6JoL1v376kpKTw7LPPsnfvXpo0acJPP/1EzZo1i3R8YGAgTz/9dKFD5kXOFbrP5Xyhe13OB7rP5Xyg+1zEOCfWaRcRERERERE5F1X4Oe0iIiIiIiIi5yoF7SIiIiIiIiI+SkG7iIiIiIiIiI9S0C4iIiIiIiLio877oP3tt9+mdu3aBAUF0apVK37//Xdvd0mkyMaOHUubNm0ICwujatWq9O7dm/Xr1xdoY1kWo0aNIiEhgeDgYDp37szq1asLtMnKyuKBBx4gOjqa0NBQevbsya5du8rzq4gU2dixY7HZbAwfPjxvn+5zOVfs3r2bAQMGUKVKFUJCQrjoootYunRp3ue616Wiy83N5cknn6R27doEBwdTp04dnn32WVwuV14b3eciBZ3XQfuXX37J8OHDeeKJJ/jrr7/o2LEj11xzDTt27PB210SKZO7cuQwdOpSFCxcyffp0cnNz6datGxkZGXltXnrpJV577TXGjRvH4sWLiYuLo2vXrqSnp+e1GT58ON9++y0TJ05k3rx5HDlyhB49euB0Or3xtUROa/Hixbz//vs0a9aswH7d53IuOHToEB06dMDf35+ff/6ZNWvW8OqrrxIZGZnXRve6VHQvvvgi7777LuPGjWPt2rW89NJLvPzyy7z55pt5bXSfi5zEOo9dfPHF1pAhQwrsa9iwofXYY495qUcipZOcnGwB1ty5cy3LsiyXy2XFxcVZL7zwQl6bY8eOWREREda7775rWZZlpaamWv7+/tbEiRPz2uzevduy2+3WL7/8Ur5fQOQM0tPTrfr161vTp0+3OnXqZA0bNsyyLN3ncu4YOXKkdemll572c93rci7o3r27dfvttxfYd8MNN1gDBgywLEv3uUhhzttMe3Z2NkuXLqVbt24F9nfr1o0FCxZ4qVcipXP48GEAoqKiANi6dStJSUkF7vPAwEA6deqUd58vXbqUnJycAm0SEhJo0qSJfhbEpwwdOpTu3btz5ZVXFtiv+1zOFVOnTqV169bcfPPNVK1alRYtWvDf//4373Pd63IuuPTSS5k5cyYbNmwA4O+//2bevHlce+21gO5zkcL4ebsD3nLgwAGcTiexsbEF9sfGxpKUlOSlXomUnGVZjBgxgksvvZQmTZoA5N3Lhd3n27dvz2sTEBBA5cqVT2mjnwXxFRMnTmTZsmUsXrz4lM90n8u5YsuWLbzzzjuMGDGCf/3rXyxatIgHH3yQwMBABg0apHtdzgkjR47k8OHDNGzYEIfDgdPpZPTo0dx6662AfqeLFOa8DdpPsNlsBd5blnXKPpGK4P7772fFihXMmzfvlM9Kcp/rZ0F8xc6dOxk2bBjTpk0jKCjotO10n0tF53K5aN26NWPGjAGgRYsWrF69mnfeeYdBgwbltdO9LhXZl19+yaeffsrnn39O48aNWb58OcOHDychIYHBgwfntdN9LuJ23g6Pj46OxuFwnPI0Ljk5+ZQneyK+7oEHHmDq1KnMnj2bxMTEvP1xcXEAZ7zP4+LiyM7O5tChQ6dtI+JNS5cuJTk5mVatWuHn54efnx9z587ljTfewM/PL+8+1X0uFV18fDwXXnhhgX2NGjXKK5Cr3+lyLnjkkUd47LHHuOWWW2jatCkDBw7kn//8J2PHjgV0n4sU5rwN2gMCAmjVqhXTp08vsH/69Om0b9/eS70SKR7Lsrj//vuZPHkys2bNonbt2gU+r127NnFxcQXu8+zsbObOnZt3n7dq1Qp/f/8Cbfbu3cuqVav0syA+4YorrmDlypUsX74879W6dWv69+/P8uXLqVOnju5zOSd06NDhlGU7N2zYQM2aNQH9TpdzQ2ZmJnZ7wRDE4XDkLfmm+1ykEF4qgOcTJk6caPn7+1v/+9//rDVr1ljDhw+3QkNDrW3btnm7ayJFcu+991oRERHWnDlzrL179+a9MjMz89q88MILVkREhDV58mRr5cqV1q233mrFx8dbaWlpeW2GDBliJSYmWjNmzLCWLVtmdenSxWrevLmVm5vrja8lclb5q8dblu5zOTcsWrTI8vPzs0aPHm1t3LjR+uyzz6yQkBDr008/zWuje10qusGDB1vVqlWzfvjhB2vr1q3W5MmTrejoaOvRRx/Na6P7XKSg8zpotyzLeuutt6yaNWtaAQEBVsuWLfOWyhKpCIBCXx9++GFeG5fLZT399NNWXFycFRgYaF122WXWypUrC5zn6NGj1v33329FRUVZwcHBVo8ePawdO3aU87cRKbqTg3bd53Ku+P77760mTZpYgYGBVsOGDa3333+/wOe616WiS0tLs4YNG2bVqFHDCgoKsurUqWM98cQTVlZWVl4b3eciBdksy7K8mekXERERERERkcKdt3PaRURERERERHydgnYRERERERERH6WgXURERERERMRHKWgXERERERER8VEK2kVERERERER8lIJ2ERERERERER+loF1ERERERETERyloFxEREREREfFRCtpFRETEI0aNGsVFF13k7W4AcNttt9G7d29vd0NERKTUFLSLiIj4mKSkJIYNG0a9evUICgoiNjaWSy+9lHfffZfMzExvd69ERo0ahc1mO+Nr27ZtxT7vtm3bsNlsLF++3ON9FhER8QV+3u6AiIiIuG3ZsoUOHToQGRnJmDFjaNq0Kbm5uWzYsIHx48eTkJBAz549Cz02JycHf3//cu5x0Tz88MMMGTIk732bNm24++67ueuuu/L2xcTE5G1nZ2cTEBBQrn0UERHxRcq0i4iI+JD77rsPPz8/lixZQp8+fWjUqBFNmzblxhtv5Mcff+S6667La2uz2Xj33Xfp1asXoaGhPP/88wC888471K1bl4CAABo0aMCECRPyjiksM52amorNZmPOnDkAzJkzB5vNxsyZM2ndujUhISG0b9+e9evXF+jrCy+8QGxsLGFhYdxxxx0cO3bstN+rUqVKxMXF5b0cDgdhYWF57x977DFuvPFGxo4dS0JCAhdccEHed/zuu+8KnCsyMpKPPvoIgNq1awPQokULbDYbnTt3LtD2lVdeIT4+nipVqjB06FBycnLO+m8gIiLiSxS0i4iI+IiUlBSmTZvG0KFDCQ0NLbSNzWYr8P7pp5+mV69erFy5kttvv51vv/2WYcOG8dBDD7Fq1Sruuece/vGPfzB79uxi9+eJJ57g1VdfZcmSJfj5+XH77bfnffbVV1/x9NNPM3r0aJYsWUJ8fDxvv/12sa+R38yZM1m7di3Tp0/nhx9+KNIxixYtAmDGjBns3buXyZMn5302e/ZsNm/ezOzZs/n444/56KOP8oJ9ERGRikLD40VERHzEpk2bsCyLBg0aFNgfHR2dl8UeOnQoL774Yt5n/fr1KxBM9+vXj9tuu4377rsPgBEjRrBw4UJeeeUVLr/88mL1Z/To0XTq1AmAxx57jO7du3Ps2DGCgoJ4/fXXuf3227nzzjsBeP7555kxY8YZs+1nExoaygcffFCsYfEnhtRXqVKFuLi4Ap9VrlyZcePG4XA4aNiwId27d2fmzJkFhuSLiIj4OmXaRUREfMzJ2fRFixaxfPlyGjduTFZWVoHPWrduXeD92rVr6dChQ4F9HTp0YO3atcXuR7NmzfK24+PjAUhOTs67Trt27Qq0P/l9cTVt2tSj89gbN26Mw+HIex8fH5/XfxERkYpCmXYREREfUa9ePWw2G+vWrSuwv06dOgAEBwefckxhw+hPDvoty8rbZ7fb8/adcLp53vmL2p043uVynfV7lNTpvkv+vsLp+3uyk4vy2Wy2Mu2/iIhIWVCmXURExEdUqVKFrl27Mm7cODIyMkp0jkaNGjFv3rwC+xYsWECjRo0A93DyvXv35n1ekuXSGjVqxMKFCwvsO/m9J8TExBTo68aNGwsse3ciM+90Oj1+bREREV+gTLuIiIgPefvtt+nQoQOtW7dm1KhRNGvWDLvdzuLFi1m3bh2tWrU64/GPPPIIffr0oWXLllxxxRV8//33TJ48mRkzZgAmW9+2bVteeOEFatWqxYEDB3jyySeL3c9hw4YxePBgWrduzaWXXspnn33G6tWr80YFeEqXLl0YN24cbdu2xeVyMXLkyAIZ9KpVqxIcHMwvv/xCYmIiQUFBREREeLQPIiIi3qRMu4iIiA+pW7cuf/31F1deeSWPP/44zZs3p3Xr1rz55ps8/PDDPPfcc2c8vnfv3vznP//h5ZdfpnHjxrz33nt8+OGHBZZCGz9+PDk5ObRu3Zphw4blLRVXHH379uWpp55i5MiRtGrViu3bt3PvvfcW+zxn8+qrr1K9enUuu+wy+vXrx8MPP0xISEje535+frzxxhu89957JCQk0KtXL4/3QURExJts1skTxURERERERETEJyjTLiIiIiIiIuKjFLSLiIiIiIiI+CgF7SIiIiIiIiI+SkG7iIiIiIiIiI9S0C4iIiIiIiLioxS0i4iIiIiIiPgoBe0iIiIiIiIiPkpBu4iIiIiIiIiPUtAuIiIiIiIi4qMUtIuIiIiIiIj4KAXtIiIiIiIiIj7q/wHwlTKy9U8N+AAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "Tester.test(rf, test)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "bd895ac9-2814-469c-9d3d-c94e3f42003d", + "metadata": {}, + "outputs": [], + "source": [ + "def gb(item):\n", + " return gradient_boosting.price(description(item))" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "00112510-9634-4164-99b1-9dc7c39f5232", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[93m1: Guess: $278.30 Truth: $374.41 Error: $96.11 SLE: 0.09 Item: OEM AC Compressor w/A/C Repair Kit For F...\u001b[0m\n", + "\u001b[92m2: Guess: $203.69 Truth: $225.11 Error: $21.42 SLE: 0.01 Item: Motorcraft YB3125 Fan Clutch\u001b[0m\n", + "\u001b[91m3: Guess: $282.90 Truth: $61.68 Error: $221.22 SLE: 2.28 Item: Dorman 603-159 Front Washer Fluid Reserv...\u001b[0m\n", + "\u001b[91m4: Guess: $273.28 Truth: $599.99 Error: $326.71 SLE: 0.62 Item: HP Premium 17.3-inch HD Plus Touchscreen...\u001b[0m\n", + "\u001b[91m5: Guess: $215.50 Truth: $16.99 Error: $198.51 SLE: 6.19 Item: 5-Position Super Switch Pickup Selector ...\u001b[0m\n", + "\u001b[91m6: Guess: $119.24 Truth: $31.99 Error: $87.25 SLE: 1.67 Item: Horror Bookmarks, Resin Horror Bookmarks...\u001b[0m\n", + "\u001b[91m7: Guess: $291.20 Truth: $101.79 Error: $189.41 SLE: 1.09 Item: SK6241 - Stinger 4 Gauge 6000 Series Pow...\u001b[0m\n", + "\u001b[92m8: Guess: $264.52 Truth: $289.00 Error: $24.48 SLE: 0.01 Item: Godox ML60Bi LED Light Kit, Handheld LED...\u001b[0m\n", + "\u001b[91m9: Guess: $324.30 Truth: $635.86 Error: $311.56 SLE: 0.45 Item: Randall RG75DG3PLUS G3 Plus 100-Watt Com...\u001b[0m\n", + "\u001b[91m10: Guess: $215.60 Truth: $65.99 Error: $149.61 SLE: 1.38 Item: HOLDWILL 6 Pack LED Shop Light, 4FT 24W ...\u001b[0m\n", + "\u001b[92m11: Guess: $277.66 Truth: $254.21 Error: $23.45 SLE: 0.01 Item: Viking Horns V103C/1005ATK 3 Gallon Air ...\u001b[0m\n", + "\u001b[91m12: Guess: $233.92 Truth: $412.99 Error: $179.07 SLE: 0.32 Item: CURT 70110 Custom Tow Bar Base Plate Bra...\u001b[0m\n", + "\u001b[93m13: Guess: $124.08 Truth: $205.50 Error: $81.42 SLE: 0.25 Item: 10-Pack Solar HAMMERED BRONZE Finish Pos...\u001b[0m\n", + "\u001b[92m14: Guess: $280.70 Truth: $248.23 Error: $32.47 SLE: 0.01 Item: COSTWAY Electric Tumble Dryer, Sliver\u001b[0m\n", + "\u001b[93m15: Guess: $261.35 Truth: $399.00 Error: $137.65 SLE: 0.18 Item: FREE SIGNAL TV Transit 32\" 12 Volt DC Po...\u001b[0m\n", + "\u001b[92m16: Guess: $339.87 Truth: $373.94 Error: $34.07 SLE: 0.01 Item: Bilstein 5100 Monotube Gas Shock Set com...\u001b[0m\n", + "\u001b[91m17: Guess: $235.63 Truth: $92.89 Error: $142.74 SLE: 0.85 Item: Sangean K-200 Multi-Function Upright AM/...\u001b[0m\n", + "\u001b[93m18: Guess: $116.94 Truth: $51.99 Error: $64.95 SLE: 0.64 Item: Charles Leonard Magnetic Lapboard Class ...\u001b[0m\n", + "\u001b[91m19: Guess: $361.21 Truth: $179.00 Error: $182.21 SLE: 0.49 Item: Gigabyte AMD Radeon HD 7870 2 GB GDDR5 D...\u001b[0m\n", + "\u001b[93m20: Guess: $82.58 Truth: $19.42 Error: $63.16 SLE: 1.99 Item: 3dRose LLC 8 x 8 x 0.25 Inches Bull Terr...\u001b[0m\n", + "\u001b[91m21: Guess: $242.43 Truth: $539.95 Error: $297.52 SLE: 0.64 Item: ROKINON 85mm F1.4 Auto Focus Full Frame ...\u001b[0m\n", + "\u001b[93m22: Guess: $203.82 Truth: $147.67 Error: $56.15 SLE: 0.10 Item: AUTOSAVER88 Headlight Assembly Compatibl...\u001b[0m\n", + "\u001b[91m23: Guess: $142.76 Truth: $24.99 Error: $117.77 SLE: 2.93 Item: ASI NAUTICAL 2.5 Inches Opera Glasses Bi...\u001b[0m\n", + "\u001b[91m24: Guess: $291.76 Truth: $149.00 Error: $142.76 SLE: 0.45 Item: Behringer TUBE OVERDRIVE TO100 Authentic...\u001b[0m\n", + "\u001b[92m25: Guess: $26.46 Truth: $16.99 Error: $9.47 SLE: 0.18 Item: Fun Express Insect Finger Puppets - 24 f...\u001b[0m\n", + "\u001b[93m26: Guess: $52.18 Truth: $7.99 Error: $44.19 SLE: 3.16 Item: WAFJAMF Roller Stamp Identity Theft Stam...\u001b[0m\n", + "\u001b[92m27: Guess: $185.96 Truth: $199.99 Error: $14.03 SLE: 0.01 Item: Capulina Tiffany Floor Lamp 2-Light 16\" ...\u001b[0m\n", + "\u001b[92m28: Guess: $245.77 Truth: $251.45 Error: $5.68 SLE: 0.00 Item: Apple Watch Series 6 (GPS, 44mm) - Space...\u001b[0m\n", + "\u001b[92m29: Guess: $242.42 Truth: $231.62 Error: $10.80 SLE: 0.00 Item: ICON 01725 Tandem Axle Fender Skirt FS17...\u001b[0m\n", + "\u001b[93m30: Guess: $192.60 Truth: $135.00 Error: $57.60 SLE: 0.12 Item: SanDisk 128GB Ultra (10 Pack) MicroSD Cl...\u001b[0m\n", + "\u001b[93m31: Guess: $230.39 Truth: $356.62 Error: $126.23 SLE: 0.19 Item: Velvac 2020,L,C/Hr,W,E2003,102\",Bk - 715...\u001b[0m\n", + "\u001b[92m32: Guess: $231.54 Truth: $257.99 Error: $26.45 SLE: 0.01 Item: TCMT Passenger Backrest Sissy Bar & Lugg...\u001b[0m\n", + "\u001b[91m33: Guess: $208.87 Truth: $27.99 Error: $180.88 SLE: 3.92 Item: Alnicov 63.5MM Brass Tremolo Block,Tremo...\u001b[0m\n", + "\u001b[91m34: Guess: $255.85 Truth: $171.20 Error: $84.65 SLE: 0.16 Item: Subaru Forester Outback Legacy OEM Engin...\u001b[0m\n", + "\u001b[93m35: Guess: $172.11 Truth: $225.00 Error: $52.89 SLE: 0.07 Item: Richmond Auto Upholstery - 2012 Dodge Ra...\u001b[0m\n", + "\u001b[91m36: Guess: $206.53 Truth: $105.00 Error: $101.53 SLE: 0.45 Item: AP-39 Automotive Paint Primer Grey 2K Ur...\u001b[0m\n", + "\u001b[92m37: Guess: $264.67 Truth: $299.99 Error: $35.32 SLE: 0.02 Item: Road Top Wireless Carplay Retrofit Kit D...\u001b[0m\n", + "\u001b[92m38: Guess: $438.38 Truth: $535.09 Error: $96.71 SLE: 0.04 Item: Gibson Performance Exhaust 5658 Aluminiz...\u001b[0m\n", + "\u001b[91m39: Guess: $137.75 Truth: $12.33 Error: $125.42 SLE: 5.49 Item: Bella Tunno Happy Links - Baby Montessor...\u001b[0m\n", + "\u001b[91m40: Guess: $201.92 Truth: $84.99 Error: $116.93 SLE: 0.74 Item: CANMORE H300 Handheld GPS Golf Device, S...\u001b[0m\n", + "\u001b[93m41: Guess: $88.92 Truth: $15.99 Error: $72.93 SLE: 2.78 Item: DCPOWER AC Adapter Compatible Replacemen...\u001b[0m\n", + "\u001b[91m42: Guess: $168.94 Truth: $62.44 Error: $106.50 SLE: 0.97 Item: Sharp, VX2128V, Commercial Desktop Calcu...\u001b[0m\n", + "\u001b[92m43: Guess: $63.30 Truth: $82.99 Error: $19.69 SLE: 0.07 Item: Melissa & Doug Lifelike Plush Stork Gian...\u001b[0m\n", + "\u001b[91m44: Guess: $315.57 Truth: $599.95 Error: $284.38 SLE: 0.41 Item: Sony SSCS8 2-Way 3-Driver Center Channel...\u001b[0m\n", + "\u001b[91m45: Guess: $350.86 Truth: $194.99 Error: $155.87 SLE: 0.34 Item: ASUS Chromebook CX1, 14\" Full HD NanoEdg...\u001b[0m\n", + "\u001b[93m46: Guess: $244.32 Truth: $344.95 Error: $100.63 SLE: 0.12 Item: FiiO X7 32GB Hi-Res Lossless Music Playe...\u001b[0m\n", + "\u001b[92m47: Guess: $42.76 Truth: $37.99 Error: $4.77 SLE: 0.01 Item: TORRO Leather Case Compatible with iPhon...\u001b[0m\n", + "\u001b[92m48: Guess: $220.75 Truth: $224.35 Error: $3.60 SLE: 0.00 Item: Universal Air Conditioner KT 1031 A/C Co...\u001b[0m\n", + "\u001b[91m49: Guess: $406.33 Truth: $814.00 Error: $407.67 SLE: 0.48 Item: Street Series Stainless Performance Cat-...\u001b[0m\n", + "\u001b[92m50: Guess: $444.27 Truth: $439.88 Error: $4.39 SLE: 0.00 Item: Lenovo IdeaPad 3 14-inch Laptop, 14.0-in...\u001b[0m\n", + "\u001b[93m51: Guess: $251.37 Truth: $341.43 Error: $90.06 SLE: 0.09 Item: Access Bed Covers TonnoSport 22050219 - ...\u001b[0m\n", + "\u001b[91m52: Guess: $172.66 Truth: $46.78 Error: $125.88 SLE: 1.67 Item: G.I. JOE Hasbro 3 3/4\" Wave 5 Action Fig...\u001b[0m\n", + "\u001b[92m53: Guess: $173.71 Truth: $171.44 Error: $2.27 SLE: 0.00 Item: T&S Brass B-0232-BST Double Pantry Fauce...\u001b[0m\n", + "\u001b[91m54: Guess: $214.37 Truth: $458.00 Error: $243.63 SLE: 0.57 Item: ZTUOAUMA Fuel Injection Pump 3090942 309...\u001b[0m\n", + "\u001b[91m55: Guess: $300.93 Truth: $130.75 Error: $170.18 SLE: 0.69 Item: 2AP18AA#ABA Hp Prime Graphing Calculator...\u001b[0m\n", + "\u001b[93m56: Guess: $163.77 Truth: $83.81 Error: $79.96 SLE: 0.44 Item: Lowrance 000-0119-83 Nmea 2000 25' Exten...\u001b[0m\n", + "\u001b[91m57: Guess: $158.84 Truth: $386.39 Error: $227.55 SLE: 0.78 Item: Jeep Genuine Accessories 82213051 Hood L...\u001b[0m\n", + "\u001b[93m58: Guess: $213.25 Truth: $169.00 Error: $44.25 SLE: 0.05 Item: GODOX CB-06 Hard Carrying Case with Whee...\u001b[0m\n", + "\u001b[91m59: Guess: $156.45 Truth: $17.95 Error: $138.50 SLE: 4.48 Item: Au-Tomotive Gold, INC. Ford Black Valet ...\u001b[0m\n", + "\u001b[92m60: Guess: $256.86 Truth: $269.00 Error: $12.14 SLE: 0.00 Item: Snailfly Black Roof Rack Rail + Cross Ba...\u001b[0m\n", + "\u001b[91m61: Guess: $248.44 Truth: $77.77 Error: $170.67 SLE: 1.33 Item: KING SHA Anti Glare LED Track Lighting H...\u001b[0m\n", + "\u001b[91m62: Guess: $258.29 Truth: $88.99 Error: $169.30 SLE: 1.12 Item: APS Compatible with Chevy Silverado 1500...\u001b[0m\n", + "\u001b[93m63: Guess: $290.76 Truth: $364.41 Error: $73.65 SLE: 0.05 Item: Wilwood Engineering 14011291R Brake Cali...\u001b[0m\n", + "\u001b[91m64: Guess: $228.11 Truth: $127.03 Error: $101.08 SLE: 0.34 Item: ACDelco Gold 336-1925A Starter, Remanufa...\u001b[0m\n", + "\u001b[91m65: Guess: $323.48 Truth: $778.95 Error: $455.47 SLE: 0.77 Item: UWS EC10783 69-Inch Matte Black Heavy-Wa...\u001b[0m\n", + "\u001b[91m66: Guess: $478.90 Truth: $206.66 Error: $272.24 SLE: 0.70 Item: Dell Latitude E5440 14in Business Laptop...\u001b[0m\n", + "\u001b[91m67: Guess: $158.53 Truth: $35.94 Error: $122.59 SLE: 2.14 Item: (Plug and Play) Spare Tire Brake Light W...\u001b[0m\n", + "\u001b[91m68: Guess: $253.81 Truth: $149.00 Error: $104.81 SLE: 0.28 Item: The Ultimate Roadside Rescue Assistant\u001b[0m\n", + "\u001b[93m69: Guess: $197.02 Truth: $251.98 Error: $54.96 SLE: 0.06 Item: Brand New 18\" x 8.5\" Replacement Wheel f...\u001b[0m\n", + "\u001b[92m70: Guess: $180.50 Truth: $160.00 Error: $20.50 SLE: 0.01 Item: Headlight Headlamp LH Left & RH Right Pa...\u001b[0m\n", + "\u001b[91m71: Guess: $137.45 Truth: $39.99 Error: $97.46 SLE: 1.48 Item: Lilo And Stitch Deluxe Oversize Print La...\u001b[0m\n", + "\u001b[91m72: Guess: $191.79 Truth: $362.41 Error: $170.62 SLE: 0.40 Item: AC Compressor & A/C Clutch For Hyundai A...\u001b[0m\n", + "\u001b[93m73: Guess: $208.88 Truth: $344.00 Error: $135.12 SLE: 0.25 Item: House Of Troy PIN475-AB Pinnacle Collect...\u001b[0m\n", + "\u001b[91m74: Guess: $233.11 Truth: $25.09 Error: $208.02 SLE: 4.81 Item: Juno T29 WH Floating Electrical Feed Sin...\u001b[0m\n", + "\u001b[93m75: Guess: $233.16 Truth: $175.95 Error: $57.21 SLE: 0.08 Item: Sherman GO-PARTS - for 2013-2016 Toyota ...\u001b[0m\n", + "\u001b[93m76: Guess: $182.09 Truth: $132.64 Error: $49.45 SLE: 0.10 Item: Roland RPU-3 Electronic Keyboard Pedal o...\u001b[0m\n", + "\u001b[91m77: Guess: $219.68 Truth: $422.99 Error: $203.31 SLE: 0.43 Item: Rockland VMI14 12,000 Pound 12 Volt DC E...\u001b[0m\n", + "\u001b[91m78: Guess: $232.99 Truth: $146.48 Error: $86.51 SLE: 0.21 Item: Max Advanced Brakes Elite XDS Front Cros...\u001b[0m\n", + "\u001b[93m79: Guess: $221.02 Truth: $156.83 Error: $64.19 SLE: 0.12 Item: Quality-Built 11030 Premium Quality Alte...\u001b[0m\n", + "\u001b[92m80: Guess: $222.74 Truth: $251.99 Error: $29.25 SLE: 0.02 Item: Lucida LG-510 Student Classical Guitar, ...\u001b[0m\n", + "\u001b[91m81: Guess: $194.18 Truth: $940.33 Error: $746.15 SLE: 2.48 Item: Longacre 52-79800 Aluminum Turn Plates\u001b[0m\n", + "\u001b[91m82: Guess: $258.16 Truth: $52.99 Error: $205.17 SLE: 2.46 Item: Motion Pro 08-0380 Adjustable Torque Wre...\u001b[0m\n", + "\u001b[92m83: Guess: $187.29 Truth: $219.95 Error: $32.66 SLE: 0.03 Item: Glyph Thunderbolt 3 NVMe Dock (0 GB)\u001b[0m\n", + "\u001b[91m84: Guess: $162.35 Truth: $441.03 Error: $278.68 SLE: 0.99 Item: TOYO Open Country MT Performance Radial ...\u001b[0m\n", + "\u001b[91m85: Guess: $335.47 Truth: $168.98 Error: $166.49 SLE: 0.47 Item: Razer Seiren X USB Streaming Microphone ...\u001b[0m\n", + "\u001b[91m86: Guess: $83.21 Truth: $2.49 Error: $80.72 SLE: 10.13 Item: Happy Birthday to Dad From Your Daughter...\u001b[0m\n", + "\u001b[93m87: Guess: $153.26 Truth: $98.62 Error: $54.64 SLE: 0.19 Item: Little Tikes My Real Jam First Concert S...\u001b[0m\n", + "\u001b[93m88: Guess: $184.29 Truth: $256.95 Error: $72.66 SLE: 0.11 Item: Studio M Peace and Harmony Art Pole Comm...\u001b[0m\n", + "\u001b[91m89: Guess: $153.86 Truth: $30.99 Error: $122.87 SLE: 2.49 Item: MyVolts 12V Power Supply Adaptor Compati...\u001b[0m\n", + "\u001b[91m90: Guess: $322.84 Truth: $569.84 Error: $247.00 SLE: 0.32 Item: Dell Latitude 7212 Rugged Extreme Tablet...\u001b[0m\n", + "\u001b[93m91: Guess: $222.82 Truth: $177.99 Error: $44.83 SLE: 0.05 Item: Covermates Contour Fit Car Cover - Light...\u001b[0m\n", + "\u001b[91m92: Guess: $254.07 Truth: $997.99 Error: $743.92 SLE: 1.86 Item: Westin 57-4025 Black HDX Grille Guard fi...\u001b[0m\n", + "\u001b[92m93: Guess: $208.15 Truth: $219.00 Error: $10.85 SLE: 0.00 Item: Fieldpiece JL2 Job Link Wireless App Tra...\u001b[0m\n", + "\u001b[91m94: Guess: $331.26 Truth: $225.55 Error: $105.71 SLE: 0.15 Item: hansgrohe Talis S Modern Premium Easy Cl...\u001b[0m\n", + "\u001b[93m95: Guess: $317.71 Truth: $495.95 Error: $178.24 SLE: 0.20 Item: G-Technology G-SPEED eS PRO High-Perform...\u001b[0m\n", + "\u001b[91m96: Guess: $349.17 Truth: $942.37 Error: $593.20 SLE: 0.98 Item: DreamLine SHDR-1960723L-01 Shower Door, ...\u001b[0m\n", + "\u001b[91m97: Guess: $206.35 Truth: $1.94 Error: $204.41 SLE: 18.11 Item: Sanctuary Square Backplate Finish: Oiled...\u001b[0m\n", + "\u001b[93m98: Guess: $179.87 Truth: $284.34 Error: $104.47 SLE: 0.21 Item: Pelican Protector 1750 Long Case - Multi...\u001b[0m\n", + "\u001b[92m99: Guess: $199.60 Truth: $171.90 Error: $27.70 SLE: 0.02 Item: Brock Replacement Driver and Passenger H...\u001b[0m\n", + "\u001b[93m100: Guess: $192.47 Truth: $144.99 Error: $47.48 SLE: 0.08 Item: Carlinkit Ai Box Mini, Android 11, Multi...\u001b[0m\n", + "\u001b[91m101: Guess: $248.34 Truth: $470.47 Error: $222.13 SLE: 0.41 Item: StarDot NetCamLIVE2 YouTube Live Stream ...\u001b[0m\n", + "\u001b[91m102: Guess: $200.84 Truth: $66.95 Error: $133.89 SLE: 1.19 Item: Atomic Compatible FILXXCAR0016 16x25x5 M...\u001b[0m\n", + "\u001b[93m103: Guess: $157.29 Truth: $117.00 Error: $40.29 SLE: 0.09 Item: Bandai Awakening of S. H. s.h.figuarts s...\u001b[0m\n", + "\u001b[91m104: Guess: $303.85 Truth: $172.14 Error: $131.71 SLE: 0.32 Item: Fit System 62135G Passenger Side Towing ...\u001b[0m\n", + "\u001b[93m105: Guess: $279.38 Truth: $392.74 Error: $113.36 SLE: 0.12 Item: Black Horse Black Aluminum Exceed Runnin...\u001b[0m\n", + "\u001b[92m106: Guess: $50.35 Truth: $16.99 Error: $33.36 SLE: 1.10 Item: Dearsun Twinkle Star Color Night Light P...\u001b[0m\n", + "\u001b[91m107: Guess: $116.19 Truth: $1.34 Error: $114.85 SLE: 15.32 Item: Pokemon - Gallade Spirit Link (83/108) -...\u001b[0m\n", + "\u001b[92m108: Guess: $283.54 Truth: $349.98 Error: $66.44 SLE: 0.04 Item: Ibanez GA34STCE-NT GIO Series Classical ...\u001b[0m\n", + "\u001b[91m109: Guess: $179.12 Truth: $370.71 Error: $191.59 SLE: 0.52 Item: Set 2 Heavy Duty 12-16.5 12x16.5 12 Ply ...\u001b[0m\n", + "\u001b[91m110: Guess: $168.17 Truth: $65.88 Error: $102.29 SLE: 0.86 Item: Hairpin Table Legs 28\" Heavy Duty Hairpi...\u001b[0m\n", + "\u001b[92m111: Guess: $214.22 Truth: $229.99 Error: $15.77 SLE: 0.01 Item: Marada Racing Seat with Adjustable Slide...\u001b[0m\n", + "\u001b[91m112: Guess: $184.86 Truth: $9.14 Error: $175.72 SLE: 8.46 Item: Remington Industries 24UL1007STRWHI25 24...\u001b[0m\n", + "\u001b[91m113: Guess: $446.01 Truth: $199.00 Error: $247.01 SLE: 0.65 Item: Acer S3-391-6046 13.3-inch Ultrabook, In...\u001b[0m\n", + "\u001b[91m114: Guess: $217.84 Truth: $109.99 Error: $107.85 SLE: 0.46 Item: ICBEAMER 7\" RGB LED Headlights Bulb Halo...\u001b[0m\n", + "\u001b[91m115: Guess: $319.16 Truth: $570.42 Error: $251.26 SLE: 0.34 Item: R1 Concepts Front Rear Brakes and Rotors...\u001b[0m\n", + "\u001b[92m116: Guess: $238.37 Truth: $279.99 Error: $41.62 SLE: 0.03 Item: Camplux 2.64 GPM Tankless , Outdoor Port...\u001b[0m\n", + "\u001b[91m117: Guess: $135.15 Truth: $30.99 Error: $104.16 SLE: 2.10 Item: KNOKLOCK 10 Pack 3.75 Inch(96mm) Kitchen...\u001b[0m\n", + "\u001b[91m118: Guess: $205.67 Truth: $31.99 Error: $173.68 SLE: 3.37 Item: Valley Enterprises Yaesu USB FTDI CT-62 ...\u001b[0m\n", + "\u001b[91m119: Guess: $180.09 Truth: $15.90 Error: $164.19 SLE: 5.62 Item: G9 LED Light Bulbs,8W,75W 100W replaceme...\u001b[0m\n", + "\u001b[91m120: Guess: $135.07 Truth: $45.99 Error: $89.08 SLE: 1.13 Item: ZCHAOZ 4 Lights Antique White Farmhouse ...\u001b[0m\n", + "\u001b[93m121: Guess: $190.33 Truth: $113.52 Error: $76.81 SLE: 0.26 Item: Honeywell TH8320R1003 Honeywell VisionPr...\u001b[0m\n", + "\u001b[91m122: Guess: $283.89 Truth: $516.99 Error: $233.10 SLE: 0.36 Item: Patriot Exhaust H8013-1 1-7/8\" Clippster...\u001b[0m\n", + "\u001b[93m123: Guess: $254.18 Truth: $196.99 Error: $57.19 SLE: 0.06 Item: Fitrite Autopart New Front Left Driver S...\u001b[0m\n", + "\u001b[91m124: Guess: $168.77 Truth: $46.55 Error: $122.22 SLE: 1.62 Item: Technical Precision Replacement for GE G...\u001b[0m\n", + "\u001b[91m125: Guess: $182.05 Truth: $356.99 Error: $174.94 SLE: 0.45 Item: Covercraft Carhartt SeatSaver Front Row ...\u001b[0m\n", + "\u001b[91m126: Guess: $170.57 Truth: $319.95 Error: $149.38 SLE: 0.39 Item: Sennheiser SD Pro 2 (506008) - Double-Si...\u001b[0m\n", + "\u001b[91m127: Guess: $242.11 Truth: $96.06 Error: $146.05 SLE: 0.84 Item: Hitachi MAF0110 Mass Air Flow Sensor\u001b[0m\n", + "\u001b[93m128: Guess: $234.22 Truth: $190.99 Error: $43.23 SLE: 0.04 Item: AmScope SE305R-P-LED-PS36A 10X-30X LED C...\u001b[0m\n", + "\u001b[92m129: Guess: $217.96 Truth: $257.95 Error: $39.99 SLE: 0.03 Item: Front Left Driver Side Window Regulator ...\u001b[0m\n", + "\u001b[91m130: Guess: $143.89 Truth: $62.95 Error: $80.94 SLE: 0.67 Item: Premium Replica Hubcap Set, Fits Nissan ...\u001b[0m\n", + "\u001b[92m131: Guess: $81.00 Truth: $47.66 Error: $33.34 SLE: 0.27 Item: Excellerations Phonics Spelling Game for...\u001b[0m\n", + "\u001b[93m132: Guess: $310.50 Truth: $226.99 Error: $83.51 SLE: 0.10 Item: RC4WD BigDog Dual Axle Scale Car/Truck T...\u001b[0m\n", + "\u001b[93m133: Guess: $276.49 Truth: $359.95 Error: $83.46 SLE: 0.07 Item: Unknown Stage 2 Clutch Kit - Low Altitud...\u001b[0m\n", + "\u001b[91m134: Guess: $206.00 Truth: $78.40 Error: $127.60 SLE: 0.92 Item: 2002-2008 Dodge Ram 1500 Mopar 4X4 Emble...\u001b[0m\n", + "\u001b[93m135: Guess: $241.53 Truth: $172.77 Error: $68.76 SLE: 0.11 Item: Pro Comp Alloys Series 89 Wheel with Pol...\u001b[0m\n", + "\u001b[93m136: Guess: $211.23 Truth: $316.45 Error: $105.22 SLE: 0.16 Item: Detroit Axle - Front Rear Strut & Coil S...\u001b[0m\n", + "\u001b[91m137: Guess: $204.57 Truth: $87.99 Error: $116.58 SLE: 0.70 Item: ECCPP Rear Wheel Axle Replacement fit fo...\u001b[0m\n", + "\u001b[93m138: Guess: $286.85 Truth: $226.63 Error: $60.22 SLE: 0.06 Item: Dell Latitude E6520 Intel i7-2720QM 2.20...\u001b[0m\n", + "\u001b[91m139: Guess: $224.73 Truth: $31.49 Error: $193.24 SLE: 3.76 Item: F FIERCE CYCLE 251pcs Black Universal Mo...\u001b[0m\n", + "\u001b[92m140: Guess: $201.31 Truth: $196.00 Error: $5.31 SLE: 0.00 Item: Flash Furniture 4 Pk. HERCULES Series 88...\u001b[0m\n", + "\u001b[91m141: Guess: $217.56 Truth: $78.40 Error: $139.16 SLE: 1.03 Item: B&M 30287 Throttle Valve/Kickdown Cable,...\u001b[0m\n", + "\u001b[91m142: Guess: $259.01 Truth: $116.25 Error: $142.76 SLE: 0.63 Item: Gates TCK226 PowerGrip Premium Timing Be...\u001b[0m\n", + "\u001b[91m143: Guess: $244.45 Truth: $112.78 Error: $131.67 SLE: 0.59 Item: Monroe Shocks & Struts Quick-Strut 17149...\u001b[0m\n", + "\u001b[91m144: Guess: $157.73 Truth: $27.32 Error: $130.41 SLE: 2.97 Item: Feit Electric BPMR16/GU10/930CA/6 35W EQ...\u001b[0m\n", + "\u001b[92m145: Guess: $183.45 Truth: $145.91 Error: $37.54 SLE: 0.05 Item: Yellow Jacket 2806 Contractor Extension ...\u001b[0m\n", + "\u001b[92m146: Guess: $207.20 Truth: $171.09 Error: $36.11 SLE: 0.04 Item: Garage-Pro Tailgate SET Compatible with ...\u001b[0m\n", + "\u001b[93m147: Guess: $215.04 Truth: $167.95 Error: $47.09 SLE: 0.06 Item: 3M Perfect It Buffing and Polishing Kit ...\u001b[0m\n", + "\u001b[93m148: Guess: $97.34 Truth: $28.49 Error: $68.85 SLE: 1.45 Item: Chinese Style Dollhouse Model DIY Miniat...\u001b[0m\n", + "\u001b[93m149: Guess: $180.19 Truth: $122.23 Error: $57.96 SLE: 0.15 Item: Generic NRG Innovations SRK-161H Steerin...\u001b[0m\n", + "\u001b[91m150: Guess: $118.84 Truth: $32.99 Error: $85.85 SLE: 1.59 Item: Learning Resources Coding Critters Range...\u001b[0m\n", + "\u001b[91m151: Guess: $241.42 Truth: $71.20 Error: $170.22 SLE: 1.47 Item: Bosch Automotive 15463 Oxygen Sensor, OE...\u001b[0m\n", + "\u001b[92m152: Guess: $79.83 Truth: $112.75 Error: $32.92 SLE: 0.12 Item: Case of 24-2 Inch Blue Painters Tape - 6...\u001b[0m\n", + "\u001b[93m153: Guess: $190.48 Truth: $142.43 Error: $48.05 SLE: 0.08 Item: MOCA Engine Water Pump & Fan Clutch fit ...\u001b[0m\n", + "\u001b[91m154: Guess: $226.52 Truth: $398.99 Error: $172.47 SLE: 0.32 Item: SAREMAS Foot Step Bars for Hyundai Palis...\u001b[0m\n", + "\u001b[93m155: Guess: $291.36 Truth: $449.00 Error: $157.64 SLE: 0.19 Item: Gretsch G9210 Square Neck Boxcar Mahogan...\u001b[0m\n", + "\u001b[91m156: Guess: $311.20 Truth: $189.00 Error: $122.20 SLE: 0.25 Item: NikoMaku Mirror Dash Cam Front and Rear ...\u001b[0m\n", + "\u001b[91m157: Guess: $276.11 Truth: $120.91 Error: $155.20 SLE: 0.67 Item: Fenix HP25R v2.0 USB-C Rechargeable Head...\u001b[0m\n", + "\u001b[91m158: Guess: $315.32 Truth: $203.53 Error: $111.79 SLE: 0.19 Item: R&L Racing Heavy Duty Roll-Up Soft Tonne...\u001b[0m\n", + "\u001b[93m159: Guess: $250.39 Truth: $349.99 Error: $99.60 SLE: 0.11 Item: Garmin 010-02258-10 GPSMAP 64sx, Handhel...\u001b[0m\n", + "\u001b[92m160: Guess: $66.07 Truth: $34.35 Error: $31.72 SLE: 0.41 Item: Brown 5-7/8\" X 8-1/2\" X 3/16\" Thick Heav...\u001b[0m\n", + "\u001b[91m161: Guess: $166.61 Truth: $384.99 Error: $218.38 SLE: 0.70 Item: GAOMON PD2200 Pen Display & 20 Pen Nibs ...\u001b[0m\n", + "\u001b[91m162: Guess: $318.54 Truth: $211.00 Error: $107.54 SLE: 0.17 Item: VXMOTOR for 97-03 Ford F150/F250 Lightdu...\u001b[0m\n", + "\u001b[91m163: Guess: $429.09 Truth: $129.00 Error: $300.09 SLE: 1.43 Item: HP EliteBook 2540p Intel Core i7-640LM X...\u001b[0m\n", + "\u001b[92m164: Guess: $138.66 Truth: $111.45 Error: $27.21 SLE: 0.05 Item: Green EPX Mixing Nozzles 100-Pack-fits 3...\u001b[0m\n", + "\u001b[93m165: Guess: $146.67 Truth: $81.12 Error: $65.55 SLE: 0.34 Item: Box Partners 6 1/4 x 3 1/8\" 13 Pt. Manil...\u001b[0m\n", + "\u001b[93m166: Guess: $285.83 Truth: $457.08 Error: $171.25 SLE: 0.22 Item: Vixen Air 1/2\" NPT Air Ride Suspension H...\u001b[0m\n", + "\u001b[91m167: Guess: $186.51 Truth: $49.49 Error: $137.02 SLE: 1.72 Item: Smart Floor Lamp, 2700-6500K+RGBPink Mul...\u001b[0m\n", + "\u001b[91m168: Guess: $185.89 Truth: $80.56 Error: $105.33 SLE: 0.69 Item: SOZG 324mm Wheelbase Body Shell RC Car B...\u001b[0m\n", + "\u001b[93m169: Guess: $200.21 Truth: $278.39 Error: $78.18 SLE: 0.11 Item: Mickey Thompson ET Street S/S Racing Rad...\u001b[0m\n", + "\u001b[91m170: Guess: $198.17 Truth: $364.50 Error: $166.33 SLE: 0.37 Item: Pirelli 275/40R20 106W XL RFT P0 PZ4-LUX...\u001b[0m\n", + "\u001b[93m171: Guess: $272.21 Truth: $378.99 Error: $106.78 SLE: 0.11 Item: Torklift C3212 Rear Tie Down\u001b[0m\n", + "\u001b[91m172: Guess: $250.48 Truth: $165.28 Error: $85.20 SLE: 0.17 Item: Cardone 78-4226 Remanufactured Ford Comp...\u001b[0m\n", + "\u001b[91m173: Guess: $176.93 Truth: $56.74 Error: $120.19 SLE: 1.27 Item: Kidde AccessPoint 001798 Supra TouchPoin...\u001b[0m\n", + "\u001b[91m174: Guess: $177.01 Truth: $307.95 Error: $130.94 SLE: 0.30 Item: 3M Protecta 3100414 Self Retracting Life...\u001b[0m\n", + "\u001b[91m175: Guess: $196.60 Truth: $38.00 Error: $158.60 SLE: 2.63 Item: Plantronics 89435-01 Wired Headset, Blac...\u001b[0m\n", + "\u001b[91m176: Guess: $137.09 Truth: $53.00 Error: $84.09 SLE: 0.88 Item: Logitech K750 Wireless Solar Keyboard fo...\u001b[0m\n", + "\u001b[93m177: Guess: $356.04 Truth: $498.00 Error: $141.96 SLE: 0.11 Item: Olympus PEN E-PL9 Body Only with 3-Inch ...\u001b[0m\n", + "\u001b[91m178: Guess: $196.95 Truth: $53.99 Error: $142.96 SLE: 1.64 Item: Beck/Arnley 051-6066 Hub & Bearing Assem...\u001b[0m\n", + "\u001b[93m179: Guess: $220.11 Truth: $350.00 Error: $129.89 SLE: 0.21 Item: Eibach Pro-Kit Performance Springs E10-6...\u001b[0m\n", + "\u001b[93m180: Guess: $207.31 Truth: $299.95 Error: $92.64 SLE: 0.14 Item: LEGO DC Batman 1989 Batwing 76161 Displa...\u001b[0m\n", + "\u001b[91m181: Guess: $198.22 Truth: $94.93 Error: $103.29 SLE: 0.53 Item: Kingston Brass KS3608PL Restoration 4-In...\u001b[0m\n", + "\u001b[92m182: Guess: $322.76 Truth: $379.00 Error: $56.24 SLE: 0.03 Item: Polk Vanishing Series 265-LS In-Wall 3-W...\u001b[0m\n", + "\u001b[93m183: Guess: $218.40 Truth: $299.95 Error: $81.55 SLE: 0.10 Item: Spec-D Tuning LED Projector Headlights G...\u001b[0m\n", + "\u001b[92m184: Guess: $47.27 Truth: $24.99 Error: $22.28 SLE: 0.38 Item: RICHMOND & FINCH Airpod Pro Case, Green ...\u001b[0m\n", + "\u001b[91m185: Guess: $187.08 Truth: $41.04 Error: $146.04 SLE: 2.24 Item: LFA Industries 43B-5A-33JT 1/16-1/2-1.5-...\u001b[0m\n", + "\u001b[93m186: Guess: $201.16 Truth: $327.90 Error: $126.74 SLE: 0.24 Item: SAUTVS LED Headlight Assembly for Slings...\u001b[0m\n", + "\u001b[93m187: Guess: $73.01 Truth: $10.99 Error: $62.02 SLE: 3.31 Item: 2 Pack Combo Womens Safety Glasses Impac...\u001b[0m\n", + "\u001b[91m188: Guess: $143.08 Truth: $14.99 Error: $128.09 SLE: 4.83 Item: Arepa - Venezuelan cuisine - Venezuela P...\u001b[0m\n", + "\u001b[93m189: Guess: $148.89 Truth: $84.95 Error: $63.94 SLE: 0.31 Item: Schlage Lock Company KS23D2300 Padlock, ...\u001b[0m\n", + "\u001b[91m190: Guess: $221.71 Truth: $111.00 Error: $110.71 SLE: 0.47 Item: Techni Mobili White Sit to Stand Mobile ...\u001b[0m\n", + "\u001b[92m191: Guess: $89.23 Truth: $123.73 Error: $34.50 SLE: 0.10 Item: Special Lite Products Contemporary Wall ...\u001b[0m\n", + "\u001b[91m192: Guess: $231.98 Truth: $557.38 Error: $325.40 SLE: 0.76 Item: Tascam DP-24SD 24-Track Digital Portastu...\u001b[0m\n", + "\u001b[91m193: Guess: $223.09 Truth: $95.55 Error: $127.54 SLE: 0.71 Item: Glow Lighting 636CC10SP Vista Crystal Fl...\u001b[0m\n", + "\u001b[91m194: Guess: $286.77 Truth: $154.00 Error: $132.77 SLE: 0.38 Item: Z3 Wind Deflector, Smoke Tint, Lexan, Wi...\u001b[0m\n", + "\u001b[93m195: Guess: $263.81 Truth: $198.99 Error: $64.82 SLE: 0.08 Item: Olympus E-20 5MP Digital Camera w/ 4x Op...\u001b[0m\n", + "\u001b[91m196: Guess: $214.16 Truth: $430.44 Error: $216.28 SLE: 0.48 Item: PHYNEDI 1:1000 World Trade Center (1973-...\u001b[0m\n", + "\u001b[93m197: Guess: $103.21 Truth: $45.67 Error: $57.54 SLE: 0.65 Item: YANGHUAN Unstable Unicorns Adventure Car...\u001b[0m\n", + "\u001b[92m198: Guess: $205.72 Truth: $249.00 Error: $43.28 SLE: 0.04 Item: Interlogix NX-1820E NetworX Touch Screen...\u001b[0m\n", + "\u001b[91m199: Guess: $189.09 Truth: $42.99 Error: $146.10 SLE: 2.14 Item: Steering Damper,Universal Motorcycle Han...\u001b[0m\n", + "\u001b[92m200: Guess: $193.65 Truth: $181.33 Error: $12.32 SLE: 0.00 Item: Amprobe TIC 410A Hot Stick Attachment\u001b[0m\n", + "\u001b[91m201: Guess: $143.67 Truth: $6.03 Error: $137.64 SLE: 9.15 Item: MyCableMart 3.5mm Plug/Jack, 4 Conductor...\u001b[0m\n", + "\u001b[91m202: Guess: $111.76 Truth: $29.99 Error: $81.77 SLE: 1.67 Item: OtterBox + Pop Symmetry Series Case for ...\u001b[0m\n", + "\u001b[91m203: Guess: $531.68 Truth: $899.00 Error: $367.32 SLE: 0.28 Item: Dell XPS X8700-1572BLK Desktop ( Intel C...\u001b[0m\n", + "\u001b[93m204: Guess: $274.56 Truth: $399.99 Error: $125.43 SLE: 0.14 Item: Franklin Iron Works Sperry Industrial Br...\u001b[0m\n", + "\u001b[91m205: Guess: $133.58 Truth: $4.66 Error: $128.92 SLE: 10.04 Item: Avery Legal Dividers, Standard Collated ...\u001b[0m\n", + "\u001b[92m206: Guess: $258.49 Truth: $261.41 Error: $2.92 SLE: 0.00 Item: Moen 8346 Commercial Posi-Temp Pressure ...\u001b[0m\n", + "\u001b[91m207: Guess: $247.15 Truth: $136.97 Error: $110.18 SLE: 0.34 Item: Carlisle Versa Trail ATR All Terrain Rad...\u001b[0m\n", + "\u001b[91m208: Guess: $203.62 Truth: $79.00 Error: $124.62 SLE: 0.88 Item: SUNWAYFOTO 44mm Tripod Ball Head Arca Co...\u001b[0m\n", + "\u001b[93m209: Guess: $301.04 Truth: $444.99 Error: $143.95 SLE: 0.15 Item: NanoBeam AC NBE-5AC-Gen2-US 4 Units 5GHz...\u001b[0m\n", + "\u001b[93m210: Guess: $272.39 Truth: $411.94 Error: $139.55 SLE: 0.17 Item: WULF 4\" Front 2\" Rear Leveling Lift Kit ...\u001b[0m\n", + "\u001b[92m211: Guess: $168.37 Truth: $148.40 Error: $19.97 SLE: 0.02 Item: Alera ALEVABFMC Valencia Series Mobile B...\u001b[0m\n", + "\u001b[91m212: Guess: $145.44 Truth: $244.99 Error: $99.55 SLE: 0.27 Item: YU-GI-OH! Ignition Assault Booster Box\u001b[0m\n", + "\u001b[91m213: Guess: $173.32 Truth: $86.50 Error: $86.82 SLE: 0.48 Item: 48\" x 36\" Extra-Large Framed Magnetic Bl...\u001b[0m\n", + "\u001b[92m214: Guess: $316.82 Truth: $297.95 Error: $18.87 SLE: 0.00 Item: Dell Latitude D620 Renewed Notebook PC\u001b[0m\n", + "\u001b[93m215: Guess: $534.76 Truth: $399.99 Error: $134.77 SLE: 0.08 Item: acer Aspire 5 Laptop, AMD Ryzen 3 5300U ...\u001b[0m\n", + "\u001b[91m216: Guess: $203.98 Truth: $599.00 Error: $395.02 SLE: 1.15 Item: Elk 31080/6RC-GRN 30 by 6-Inch Viva 6-Li...\u001b[0m\n", + "\u001b[91m217: Guess: $258.75 Truth: $105.99 Error: $152.76 SLE: 0.79 Item: Barbie Top Model Doll\u001b[0m\n", + "\u001b[91m218: Guess: $300.72 Truth: $689.00 Error: $388.28 SLE: 0.68 Item: Danby Designer 20-In. Electric Range wit...\u001b[0m\n", + "\u001b[93m219: Guess: $270.29 Truth: $404.99 Error: $134.70 SLE: 0.16 Item: FixtureDisplays® Metal Truss Podium Doub...\u001b[0m\n", + "\u001b[92m220: Guess: $225.78 Truth: $207.76 Error: $18.02 SLE: 0.01 Item: ACDelco 13597235 GM Original Equipment A...\u001b[0m\n", + "\u001b[93m221: Guess: $220.83 Truth: $171.82 Error: $49.01 SLE: 0.06 Item: EBC S1KF1135 Stage-1 Premium Street Brak...\u001b[0m\n", + "\u001b[92m222: Guess: $274.91 Truth: $293.24 Error: $18.33 SLE: 0.00 Item: FXR Men's Boost FX Jacket (Black/Orange/...\u001b[0m\n", + "\u001b[93m223: Guess: $252.93 Truth: $374.95 Error: $122.02 SLE: 0.15 Item: SuperATV Scratch Resistant 3-in-1 Flip W...\u001b[0m\n", + "\u001b[91m224: Guess: $202.49 Truth: $111.99 Error: $90.50 SLE: 0.35 Item: SBU 3 Layer All Weather Mini Van Car Cov...\u001b[0m\n", + "\u001b[92m225: Guess: $69.11 Truth: $42.99 Error: $26.12 SLE: 0.22 Item: 2 Pack Outdoor Brochure Holder Advertisi...\u001b[0m\n", + "\u001b[91m226: Guess: $205.10 Truth: $116.71 Error: $88.39 SLE: 0.31 Item: Monroe Shocks & Struts Quick-Strut 17158...\u001b[0m\n", + "\u001b[91m227: Guess: $260.83 Truth: $118.61 Error: $142.22 SLE: 0.61 Item: Elements of Design Magellan EB235AL Thre...\u001b[0m\n", + "\u001b[93m228: Guess: $225.50 Truth: $147.12 Error: $78.38 SLE: 0.18 Item: GM Genuine Parts 15-62961 Air Conditioni...\u001b[0m\n", + "\u001b[91m229: Guess: $257.43 Truth: $119.99 Error: $137.44 SLE: 0.58 Item: Baseus 17-in-1 USB C Docking Station to ...\u001b[0m\n", + "\u001b[91m230: Guess: $86.38 Truth: $369.98 Error: $283.60 SLE: 2.09 Item: Whitehall™ Personalized Whitehall Capito...\u001b[0m\n", + "\u001b[92m231: Guess: $301.46 Truth: $315.55 Error: $14.09 SLE: 0.00 Item: Pro Circuit Works Pipe PY05250 for 02-19...\u001b[0m\n", + "\u001b[91m232: Guess: $302.66 Truth: $190.99 Error: $111.67 SLE: 0.21 Item: HYANKA 15 \"1200W Professional DJ Speaker...\u001b[0m\n", + "\u001b[92m233: Guess: $190.35 Truth: $155.00 Error: $35.35 SLE: 0.04 Item: Bluetooth X6BT Card Reader Writer Encode...\u001b[0m\n", + "\u001b[92m234: Guess: $328.06 Truth: $349.99 Error: $21.93 SLE: 0.00 Item: AIRAID Cold Air Intake System by K&N: In...\u001b[0m\n", + "\u001b[92m235: Guess: $250.34 Truth: $249.99 Error: $0.35 SLE: 0.00 Item: Bostingner Shower Faucets Sets Complete,...\u001b[0m\n", + "\u001b[91m236: Guess: $198.44 Truth: $42.99 Error: $155.45 SLE: 2.28 Item: PIT66 Front Bumper Turn Signal Lights, C...\u001b[0m\n", + "\u001b[93m237: Guess: $64.90 Truth: $17.99 Error: $46.91 SLE: 1.55 Item: Caseology Bumpy Compatible with Google P...\u001b[0m\n", + "\u001b[93m238: Guess: $265.44 Truth: $425.00 Error: $159.56 SLE: 0.22 Item: Fleck 2510 Timer Mechanical Filter Contr...\u001b[0m\n", + "\u001b[93m239: Guess: $318.67 Truth: $249.99 Error: $68.68 SLE: 0.06 Item: Haloview MC7108 Wireless RV Backup Camer...\u001b[0m\n", + "\u001b[93m240: Guess: $200.08 Truth: $138.23 Error: $61.85 SLE: 0.14 Item: Schmidt Spiele - Manhattan\u001b[0m\n", + "\u001b[93m241: Guess: $261.93 Truth: $414.99 Error: $153.06 SLE: 0.21 Item: Corsa 14333 Tip Kit (Ford Mustang GT)\u001b[0m\n", + "\u001b[93m242: Guess: $209.66 Truth: $168.28 Error: $41.38 SLE: 0.05 Item: Hoshizaki FM116A Fan Motor Kit 1\u001b[0m\n", + "\u001b[92m243: Guess: $171.20 Truth: $199.99 Error: $28.79 SLE: 0.02 Item: BAINUO Antler Chandelier Lighting,6 Ligh...\u001b[0m\n", + "\u001b[91m244: Guess: $226.91 Truth: $126.70 Error: $100.21 SLE: 0.34 Item: DNA MOTORING HL-OH-FEXP06-SM-AM Smoke Le...\u001b[0m\n", + "\u001b[91m245: Guess: $250.44 Truth: $5.91 Error: $244.53 SLE: 12.92 Item: Wera Stainless 3840/1 TS 2.5mm Hex Inser...\u001b[0m\n", + "\u001b[92m246: Guess: $213.52 Truth: $193.06 Error: $20.46 SLE: 0.01 Item: Celestron - PowerSeeker 127EQ Telescope ...\u001b[0m\n", + "\u001b[92m247: Guess: $261.82 Truth: $249.99 Error: $11.83 SLE: 0.00 Item: NHOPEEW 10.1inch Android Car Radio Carpl...\u001b[0m\n", + "\u001b[91m248: Guess: $223.29 Truth: $64.12 Error: $159.17 SLE: 1.53 Item: Other Harmonica (Suzuki-2Timer24- A)\u001b[0m\n", + "\u001b[91m249: Guess: $267.11 Truth: $114.99 Error: $152.12 SLE: 0.70 Item: Harley Air Filter Venturi Intake Air Cle...\u001b[0m\n", + "\u001b[91m250: Guess: $329.56 Truth: $926.00 Error: $596.44 SLE: 1.06 Item: Elite Screens Edge Free Ambient Light Re...\u001b[0m\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+0AAAK7CAYAAACH525NAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAyONJREFUeJzs3Xd4lfX9//HnySQJSSAEEhAERBRBXKC4AQGte+MGV6tVW2m1jl/rrNU6vtW2trVaFzgQt9at4Na6FfdiCiRAIAkkZN6/P+6QnDATSHIyno/ryuXJ59znnHdigLzP6zMiQRAESJIkSZKkVicu1gVIkiRJkqR1s2mXJEmSJKmVsmmXJEmSJKmVsmmXJEmSJKmVsmmXJEmSJKmVsmmXJEmSJKmVsmmXJEmSJKmVsmmXJEmSJKmVsmmXJEmSJKmVsmmXpBb02WefccYZZzBgwABSUlJISUlh4MCBnHXWWXzwwQf1rj311FPp3LnzJr/WqaeeSiQSWe9He9GvX7/13jd//nwmTZrEyJEj6dKlC5FIhHvuuWet64qKivjTn/7EqFGjyM3NpXPnzgwdOpTrr7+eVatWrXX9H/7wBw455BC22GILIpEIp556aoPr3dj/l3fffbf22g1dN2jQoI2+Vr9+/eo9Ji0tjV122YVbb72VIAjqXfvqq6/WXreu7xHAfvvtRyQSWet7vnLlSq6//np23HFHMjIySE9PZ8CAAYwfP57XXnttrdd45JFHNlj3hr7uxnyv1+eLL77gnHPOYY899iAtLY1IJMKrr77aqOf46KOPGDt2LJ07d6ZLly4cddRR/Pjjj2tdd8stt3DUUUfRv39/IpEIo0aNavBrbOz7dd555631Z3nUqFH1XqOkpIQrr7yy0V/f5qiqquIvf/kLP/vZz+jduzepqalst912XHLJJSxfvnyt6zfne/Thhx9y7rnnMnToUNLT08nJyWHs2LFMnz59rWtff/11dt55Z9LT09l333358ssv17rm3HPPZeTIkWv9+ZCkWEqIdQGS1FH8+9//5rzzzmPbbbfl/PPPZ8iQIUQiEb766isefPBBdt11V77//nsGDBjQZK+ZkpKyzl9eO4rvv/+e+++/n5122omDDjqIBx98cJ3XzZ07l1tuuYVTTjmF3/72t3Tu3Jk33niDK6+8kpdeeomXXnqpXnN08803s8MOO3DYYYdx1113Naqmyy67jLPPPnut8UMPPZTk5GR23XXX2rF33nlnrev+97//MWnSJI488sgGvd5ee+3FTTfdBMCCBQv4y1/+wq9+9SuKior4f//v/611fXp6OnfeeedazfGsWbN49dVXycjIqDdeVVXF/vvvz8yZM/nd737HbrvtBsB3333H008/zRtvvMHIkSMbVGu0Y445hgsuuGCt8e7duzf6udb0wQcf8MQTT7DzzjszZswYnn766UY9/uuvv2bUqFHstNNOTJs2jVWrVnH55Zezzz778Mknn9Sr8bbbbiMtLY399tuv0a+zKf75z3/W+7ykpISrrroKoFHN8OYoLS3lyiuv5IQTTuDMM88kOzubjz76iGuuuYann36aDz74gJSUlNrrN+d79OCDD/Lee+9x+umns+OOO7Jy5Upuu+02xowZw7333suECRMAWL58OUceeSRHH300N9xwA3/729846qij+OKLL4iPjwfg3Xff5a677uLjjz9uV29sSmoHAklSs3vzzTeDuLi44NBDDw3KysrWec20adOCn376qfbziRMnBmlpaZv8mpvz+PLy8qCiomKd961cuXKTawqCIKiurg5KSko26zneeOONYJ999gk6d+4cAEFKSkowaNCg4MYbb6x3XVVVVe3t999/PwCCu+++e63nW7FiRbBixYq1xm+88cYACN544431Pm9aWlowceLEzfp6Xn311QAI/vCHP2z02lNPPTWIRCLBd999t9Fr+/btGxx88MH1xgoLC4PMzMxgyy23rDc+Y8aMAAjOPPPMAAi+/fbbevf/4Q9/CHr37h0ceOCBQd++fWvHp0+fHgDBXXfdtc4aor9Xq1/j4Ycf3mDdQHDuuedu9OvbVNE1PfzwwwEQzJgxo8GPP/bYY4Ps7OygsLCwdmz27NlBYmJicNFFF633tYYMGRKMHDmywa+zse/XueeeG2zsV7nFixcHQHDFFVc0+HU3V2VlZbBkyZK1xld/r6dMmVJvfHO+R3l5eet8/R122CEYMGBA7dizzz4bpKWlBeXl5UEQBMFPP/0UAMFXX30VBEH4d97QoUNb9PskSQ3l9HhJagHXXnst8fHx/Pvf/yYpKWmd1xx77LH06tVrrfEvvviCMWPGkJaWRvfu3TnvvPMoKSlpstpWT8GdMmUKF1xwAVtssQXJycl8//33tVP0Z86cyf777096ejpjxowBoKCggHPOOYctttiCpKQkttpqK37/+99TVlZW7/kjkQjnnXcet912G9tttx3Jycnce++9m1zvwoULOeiggygrK2PatGn07NmTxx9/nDPPPJPFixfXuzYurmH/zKWlpZGWlrbW+OrUeN68eZv0vA115513EolEOP300zd4XXFxMQ8//DAjR45k66233qTXysjIYJtttiEvL2+d948bN44+ffrUm0FQXV3Nvffey8SJE9f62pcuXQpAz5491/l8Tf29agqbU1NlZSX//e9/Ofroo+vNOujbty+jR4/m8ccfb7LX2hTR0+Nnz55dm/pfddVVay0xWLx4Mb/4xS/o06cPycnJdO/enb322ouXX355s2qIj4+nW7dua403x5+nHj16rPP1hw0bVu91Vq1aRXJyMomJiQC1S49WL3+56aabKC8v59JLL93kWiSpuTg9XpKaWVVVFTNmzGD48OHrbWzWp6KigoMOOoizzjqLSy65hLfffptrrrmGOXPmNHgaaWVl5VpjcXFxa/2ifOmll7LHHntw2223ERcXV/vLcHl5OYcddlhtDZWVlaxatYrRo0fzww8/cNVVV7HDDjvwxhtvcN111/HJJ5/wzDPP1HvuJ554gjfeeIPLL7+c3Nzc2ueuqqpq0NrR6HrfffddiouL+fe//81OO+1EUlISBxxwAAcccECDvh+NsXppwZAhQ5r8uVcrLCzkkUceYcyYMfTv33+D106dOpWVK1dy5plnbvLrVVZWMm/ePLbZZpt13h8XF8epp57KnXfeyTXXXEN8fDwvvvgi8+fP57TTTuP888+vd/3w4cNJTEzk/PPP5/LLL2e//fZr9M/5ugRBsM6f3fj4+Nqpy0EQUFVV1aDnS0homl95fvjhB0pLS9lhhx3Wum+HHXbgpZdeYtWqVXTq1KlJXg/CN03W9b3Y2J+dnj178vzzz/Ozn/2MM844o/bnZnUjf8opp/DRRx/xpz/9iW222Ybly5fz0Ucf1b4Rs/q1q6urN1pjJBKpnWa+Pi3x5wnCn/E33nij3usMHz6c4uJi/vWvf3HCCSfw5z//mW7durHtttvyww8/cM011/Dcc8+RnJzcrLVJ0iaJbdAvSe3fokWLAiA4/vjj17qvsrIyqKioqP2orq6uvW/ixIkBEPz1r3+t95g//elPARC8+eabG3zd1Y9f18eYMWNqr1s9BXffffdd73OsOfX5tttuC4Bg2rRp9cavv/76AAhefPHF2jEgyMzMDAoKCtZ6/r59+663xuiP6Cmr7777bgAE119/fe1zNMSGpsevy6effhqkpKQERx555Aav29zp8f/6178CIHjwwQc3eu2IESOCLl26BKWlpQ167r59+wYHHXRQ7c/XnDlzgp///OdBYmJi8N///rfetdFTsX/88ccgEonUXnPssccGo0aNCoIgCA4++OC1vud33nln7VIFIOjZs2cwYcKE4PXXX1/va2zIhn4WoqdW33333Q36+dnQrzuNnR7/1ltvrff/17XXXhsAwYIFC9b52E2dHt+Yr23kyJH1XmND0+M7d+4cTJo0aYM1XHHFFQ2qYWN/DufPnx/k5OQEw4cPrzcdfk2N/R6ty+9///sACJ544ol64//85z+DpKSk2r+TnnzyySAIgmDs2LHBGWecsVmvKUnNyaRdkmJo2LBhfPrpp7Wf33jjjVx44YX1rjnppJPqfX7iiSfy+9//nhkzZrDXXntt8PlTUlJ4/fXX1xpfczMxgKOPPnq9z7PmfdOnTyctLY1jjjmm3vipp57KxRdfzCuvvMK4ceNqx/fbbz+6du261vM+/fTTa02nX5foZQMjRozgggsu4NJLL+XWW2+loKCAq6++mnHjxrHHHnts9LkaYvbs2RxyyCH06dOH//znP03ynOtz55130q1bt41uLPfFF1/wv//9j3PPPbdRKe6zzz5bOyV4tdtuu42DDz54vY/p378/o0aN4q677mL33XfnySef3OD34fTTT+foo4/m2Wef5d133+Xdd9/lvvvuY8qUKVx//fX87ne/a3C9q40fP36dj9tqq61qbx966KG8//77jX7uprChjcqaehOz66+/nv3222+t8RtvvJFp06Zt8vPutttu3HPPPXTr1o2xY8cybNiwtX5WfvGLX3DIIYds9Lk2lFAXFBRw0EEHEQQBDz30ULMuGfjPf/7Dn/70Jy644AIOP/zwevf98pe/ZMKECcybN4/+/fuTnJzMlClT+Oyzz5g2bRoFBQX86le/4sUXXyQjI4Pf/e5369w0UpJamk27JDWz7OxsUlJSmDNnzlr3PfDAA5SUlLBw4UIOO+ywte5PSEhYa21obm4uQL0prOsTFxfH8OHDG1Tn+qY0p6amrtXkL126lNzc3LWakx49epCQkLBWbet77sGDBzd4eny0m266ifPOO4+XXnqJSZMm8eijj3LFFVdw1FFH8dBDD23WVOg5c+YwevRoEhISeOWVV8jKytrk59qYzz77jA8++IDzzz9/o9Ny77zzToBGT43fe++9ufnmm6mqquK7777jsssu47zzzmPIkCHsvffe633cGWecwWmnncZf/vIXUlJS1nqDZk2ZmZmccMIJnHDCCUD4JsPYsWP5/e9/z89//nO6dOnSqLq7d+++0Z/drKwsMjMzG/W8m2v1n8d1/fkrKCggEok0+mvdmK222mqd34vN3Un/oYce4pprruE///kPl112GZ07d+bII4/khhtuqP17Jno5y4as742KZcuWMW7cOH766SemT59e702Xpnb33Xdz1lln8Ytf/IIbb7xxndekpaXVHpe4dOlSLrjgAv7617/StWtXTjnlFAoKCvj+++/59ttvGT16NNtuuy2jR49utpolqSFa3+4wktTOxMfHs99++/HBBx+wcOHCevcNHjyY4cOHM3To0HU+trKycq3mYNGiRQDr3Ohpc6zvl+51jXfr1o28vLy1Gu78/HwqKyvJzs5u0HMPGDCAxMTEjX5cffXVaz22X79+/PznP6d79+58+umn3HbbbTz22GMbPQN8Q+bMmcOoUaMIgoAZM2bQu3fvTX6uhmhoI15eXs6UKVMYNmwYO+20U6NeIzMzk+HDhzNixAhOPvlkXnzxRRITEznnnHM2uFb5qKOOIjU1lT//+c8cf/zx9Y7oaoghQ4Zw/PHHU1FRwbffftuoxzbUvffe26CfnzXT480xYMAAUlJSmDlz5lr3zZw5k6233rpJ17M3p+zsbG655RZmz57NnDlzuO6663jsscfqHfd39dVXN+j7u66jKpctW8bYsWOZNWsWL7300jr3AWgqd999N2eeeSYTJ07ktttua9BshwsuuIBhw4bVvtH03HPPcc4555CZmcmuu+7K/vvvz7PPPttsNUtSQ5m0S1ILuPTSS3nuuec4++yzeeSRRxrVRNx///38+te/rv38gQceAFruzOV1GTNmDNOmTeOJJ56oN6178uTJtfc3xKZMjw+CYJ2/kK+ePpyfn9+g117T3LlzGTVqFFVVVbz66qv07dt3k56nocrKyrjvvvvYbbfd2H777Td47VNPPcWSJUvW+eZFYw0cOJCLLrqIq666ioceeqi2YVlTSkoKl19+Oa+//jq//OUv1/t8S5cuJT09fZ2nInz99dcA6zwVoSnEYnp8QkIChx56KI899hg33HAD6enpQPjzM2PGDH7zm9+0aD0bs3oGR2lp6Qav23LLLTnvvPN45ZVXeOutt2rHN3V6/OqG/ccff+Sll15i55133oTqG+aee+7hzDPP5OSTT+Y///lPgxr2GTNm8PDDD/P555/XjgVBwMqVK2s/X7FiRYNmAklSc7Npl6QWsNdee/GPf/yDX/3qV+yyyy784he/YMiQIcTFxbFw4UIeffRRYO215klJSfzf//0fK1asYNddd63dPf7AAw/c4NTm1aqrq3n33XfXed/OO++8yTslT5gwgX/84x9MnDiR2bNnM3ToUN58802uvfZaDjroIMaOHdug51nfDIMNuf/++3nyySc55ZRT2GabbWp357/iiivo1KkT+++/f73rVyfvP/74IwAffPBB7XFPq6d85+fnM3r0aBYuXMidd95Jfn5+vea/d+/e9VL31157rfZ4uaqqKubMmVP7OiNHjqydtnz11Vdz9dVX88orrzBy5Mh6dT3xxBMUFBQ0aLr7nXfeSUpKCieeeGLDv1EbcOGFF3Lbbbdx1VVXMX78+PXu+v3b3/6W3/72txt8rhkzZnD++edz0kknseeee9KtWzfy8/N58MEHef7555kwYcJaMxbW9zMZ/b3Ly8tb53UZGRkMHjwYCGd8bMqMk5KSktoEdfVrvPbaayxZsoS0tDQOPPDA2mtXH633/fff145dddVV7LrrrhxyyCFccsklrFq1issvv5zs7GwuuOCCeq/1wQcfMHv2bACKiooIgqD2Z2XXXXdt9jeH0tPT6du3L08++SRjxowhKyuL7OxsunbtyujRoznxxBMZNGgQ6enpvP/++zz//PMcddRRtY/v1atXo990KS0t5YADDuDjjz/mlltuobKyst7/y+7du9dL5hv6PZo8eTKnn346d911FxMmTADg4Ycf5owzzmCnnXbirLPO4r333qtXy7r+nisrK+Oss87iyiuvrHdiwwEHHMDVV19NRkYG3333Ha+88goXXXRRo752SWoWMdsCT5I6oE8++SQ47bTTgv79+wfJyclBp06dgq233jqYMGFC8Morr9S7duLEiUFaWlrw2WefBaNGjQpSUlKCrKys4Je//GWwYsWKjb7WhnaPB4LvvvsuCIIN7+i9uoZ1Wbp0aXD22WcHPXv2DBISEoK+ffsGl156abBq1ap61wHBueee29Bv0Ub98MMPwXnnnRdst912tTuWZ2VlBaNGjQqmT5++1vUb+h6strFdutfceXvkyJHrvTZ6F/LVO2+va2fycePGBWlpaUFRUdEGv965c+cGcXFxwYQJExr1fQqCcPf4gw8+eJ33/eMf/wiA4N577w2CoOE7u6+5e/y8efOCP/zhD8Fee+0V5ObmBgkJCUF6enowYsSI4O9//3tQWVlZe+3Gvs+rv08bumavvfZq9PdhTbNmzWrwLuh9+/Zd587oH3zwQTBmzJggNTU1yMjICI444ojg+++/X+u6Df053NhJBhv7f3LuuedudPf4IAiCl19+Odh5552D5OTkAAgmTpwYrFq1Kjj77LODHXbYIcjIyAhSUlKCbbfdNrjiiiuClStXbrCujdnQ93f160dr6Pdo9WkB0WMb+3tu1qxZa9X3hz/8Idhxxx2DioqKeuP5+fnBMcccE2RmZgZ9+vQJbrnlls36PkhSU4kEgfN+JEltV79+/WpTOkmSpPbGjegkSZIkSWqlbNolSW3apEmTYl2CJElSs3F6vCRJkiRJrZRJuyRJkiRJrZRNuyRJkiRJrZRNuyRJkiRJrVRCrAtoDaqrq1mwYAHp6elEIpFYlyNJkiRJaueCIKC4uJhevXoRF7f+PN2mHViwYAF9+vSJdRmSJEmSpA5m3rx59O7de73327QD6enpQPjNysjIiHE1kiRJkqT2IgjggyJ4dAmUVteNb0cRFw/vU9uPro9NO9ROic/IyLBplyRJkiQ1ieUVMCUPPi8BUiEJyEiAE3vAgAAuho0u0bZplyRJkiSpCQUBvFME0/Lrp+sjMuC4HpAWD0VFDXsum3ZJkiRJkprIspp0/YuVdWMZCXByDuzYufHPZ9MuSZIkSdJmCgJ4sxAeWQyrotL13TNgfE26vils2iVJkiRJ2gxLK2DKIviqpG6sS026PnQT0vVoNu2SJEmSJG2CIIA3atL1sqh0fa9MOKY7pG5iuh7Npl2SJEmSpEZaUg6T8+CbqHS9awKckgtD0prudWzaJUmSJElqoCCA15bDY0vqp+v7ZMLR3SGlCdL1aDbtkiRJkiQ1wOKadP3bqHQ9KxEm5MB2TZiuR7NplyRJkiRpA4IApi+HxxdDRVA3vm8XODobOjVxuh7Npl2SJEmSpPXIL4d7F8H3pXVj3WrS9UHNlK5Hs2mXJEmSJGkN1QFMXwZPLKmfro/uAkd2h+S4lqnDpl2SJEmSpCiLyuDePPgxKl3PToSJubBNasvWYtMuSZIkSRJhuv7yMnhyCVTWpOsRYL+ucHh2y6Xr0WzaJUmSJEkd3sIyuGcRzF5VN9YjCSbmwNYtnK5Hs2mXJEmSJHVY1QG8UAD/XVo/XR9Tk64nxSBdj2bTLkmSJEnqkBbUpOtzotL1nKRw7fqAlNjVFc2mXZIkSZLUoVRFpetVUen6/llwaDdIjHG6Hs2mXZIkSZLUYcxfFabr88rqxnrWpOv9W0m6Hs2mXZIkSZLU7lVWw/MF8ExBuI4dIC4CB3SFg1tZuh7Npl2SJEmS1K7Nq0nX50el672S4dRc6NspdnU1hE27JEmSJKldqqwOk/Xn10jXf5YFB2dBQitN16PZtEuSJEmS2p05Nen6gqh0vXdyuHZ9y1aerkezaZckSZIktRuV1eGu8C8sq5+uH5wVJuxtIV2PZtMuSZIkSWoXZpeG6frC8rqxPjVr13u3oXQ9mk27JEmSJKlNq6iGp5fCiwVQE64TH4FDusEBWeHttsqmXZIkSZLUZv1Yk67nRaXrfTuFa9e3SI5dXU3Fpl2SJEmS1OaUV8OTS+CVZXXpekJUuh7XhtP1aDbtkiRJkqQ25fsSuDcP8qPS9X416XqvdpCuR7NplyRJkiS1CWU16fr0NdL1w7JhXNf2k65Hs2mXJEmSJLV635bA5EWwuKJubKsUmJgDue0sXY9m0y5JkiRJarXKquHxxTBjed1YYgSOyIb92mm6Hs2mXZIkSZLUKn29EqbkwZKodH1ASrh2PScpdnW1JJt2SZIkSVKrsqoKHlsCry2vG0uMwJHdYXSX9p+uR7NplyRJkiS1Gl/VpOtLo9L1gSkwIRd6dJB0PZpNuyRJkiQp5lZVwSOL4Y3CurGkODgqG0Z1gUgHStej2bRLkiRJkmLqi5UwZREsq6wb2zYVJuRAdgdM16PZtEuSJEmSYqKkJl1/KypdT46DY7rDPpkdN12PZtMuSZIkSWpxM1fAfXmwPCpd3y4VTsmFbomxq6u1sWmXJEmSJLWYkiqYlg/vFNWNdapJ1/c2XV+LTbskSZIkqUV8ugLuz4PCqHR9SBqcnANZpuvrZNMuSZIkSWpWK6vgoXz43xrp+vgesGeG6fqG2LRLkiRJkprNx8XwQD4URaXr29ek611N1zfKpl2SJEmS1ORWVMLUfHi/uG4sNR6O6w4jTNcbzKZdkiRJktSkPiqGB/KguKpubIfOcFIP6GK63ig27ZIkSZKkJlFcCQ/mw4drpOvH94Dd0k3XN4VNuyRJkiRpswRB2Kg/mA8rotL1nTrDSTmQYee5yfzWSZIkSZI2WVFlOBX+4xV1Y2nxcEIPGG66vtls2iVJkiRJjRYE8F5xeJTbyqh0fZf0sGE3XW8afhslSZIkSY1SWAn358GnUel6ejyckAPD0mNXV3tk0y5JkiRJapAggP8VwUOLoSQqXR+eHm42l26H2eT8lkqSJEmSNmp5BdyXBzNX1o2lx4cbze1sut5sbNolSZIkSesVBPBOEUzLh9LquvHdMsJ0PS0+drV1BDbtkiRJkqR1WlYBU/Lgi6h0PSMBTs6BHTvHrq6OxKZdkiRJklRPEMCbhfDIYlgVla7vngHjTddblE27JEmSJKnW0gqYsgi+Kqkb61KTrg81XW9xNu2SJEmSJIIA3qhJ18ui0vU9M+HY7pBquh4TNu2SJEmS1MEtKQ/Xrn8dla53TYBTcmFIWuzqkk27JEmSJHVYQQCvLYfHltRP1/fOhGO6Q4rpeszZtEuSJElSB7S4HCbnwbdR6XpWIpySA4NN11sNm3ZJkiRJ6kCCAKYvhyeWQHlUur5vFzg6GzqZrrcqNu2SJEmS1EHkl8O9i+D70rqxbokwIQcGma63SjbtkiRJktTOVQcwfVmYrlcEdeOjusBR3SE5LmalaSNs2iVJkiSpHcsrh3sWwY9R6Xp2IkzMhW1SY1eXGsamXZIkSZLaoeoAXl4GTy6Bypp0PQKM7gpHZJuutxU27ZIkSZLUziwsC9P12avqxnokhWvXB5qutyk27ZIkSZLUTlQH8EIB/Hdp/XR9TFc4PBuSTNfbHJt2SZIkSWoHFtSk63Oi0vWcpHDt+oCU2NWlzWPTLkmSJEltWFVUul4Vla6Py4LDukGi6XqbZtMuSZIkSW3U/FVhuj6vrG6sZ0263t90vV2waZckSZKkNqayGp4vgGcKwnXsEKbrB2TBIabr7YpNuyRJkiS1IfNq0vX5Uel6r2SYmAP9TNfbHZt2SZIkSWoDKqvh2QJ4Lipdj4vAz7Lg4CxIMF1vl2zaJUmSJKmVm1OTri+IStd7J4dr17fsFLu61Pxs2iVJkiSplaqsDneFf2FZ/XT9oCw40HS9Q7BplyRJkqRWaHZpmK4vLK8b61OTrvcxXe8wbNolSZIkqRWpqIanl8KLBVATrhMfgYO7hevX4yMxLU8tzKZdkiRJklqJH0vh3kWwKCpd37ITnJoLWyTHri7Fjk27JEmSJMVYRTU8uQReXlaXridEwjPX9zdd79Bs2iVJkiQphn6oSdfzotL1fp3Cteu9TNc7PJt2SZIkSYqB8mp4YglMXyNdPywbxnUNd4mXbNolSZIkqYV9VxKm64sr6sa2SoGJOZBruq4oNu2SJEmS1ELKquHxxTBjed1YYgQOz4YxputaB5t2SZIkSWoB35TA5EWwJCpdH5ASrl3PSYpdXWrdbNolSZIkqRmtqoLHlsBry+vGEiNwZHcY3cV0XRtm0y5JkiRJzeSrlTAlD5ZGpesDU2BCLvQwXVcD2LRLkiRJUhNbVQWPLIY3CuvGkuLgqGwY1QUiputqIJt2SZIkSWpCX6yEKYtgWWXd2Dap4c7w2abraiSbdkmSJElqAqVV8PBieCsqXU+Og6O7w76ZpuvaNDbtkiRJkrSZPl8Rrl1fHpWuD0oN1653S4xdXWr7bNolSZIkaROVVMG0fHinqG6sUxwc0x32Nl1XE7BplyRJkqRN8NkKuC8PCqPS9cFpcEoOZJmuq4nYtEuSJElSI6ysgofy4X9rpOvje8CeGabralo27ZIkSZLUQJ8Uw/35UBSVrm+fBifnQFfTdTUDm3ZJkiRJ2ogVlTA1H94vrhtLjYfx3WF303U1I5t2SZIkSdqAj4rhgTworqob26EznNQDupiuq5nZtEuSJEnSOhRXwoP58OEa6frxPWC3dNN1tQybdkmSJEmKEgRho/5gPqyIStd36gwn5UCGXZRakD9ukiRJklSjqDKcCv/xirqxtHg4oQcMN11XDNi0S5IkSerwgiDcZG5qfnik22q7pIcNu+m6YsUfPUmSJEkdWmEl3J8Hn0al653j4cQcGJYeu7oksGmXJEmS1EEFAfyvCB5aDCVR6frw9HCzuXS7JbUC/hhKkiRJ6nCWV8B9eTBzZd1Yek26vovpuloRm3ZJkiRJHUYQwDtFMC0fSqvrxnfLgOO6Q2c7JLUy/khKkiRJ6hCWVcCUPPgiKl3PSICTc2DHzrGrS9oQm3ZJkiRJ7VoQwFuF8PBiWBWVru+eAeN7hEe6Sa2VTbskSZKkdqugAiYvgq9K6sa6JMBJObCD6braAJt2SZIkSe1OEMAbhfDIYiiLStf3zIRju0Oq6braCJt2SZIkSe3KkvJw7frXa6Trp+TA9qbramNs2iVJkiS1C0EAry2Hx5bUT9f3zoRjukOK6braIJt2SZIkSW3e4nKYnAffRqXrXRNgQi4MTotdXdLmsmmXJEmS1GYFAcxYDo8vgfKodH3fLnB0NnQyXVcbZ9MuSZIkqU3KLw93hv+utG6sWyJMyIFBputqJ2zaJUmSJLUp1QFMXwZPLIGKoG58VBc40nRd7YxNuyRJkqQ2I68c7lkEP0al69mJMDEXtkmNXV1Sc7FplyRJktTqVQfw8jJ4ao10fb+ucEQ2JMfFrjapOcX0R7uyspI//OEP9O/fn5SUFLbaaiuuvvpqqqvrdpAIgoArr7ySXr16kZKSwqhRo/jiiy/qPU9ZWRm/+tWvyM7OJi0tjcMOO4z58+e39JcjSZIkqRksLIMb5sKji+sa9h5JcGEfOK6HDbvat5j+eF9//fXcdttt3HrrrXz11VfccMMN3Hjjjfz973+vveaGG27gL3/5C7feeivvv/8+ubm5jBs3juLi4tprJk2axOOPP87UqVN58803WbFiBYcccghVVVWx+LIkSZIkNYHqAJ5fCtfMgVmrwrEIMLYrXNYXBjodXh1AJAiCYOOXNY9DDjmEnJwc7rzzztqxo48+mtTUVKZMmUIQBPTq1YtJkyZx8cUXA2GqnpOTw/XXX89ZZ51FYWEh3bt3Z8qUKRx33HEALFiwgD59+vDss89ywAEHbLSOoqIiMjMzKSwsJCMjo3m+WEmSJEkNtqAsXLs+Z1XdWE5SuHZ9QErs6pKaSkP70Jgm7XvvvTevvPIK3377LQCffvopb775JgcddBAAs2bNYtGiRey///61j0lOTmbkyJG8/fbbAHz44YdUVFTUu6ZXr15sv/32tdesqaysjKKionofkiRJkmKvKoBna9L1OVHp+v5ZYbpuw66OJqYb0V188cUUFhYyaNAg4uPjqaqq4k9/+hMnnHACAIsWLQIgJyen3uNycnKYM2dO7TVJSUl07dp1rWtWP35N1113HVdddVVTfzmSJEmSNsP8VWG6Pq+sbiy3Jl3fymZdHVRMm/aHHnqI++67jwceeIAhQ4bwySefMGnSJHr16sXEiRNrr4tEIvUeFwTBWmNr2tA1l156Kb/97W9rPy8qKqJPnz6b8ZVIkiRJ2lSV1fB8ATxbECbtEKbrB2TBId0g0Y3m1IHFtGn/3e9+xyWXXMLxxx8PwNChQ5kzZw7XXXcdEydOJDc3FwjT9J49e9Y+Lj8/vzZ9z83Npby8nGXLltVL2/Pz89lzzz3X+brJyckkJyc315clSZIkqYHm1aTr86PS9V7JMDEH+pmuS7Fd015SUkJcXP0S4uPja49869+/P7m5ubz00ku195eXl/Paa6/VNuTDhg0jMTGx3jULFy7k888/X2/TLkmSJCm2KqvDM9evnVvXsMdF4KBu8Pstbdil1WKatB966KH86U9/Ysstt2TIkCF8/PHH/OUvf+H0008HwmnxkyZN4tprr2XgwIEMHDiQa6+9ltTUVE488UQAMjMzOeOMM7jgggvo1q0bWVlZXHjhhQwdOpSxY8fG8suTJEmStA5zVsG9i+CnqHR9i+Rw7XrfTrGrS2qNYtq0//3vf+eyyy7jnHPOIT8/n169enHWWWdx+eWX115z0UUXUVpayjnnnMOyZcsYMWIEL774Iunp6bXX3HzzzSQkJDB+/HhKS0sZM2YM99xzD/Hx8bH4siRJkiStQ2U1/HcpvLAsPIMdatL1LDgwCxJcuy6tJabntLcWntMuSZIkNa/ZpeHa9YXldWO9k+HUXOhjuq4OqKF9aEyTdkmSJEntW0U1PL0UXiyA1Wlh/Op0vVt4W9L62bRLkiRJahY/loZr1xdFpetbdgp3hu9tui41iE27JEmSpCZVUQ1PLoGXl9Wl6wmR8Mz1/bNM16XGsGmXJEmS1GR+qEnX86LS9X6dwp3heyXHri6prbJplyRJkrTZyqvhiSUwfY10/bBsGNc13CVeUuPZtEuSJEnaLN+VhOn64oq6sf416XpP03Vps9i0S5IkSdokZdXw+GKYsbxuLLEmXR9rui41CZt2SZIkSY32TQlMXgRLotL1ASlhup6TFLu6pPbGpl2SJElSg62qgseWwGvL68YSI3BkdxjdxXRdamo27ZIkSZIa5OuVMDkPlkal6wNTYEIu9DBdl5qFTbskSZKkDVpVBY8shjcK68aS4uCobBjVBSKm61KzsWmXJEmStF5frgzXri+rrBvbJhUm5kC26brU7GzaJUmSJK2ltAoeXgxvRaXryTXp+sguputSS7FplyRJklTP5ytgSh4sj0rXB6WGa9e7JcauLqkjsmmXJEmSBEBJFUzLh3eK6sY6xcEx3WHvTNN1KRZs2iVJkiTx2Qq4Lw8Ko9L1wWlwSg5kma5LMWPTLkmSJHVgK6vgoXz43xrp+vgesGeG6boUazbtkiRJUgf1STHcnw9FUen69mlwcg50NV2XWgWbdkmSJKmDWVEJU/Ph/eK6sZSadH0P03WpVbFplyRJkjqQj4rhgTworqob26EznNQDupiuS62OTbskSZLUARRXwoP58GFUup4aD8f3gN3STdel1sqmXZIkSWrHgiBs1B/MhxVR6fqOneGkHMi0I5BaNf+ISpIkSe1UUWU4Ff7jFXVjafFwQg8YbroutQk27ZIkSVI7EwTwQU26vjIqXd+5M5yYAxl2AVKb4R9XSZIkqR0prIT78+DTqHS9c026Psx0XWpzbNolSZKkdiAI4H9F8NBiKIlK14enh5vNpfubv9Qm+UdXkiRJauOWV8D9+fBZVLqeHh9Ohd8lPXZ1Sdp8Nu2SJElSGxUE8E4RPLxGur5bBhzXHTr7277U5vnHWJIkSWqDllXAfXnw+cq6sYwEOKkH7GS6LrUbNu2SJElSGxIE8HYRTMuHVdV147tnwPge4ZFuktoPm3ZJkiSpjSiogCl58GVUut4lAU7KgR06x64uSc3Hpl2SJElq5YIA3iiERxfXT9f3zIRju0Oq6brUbtm0S5IkSa3Y0gqYvAi+Lqkb65IAp+TA9qbrUrtn0y5JkiS1QkEAry2Hx5ZAWVS6vncmHNMdUkzXpQ7Bpl2SJElqZZaUw7158G1Uut41AU7JhSFpsatLUsuzaZckSZJaiSCAV5eH6Xp5VLq+bxc4Ohs6ma5LHY5NuyRJktQK5JeHa9e/K60b65YIE3JgkOm61GHZtEuSJEkxVB3A9GXwxBKoCOrGR3WBI03XpQ7Ppl2SJEmKkbxyuHcR/BCVrmcnwoRc2DY1dnVJaj1s2iVJkqQWVh3Ay8vgqTXS9dFd4MjukBwXs9IktTI27ZIkSVILWlgGk/Pgx6h0vXsiTMyFgabrktZg0y5JkiS1gOoAXqpJ1ytr0vUIMKYrHJ4NSabrktbBpl2SJElqZgvKwrXrs1fVjeUkhen6gJTY1SWp9bNplyRJkppJVQAvFMAzS+un6+Oy4LBukGi6LmkjbNolSZKkZjB/FdybB3Oj0vXcmnR9K9N1SQ1k0y5JkiQ1oaoAnlsKzxaEtyFM1/fPgkNN1yU1kk27JEmS1ETmrQrXrs8rqxvrmQSn5kI/03VJm8CmXZIkSdpMldXwXEGYrlfXpOtxETigKxzSDRJM1yVtIpt2SZIkaTPMXQX3LIKfotL1Xslhut63U+zqktQ+2LRLkiRJm6CyGp4pgOfXSNcPyoIDs0zXJTUNm3ZJkiSpkWaXhjvDL4hK13vXpOt9TNclNSGbdkmSJKmBKqrh6aXwYgHUhOvEReDgLPiZ6bqkZmDTLkmSJDXAj6XhzvCLyuvGtuwEE3Ogt+m6pGZi0y5JkiRtQEU1PLUUXopK1+Mj4a7wB2SFtyWpudi0S5IkSevxQ026nheVrvftFK5d75Ucu7okdRw27ZIkSdIayqvhySXwyrK6dD0hAod2g/2zwnXsktQSbNolSZKkKN+VwOQ8yI9K1/t3gom50NN0XVILs2mXJEmSgLJqeHwxvLq8frp+eDaM7Wq6Lik2bNolSZLU4X1bEq5dX1JRNzYgJUzXc5JiV5ck2bRLkiSpwyqrhsdq0vXVEiNwRDbsZ7ouqRWwaZckSVKH9PXKcO360qh0feuadL2H6bqkVsKmXZIkSR3Kqip4dAm8vrxuLCkOjsyG0V0gYrouqRWxaZckSVKH8eVKmLwIllXWjW2TChNyoLvpuqRWyKZdkiRJ7V5pFTy8GN4qrBtLjoOjsmFkF9N1Sa2XTbskSZLatc9XwH159dP1QalwSg5km65LauVs2iVJktQuldSk62+vka4f0x32yTRdl9Q22LRLkiSp3flsBdyfB8uj0vXtUuGUXOiWGLu6JKmxbNolSZLUbqysgmn58G5R3VinODi2O+xlui6pDbJplyRJUrvwac3a9aKodH1IWrh2vavpuqQ2yqZdkiRJbdqKSpiaD+8X142lxMH4HrBHhum6pLbNpl2SJElt1sfF4dr14qq6saFpcHIOdDFdl9QO2LRLkiSpzSmuSdc/iErXU+PhuO4wwnRdUjti0y5JkqQ25cNieCAPVkSl6zt2hpNyINPfbiW1M/61JkmSpDahqBIezIePotL1tHg4vgfsmm66Lql9smmXJElSqxYE4TT4B/PDI91W27kznJgDGf5GK6kd8684SZIktVpFleFGc5+sqBvrHA8n9IBhpuuSOgCbdkmSJLU6QQDvFYebzZVEpevD08Pp8On+Fiupg/CvO0mSJLUqyyvg/nz4LCpdT48Pp8Lvkh67uiQpFmzaJUmS1CoEAbxbBNMW10/Xd61J1zv7m6ukDsi/+iRJkhRzyyrgvjz4fGXdWEYCnNQDdjJdl9SB2bRLkiQpZoIA3i6CafmwqrpufEQGHNcjPNJNkjoym3ZJkiTFREEFTMmDL6PS9cwEODkHdugcu7okqTWxaZckSVKLCgJ4sxAeWVw/Xd8zE47tDqmm65JUy6ZdkiRJLWZpBUxeBF+X1I11SYBTcmB703VJWotNuyRJkppdEMDrhfDoYiiLStf3qknXU0zXJWmdbNolSZLUrJaUw7158G1Uut41AU7JhSFpsatLktoCm3ZJkiQ1iyCAV5fDY0ugPCpd3ycTjukOnUzXJWmjbNolSZLU5PLLw7Xr35XWjXVLDNeub2e6LkkNZtMuSZKkJlMdwIzl8PhiqAjqxkd1gSOzTdclqbFs2iVJktQk8srh3kXwQ1S6np0IE3Jh29TY1SVJbZlNuyRJkjZLdQCvLIMnl9RP10d3gSO7Q3JczEqTpDbPpl2SJEmbbGEZTM6DH6PS9e6JMDEXBpquS9Jms2mXJElSo1UH8NIyeGoJVNak6xFgv65wRDYkma5LUpOwaZckSVKjLCgL167PXlU31iMJTs2FASmxq0uS2iObdkmSJDVIdQAvFMB/l9ZP18d2hcOzIdF0XZKanE27JEmSNmr+Krg3D+ZGpeu5SeHa9a1M1yWp2di0S5Ikab2qAni+AJ5ZGt6GMF3fPwsO7Wa6LknNzaZdkiRJ6zRvVbh2fV5Z3VjPmrXr/UzXJalF2LRLkiSpnspqeK4Ani0I17EDxEXggK5wSDdIMF2XpBZj0y5JkqRac2vS9flR6Xqv5DBd79spdnVJUkdl0y5JkiQqq+GZgnD9enS6fmAWHJRlui5JsWLTLkmS1MHNLg13hl8Qla73rknX+5iuS1JM2bRLkiR1UBXV4ZnrLxRATbhOXAQOzoKfma5LUqtg0y5JktQBzSoN164vLK8b61OTrvc2XZekVsOmXZIkqQOpqIanlsJLUel6fCTcFf6ArPC2JKn1sGmXJEnqIH6oSdfzotL1vp3CdL1XcuzqkiStn027JElSO1deDU8ugVeW1aXrCRE4tBvsnxWuY5cktU427ZIkSe3YdyUwOQ/yo9L1/p1gYi70NF2XpFbPpl2SJKkdKquGJ5bAjDXS9cOzYWxX03VJaits2iVJktqZb0vCtetLKurGtkqBiTmQa7ouSW2KTbskSVI7UVYNjy2GV5fXjSVG4Ihs2M90XZLaJJt2SZKkduDrleHa9aVR6frWKeHa9R5JsatLkrR54mJdwE8//cTJJ59Mt27dSE1NZaedduLDDz+svT8IAq688kp69epFSkoKo0aN4osvvqj3HGVlZfzqV78iOzubtLQ0DjvsMObPn9/SX4okSVKLW1UF9+fBzfPrGvakODiuB1zYx4Zdktq6mDbty5YtY6+99iIxMZHnnnuOL7/8kv/7v/+jS5cutdfccMMN/OUvf+HWW2/l/fffJzc3l3HjxlFcXFx7zaRJk3j88ceZOnUqb775JitWrOCQQw6hqqoqBl+VJElSy/hqJVw1B15fXje2TSpc3jecDh9xOrwktXmRIAiCjV/WPC655BLeeust3njjjXXeHwQBvXr1YtKkSVx88cVAmKrn5ORw/fXXc9ZZZ1FYWEj37t2ZMmUKxx13HAALFiygT58+PPvssxxwwAEbraOoqIjMzEwKCwvJyMhoui9QkiSpGZRWwSOL4c3CurHkODgqG0Z2sVmXpLagoX1oTJP2p556iuHDh3PsscfSo0cPdt55Z+64447a+2fNmsWiRYvYf//9a8eSk5MZOXIkb7/9NgAffvghFRUV9a7p1asX22+/fe01ayorK6OoqKjehyRJUlvwxUq4anb9hn1QTbo+ynRdktqdmDbtP/74I//6178YOHAgL7zwAmeffTa//vWvmTx5MgCLFi0CICcnp97jcnJyau9btGgRSUlJdO3adb3XrOm6664jMzOz9qNPnz5N/aVJkiQ1qZKq8Bi3v82HZZXhWHIcnJQDk3pDtmvXJaldiunu8dXV1QwfPpxrr70WgJ133pkvvviCf/3rX0yYMKH2usgabxkHQbDW2Jo2dM2ll17Kb3/729rPi4qKbNwlSVKrNXMF3JcHyyvrxrZLhVNyoVti7OqSJDW/mCbtPXv2ZPDgwfXGtttuO+bOnQtAbm4uwFqJeX5+fm36npubS3l5OcuWLVvvNWtKTk4mIyOj3ockSVJrs7IK7l4It/5U17B3ioNTcuD83jbsktQRxLRp32uvvfjmm2/qjX377bf07dsXgP79+5Obm8tLL71Ue395eTmvvfYae+65JwDDhg0jMTGx3jULFy7k888/r71GkiSprfl0BVw5G96N2npnSBpc2Q/27uLadUnqKGI6Pf43v/kNe+65J9deey3jx4/nvffe4/bbb+f2228HwmnxkyZN4tprr2XgwIEMHDiQa6+9ltTUVE488UQAMjMzOeOMM7jgggvo1q0bWVlZXHjhhQwdOpSxY8fG8suTJElqtJVVMDUf3otq1lPiYHwP2CPDZl2SOpqYNu277rorjz/+OJdeeilXX301/fv355ZbbuGkk06qveaiiy6itLSUc845h2XLljFixAhefPFF0tPTa6+5+eabSUhIYPz48ZSWljJmzBjuuece4uPjY/FlSZIkbZKPi+H+PCiuqhsbmgYn50AXp8JLUocU03PaWwvPaZckSbFUXBmm6x8U142lxsNx3WGE6boktUsN7UNjmrRLkiR1dB8Ww4NrpOs7dg6Pcsv0NzVJ6vD8p0CSJCkGiivhgXz4KCpdT4uH43vArumm65KkkE27JElSCwqCcBr8g/nhpnOr7dwZTsyBDH87kyRF8Z8FSZKkFlJUGW4098mKurHO8XBCDxhmui5JWodNOqf9jTfe4OSTT2aPPfbgp59+AmDKlCm8+eabTVqcJElSexAE8L8iuGJ2/YZ9WHp47vpwN5uTJK1Ho5v2Rx99lAMOOICUlBQ+/vhjysrKACguLubaa69t8gIlSZLasuUV8M8FcNdCKKmZDp8eD2f1gl/0gnTnPUqSNqDRTfs111zDbbfdxh133EFiYt2BoXvuuScfffRRkxYnSZLUVgUBvFMIV82Bz6LS9V1r0vVd0mNWmiSpDWn0e7vffPMN++6771rjGRkZLF++vClqkiRJatOWVcB9efD5yrqxjAQ4sQfsbLMuSWqERjftPXv25Pvvv6dfv371xt9880222mqrpqpLkiSpzQkCeLsIpuXDquq68REZcFyP8Eg3SZIao9FN+1lnncX555/PXXfdRSQSYcGCBbzzzjtceOGFXH755c1RoyRJUqtXUJOufxGVrmcmwEk5sGPn2NUlSWrbGt20X3TRRRQWFjJ69GhWrVrFvvvuS3JyMhdeeCHnnXdec9QoSZLUagUBvFkIjyyun67vkQHje0Cq6bokaTNEgiAINuWBJSUlfPnll1RXVzN48GA6d267byEXFRWRmZlJYWEhGRkZsS5HkiS1EUsrYMoi+KqkbqxLApycA0Pb7q9GkqQW0NA+tNG7x59++ukUFxeTmprK8OHD2W233ejcuTMrV67k9NNP36yiJUmS2oIggNeWw1Wz6zfse2XCFf1s2CVJTafRSXt8fDwLFy6kR48e9caXLFlCbm4ulZWVTVpgSzBplyRJDbWkHCbnwTdRzXrXBDglF4akxa4uSVLb0tA+tMFr2ouKigiCgCAIKC4uplOnTrX3VVVV8eyzz67VyEuSJLUXQQCvLofHlkB51Nr1fTLhmO7QybXrkqRm0OCmvUuXLkQiESKRCNtss81a90ciEa666qomLU6SJKk1yC+HyYvgu9K6saxEmJAD25muS5KaUYOb9hkzZhAEAfvttx+PPvooWVlZtfclJSXRt29fevXq1SxFSpIkxUIQwPTl8PhiqIhaUDiyCxyVbbouSWp+DW7aR44cCcCsWbPo06cPcXGN3sNOkiSpzcgrh3sXwQ9R6Xp2IpySA4NM1yVJLaTR57T37dsXCI98mzt3LuXl5fXu32GHHZqmMkmSpBioDuCVZfDkkvrp+ugucGR3SDa3kCS1oEY37YsXL+a0007jueeeW+f9VVVVm12UJElSLCwqg3vz4MeodL17IkzIhW1SY1eXJKnjavR7xZMmTWLZsmW8++67pKSk8Pzzz3PvvfcycOBAnnrqqeaoUZIkqVlVB/BCAfxxTl3DHgHGdIXL+tmwS5Jip9FJ+/Tp03nyySfZddddiYuLo2/fvowbN46MjAyuu+46Dj744OaoU5IkqVksKAvXrs9eVTfWIwkm5sDWNuuSpBhrdNO+cuXK2vPYs7KyWLx4Mdtssw1Dhw7lo48+avICJUmSmsPqdP2/S6GyZu16BBjbFQ7LhiTXrkuSWoFGN+3bbrst33zzDf369WOnnXbi3//+N/369eO2226jZ8+ezVGjJElSk/qpJl2fE5Wu5yTBqbmwVUrs6pIkaU2NbtonTZrEwoULAbjiiis44IADuP/++0lKSuKee+5p6vokSZKaTFUAzxfAM0vD2xCm6/tnwaHdINF0XZLUykSCIAg2ftn6lZSU8PXXX7PllluSnZ3dVHW1qKKiIjIzMyksLCQjIyPW5UiSpGYwfxXcswjmldWN9UyCibnQ33RdktTCGtqHNjppX1Nqaiq77LLL5j6NJElSs6ishucK4NmCcB07QFwEDugKB5uuS5JauUY37UEQ8MgjjzBjxgzy8/Oprq6ud/9jjz3WZMVJkiRtjrmrwrXr86PS9V7J4dr1vp1iV5ckSQ3V6Kb9/PPP5/bbb2f06NHk5OQQiUSaoy5JkqRNVlkNzxSE69ej0/UDs+CgLEgwXZcktRGNbtrvu+8+HnvsMQ466KDmqEeSJGmzzKlZu74gKl3vXZOu9zFdlyS1MY1u2jMzM9lqq62aoxZJkqRNVlEdnrn+4rL66frBWfAz03VJUhvV6H++rrzySq666ipKS0ubox5JkjZdVRkseRdWLY51JWphs0rhT3PqT4fvkwy/3xIOybZhlyS1XY1O2o899lgefPBBevToQb9+/UhMTKx3/0cffdRkxUmS1GBVZfDi7rDsE0joDPu/A122j3VVamYV1fDUUnipAFafYRsfgUO6wQFZ4W1JktqyRjftp556Kh9++CEnn3yyG9FJklqPgg/Dhh2gsgTmTrNpb+d+KA13hs8rrxvr2yk8d32L5NjVJUlt0vLlMH06DBkC224b62oUpdFN+zPPPMMLL7zA3nvv3Rz1SJK0adIHQkIaVJYC1ZA1LNYVqZmUV8OTS+CVZXXpekIEDu0G+2eF69glSY1QUgLDhsGPP0JCArz2Guy5Z6yrUo1GN+19+vQhIyOjOWqRJGnTdeoeTomf8xBkDYfeh8e6IjWD70pgch7kR6Xr/TqFO8P3NF2XpE0zc2bYsANUV8PTT9u0tyKNbtr/7//+j4suuojbbruNfv36NUNJkiRtoi5Dww+1O2XV8MQSmLFGun54NoztarouSZtl0CDo3h0WLw6b9tGjY12RokSCIAg2flmdrl27UlJSQmVlJampqWttRFdQUNCkBbaEoqIiMjMzKSwsdBaBJEmtzLcl4dr1JRV1Y1ulwMQcyDVdl6SmMX8+PPUU7LSTKXsLaWgf2uik/ZZbbtmcuiRJkhqkrBoeWwyvLq8bS4zAEdmwn+m6JDWt3r3hnHNiXYXWodFN+8SJE5ujDkmSpFpfrwzXri+NSte3ToEJuZCTFLu6JElqaQ1q2ouKimrj+qKiog1e6/RySZK0qVZVwaNL4PXldWOJETiqO4zuAp40K0nqaBrUtHft2pWFCxfSo0cPunTpss6z2YMgIBKJUFVV1eRFSpKk9u+rmnS9ICpdH1iTrvcwXZckdVANatqnT59OVlYWADNmzGjWgiRJUsdSWgWPLoY3CuvGkuPgqGwY2cV0XZLUsTWoaR85cmTt7f79+9OnT5+10vYgCJg3b17TVidJktq1L1bClEWwrLJubNtUmJAD2abrkiQ1fiO6/v37106Vj1ZQUED//v2dHi9JkjaqpAoeXgxvr5GuH9Md9sk0XZckabVGN+2r166vacWKFXTq1KlJipIkSe3XzBVwXx4sj0rXt0uFU3KhW2Ls6pIkqTVqcNP+29/+FoBIJMJll11Gampq7X1VVVX873//Y6eddmryAiVJUvtQUgUP5cO7UQfRdIqDY7vDXqbrkiStU4Ob9o8//hgIk/aZM2eSlFS30CwpKYkdd9yRCy+8sOkrlCRJbd6nNel6UVS6PiQNTs6BLNN1SZLWq8FN++pd40877TT++te/eh67JEnaqJU16fr/otL1lDgY3wP2yDBdlyRpYxq9pv3uu++u93lRURHTp09n0KBBDBo0qMkKkyRJbdvHxfBAfv10fWhNut7FdF2SpAZpdNM+fvx49t13X8477zxKS0sZPnw4s2fPJggCpk6dytFHH90cdUqSpDaiuBKm5sMHxXVjqfFwXHcYYbouSVKjxDX2Aa+//jr77LMPAI8//jhBELB8+XL+9re/cc011zR5gZIkqe34sBiuml2/Yd+xM1zRF3Z3szlJkhqt0U17YWEhWVlZADz//PMcffTRpKamcvDBB/Pdd981eYGSJKn1K66Efy+A2xdAcVU4lhYPZ/SEX/ZyOrwkSZuq0dPj+/TpwzvvvENWVhbPP/88U6dOBWDZsmWe0y5JUgcTBGGq/mB+uOncajt3hhNzIKPRv2lIkqRojf6ndNKkSZx00kl07tyZvn37MmrUKCCcNj906NCmrk+SJLVSRZXwQB58vKJuLC0eTuwBw9KdCi9JUlNodNN+zjnnMGLECObOncu4ceOIiwtn2G+11VauaZckqQMIAnivODzKLTpdH5YOJ/SAdNN1SZKaTCQIgiDWRcRaUVERmZmZFBYWev68JEkbsLwC7s+Hz6LS9fR4OCEnbNolSVLDNLQPbfBGdIMHD6agoKD281/84hcsXry49vP8/HxSU1M3sVxJktSaBQG8WwhXzanfsO+aDlf0s2GXJKm5NLhp//rrr6msrKz9fOrUqRQX153nEgQBq1atatrqJElSzC2vgFt/grsXQUnNdPiMBDi7F5zZy+nwkiQ1p03+Z3Zds+oj7jgjSVK7EQTwThFMy4fS6rrxERlwXI9w0zlJktS8fG9ckiStZVkFTMmDL1bWjWUkwMk5sGPn2NUlSVJH0+CmPRKJrJWkm6xLktS+BAG8WQiPLIZVUen67hkw3nRdkqQW1+CmPQgCxowZQ0JC+JDS0lIOPfRQkpKSAOqtd5ckSW3P0gqYsgi+Kqkb61KTrg81XZckKSYa3LRfccUV9T4//PDD17rm6KOP3vyKJElSiwoCeKMmXS+LStf3yoRjukOq6bokSTHjOe14TrskqeNaUg6T8+CbqHS9awKckgtD0mJXlyRJ7V1D+1A3opMkqQMKAnhtOTy2pH66vk8mHN0dUkzXJUlqFWzapY4sCOCGG+DZZ+GII+A3v4l1RZJawOKadP3bqHQ9KxEm5MB2puuSJLUqNu1SR/b883DJJeHt11+HnXeGUaNiWpKk5hMEMH05PL4YKqIWx+3bBY7Ohk6m65IktTo27VJHVlBQ//OlS2NTh6Rml18O9y6C70vrxrrVpOuDTNclSWq1bNqljuyoo2DcOHj5ZTj4YDj00FhXJKmJVQcwfRk8saR+uj66CxzZHZLjYlaaJElqgAY17X/7298a/IS//vWvN7kYSS0sJQVefBGqqyHO39yl9mZRGdybBz9GpevZiTAxF7ZJjV1dkiSp4Rp05Fv//v0b9mSRCD/++ONmF9XSPPJNktSeVAfw8jJ4cglU1vwrHwH26wqHZ5uuS5LUGjTpkW+zZs1qssIkSVLzWVgG9yyC2avqxnokwcQc2Np0XZKkNmeT17SXl5cza9YsBgwYQEKCS+MlSYql6gBeKID/Lq2fro+pSdeTTNclSWqTGv1PeElJCWeccQapqakMGTKEuXPnAuFa9j//+c9NXqAkSdqwBWXw57nhZnOrG/acJPjdlnBsDxt2SZLaskb/M37ppZfy6aef8uqrr9KpU6fa8bFjx/LQQw81aXGSJGn9qgJ4dilcMwfm1EyHjwD7Z8FlfWFASkzLkyRJTaDR89qfeOIJHnroIXbffXcikUjt+ODBg/nhhx+atDhJkrRu81eFa9fnldWN9UwKd4bvb7MuSVK70eimffHixfTo0WOt8ZUrV9Zr4iVJUtOrrIbnC+CZgnAdO4Tp+s+y4OBukOhUeEmS2pVG/9O+66678swzz9R+vrpRv+OOO9hjjz2arjJJklTPvFVw3Vx4emldw94rGS7tC0d0t2GXJKk9anTSft111/Gzn/2ML7/8ksrKSv7617/yxRdf8M477/Daa681R42SJHVoldVhsv58VLoeF6lJ17MgwWZdkqR2q9H/zO+555689dZblJSUMGDAAF588UVycnJ45513GDZsWHPUKElShzVnFfxpbrjh3OqGvXcyXLpleJSbDbskSe1bJAiCINZFxFpRURGZmZkUFhaSkZER63IkSaKyOjxz/YVl9dP1g7LgQNN1SZLavIb2oQ2aHl9UVNTgF7bplSRp88wuDXeGX1heN9YnOdwZvk+n9T9OkiS1Pw1q2rt06dLgneGrqqo2qyBJkjqqiupwk7kXC2D1NLj4CBzSDQ7ICm9LkqSOpUFN+4wZM2pvz549m0suuYRTTz21drf4d955h3vvvZfrrruueaqUJKmd+7EmXc+LStf7dgrT9S2SY1eXJEmKrUavaR8zZgxnnnkmJ5xwQr3xBx54gNtvv51XX321KetrEa5plyTFSnk1PLkEXllWl64nRKXrcabrkiS1Sw3tQxu9jc0777zD8OHD1xofPnw47733XmOfTlJLeO01uOUWmDMn1pVIivJ9CfxxDrwc1bD36wS/7wsHdrNhlyRJm9C09+nTh9tuu22t8X//+9/06dOnSYqS1ISeew5GjYLf/AaGDYPly2NdkdShrCxfyYMzH+T1Oa/XjpVVw7R8uGke5NdMh0+IwFHd4eItoZfT4SVJUo0GrWmPdvPNN3P00UfzwgsvsPvuuwPw7rvv8sMPP/Doo482eYGSNtMbb0BcHFRXw9Kl8M03MGJErKuSOoQgCBg3ZRzvzH8HgDsOvYN9B53J5EWwuKLuuq1SYGIO5NqsS5KkNTQ6aT/ooIP47rvvOOywwygoKGDp0qUcfvjhfPvttxx00EHNUaOkzXH44RAfH94eOBB22CG29UgdSHF5cW3DTiSJ2+Yu5//m1TXsiRE4tjv8ro8NuyRJWrdGJ+0AvXv35tprr23qWiQ1hxEj4Ouv4csvYeRISEmJdUVSh5GelM4evffgnaUFkHMKqd0Prr1vQEq4M3xOUgwLlCRJrd4mNe3Lly/nzjvv5KuvviISiTB48GBOP/10MjMzm7o+SU1hq63CD0ktqqw6ws9/Np2UufNIS0yjZ3ovEiNwZHcY3cWN5prKP9//J498+Qj7D9ifi/e6mEjEb6wkqf1o9JFvH3zwAQcccAApKSnstttuBEHABx98QGlpKS+++CK77LJLc9XabDzyTZLU1L5aCVPyYGnU2vWBKTAhF3qYrjeZt+e9zV537VX7+VPHP8Wh2x4aw4okSWqYhvahjU7af/Ob33DYYYdxxx13kJAQPryyspIzzzyTSZMm8frrr2/kGSRJar9WVcEji+GNwrqxpDg4KhtGdQFD4Ka1tGRpvc+XlCyJUSWSJDWPRiftKSkpfPzxxwwaNKje+Jdffsnw4cMpKSlp0gJbgkm7JKkpfLESpiyCZZV1Y9umwoQcyDZdbxYVVRUcNe0o/vvtfxnZdyTPnPgMaUlpsS5LkqSNarakPSMjg7lz567VtM+bN4/09PTGVypJUhtXUpOuvxWVrifHwTHdYZ9M0/XmlBifyNMnPE1VdRXxcfGxLkeSpCbX6Kb9uOOO44wzzuCmm25izz33JBKJ8Oabb/K73/2OE044oTlqlDZPEIQfcY0+4VCSNmrmCrgvD5ZHpevbpcIpudAtMXZ1dTQ27JKk9qrRTftNN91EJBJhwoQJVFaGv6EkJibyy1/+kj//+c9NXqC0Wd59Fw47DIqK4B//gDPOiHVFktqJkiqYlg/vFNWNdapJ1/c2XZckSU2k0WvaVyspKeGHH34gCAK23nprUlNTm7q2FuOa9nZs7FiYMQOqq8PzyVeu9DdpSZvt0xVwfx4URqXrQ9Lg5BzIMl2XJEkN0Gxr2ldLTU1l6NChm/pwqWVkZ4dNelwcdO1qwy5ps6ysgofy4X9rpOvje8CeGf4VI0mSml6Dm/bTTz+9Qdfdddddm1yM1OT++ldISICCArjmmlhXI6kN+7gYHsiHoqh0ffuadL2r6bokSWomDW7a77nnHvr27cvOO+/MJs6ol1peTg7cd1+sq5DUhq2ohKn58H5x3VhqPBzXHUaYrkuSpGbW4Kb97LPPZurUqfz444+cfvrpnHzyyWRlZTVnbZIkxdRHxfBAHhRX1Y3t0BlO6gFdTNclSVILaPAZWP/85z9ZuHAhF198MU8//TR9+vRh/PjxvPDCCybvkqR2pbgSbl8A/15Q17CnxsPpPeGcXjbskiSp5Wzy7vFz5szhnnvuYfLkyVRUVPDll1/SuXPnpq6vRbh7vCQJIAjgw2J4MB9WRKXrO3WGk3IgY5O3b5UkSaqv2XePj0QiRCIRgiCgurp6U59GkqRWoagynAr/8Yq6sbR4OKEHDE937bokSYqNBk+PBygrK+PBBx9k3LhxbLvttsycOZNbb72VuXPnttmUXZLUsQVBeITblbPrN+y7pMOV/WBXN5uTJEkx1OCk/ZxzzmHq1KlsueWWnHbaaUydOpVu3bo1Z22SJDWrwkq4Pw8+jWrW0+PhhBwYlh67uiRJklZr8Jr2uLg4ttxyS3beeWciG4gcHnvssSYrrqW4pl2SOpbV6fpDi6Ekau368HQ4vgeku3ZdkiQ1syZf0z5hwoQNNuuSJLUFyyvgvjyYubJuLD0+3GhuZ9N1SZLUyjS4ab/nnnuasQxJkppXEMA7RTAtH0qj9k/dLSNM19PiY1ebJEnS+jRqIzpJktqiZRXw95/g3kV1DXtGApyzBZzR04ZdktqF0lI4+GBISYGJE6GqauOPkdoAV+1JktqtIIA3C+GRxbAqKl3fPQPGm65LUvvy4IPw7LPh7cmT4cQT4YADYluT1ARaTdJ+3XXXEYlEmDRpUu1YEARceeWV9OrVi5SUFEaNGsUXX3xR73FlZWX86le/Ijs7m7S0NA477DDmz5/fwtVLklqbpRXw1/nh+vXVDXuXBDhvCzjNdF2S2p81j6D2SGq1E62iaX///fe5/fbb2WGHHeqN33DDDfzlL3/h1ltv5f333yc3N5dx48ZRXFxce82kSZN4/PHHmTp1Km+++SYrVqzgkEMOocrpMJLUIQUBvL4crpoNX5XUje+ZCVf0g6H+DidJ7dMxx8DFF8POO8MNN8Bee8W6IqlJNPjIt+ayYsUKdtllF/75z39yzTXXsNNOO3HLLbcQBAG9evVi0qRJXHzxxUCYqufk5HD99ddz1llnUVhYSPfu3ZkyZQrHHXccAAsWLKBPnz48++yzHNDA6TAe+SZJ7cOScpiSB19HNetdE+CUXBiSFru6JEmS1tTQPjTmSfu5557LwQcfzNixY+uNz5o1i0WLFrH//vvXjiUnJzNy5EjefvttAD788EMqKirqXdOrVy+233772mvWpaysjKKionofkqS2Kwjg1WVw9Zz6DfveNem6DbskSWqrYroR3dSpU/noo494//3317pv0aJFAOTk5NQbz8nJYc6cObXXJCUl0bVr17WuWf34dbnuuuu46qqrNrd8SVIrsLgcJufBt1HNelYinJIDg23WJUlSGxezpn3evHmcf/75vPjii3Tq1Gm910UikXqfB0Gw1tiaNnbNpZdeym9/+9vaz4uKiujTp08DK5cktQZBANOXwxNLoDxqZ/h9u8DR2dDJjeYkSVI7ELOm/cMPPyQ/P59hw4bVjlVVVfH6669z66238s033wBhmt6zZ8/aa/Lz82vT99zcXMrLy1m2bFm9tD0/P58999xzva+dnJxMcnJyU39JkqQWkl8enrn+fWndWLdEmJADg0zXJUlSOxKzNe1jxoxh5syZfPLJJ7Ufw4cP56STTuKTTz5hq622Ijc3l5deeqn2MeXl5bz22mu1DfmwYcNITEysd83ChQv5/PPPN9i0S5LapuoAXi6Aq2fXb9hHdQnXrtuwS5Kk9iZmSXt6ejrbb799vbG0tDS6detWOz5p0iSuvfZaBg4cyMCBA7n22mtJTU3lxBNPBCAzM5MzzjiDCy64gG7dupGVlcWFF17I0KFD19rYTpLUtuWVwz2L4MeoZj07ESbmwjapsatLkiSpOcV0I7qNueiiiygtLeWcc85h2bJljBgxghdffJH09PTaa26++WYSEhIYP348paWljBkzhnvuuYf4eBczSlJ7UB3Ay8vgySVQWXNIaQQY3RWOyIbkmJ+DIkmS1Hxifk57a+A57ZLUOi0sC9P12avqxnokhWvXB5quS5KkNqyhfWirTtolSR1TdQAvFMB/l9ZP18d0hcOzIcl0XZIkdRA27ZKkVmVBTbo+Jypdz0kK164PSIldXZIkSbFg0y5JahWqotL1qqh0fVwWHNYNEk3XJUlSB2TTLkmKufmrwnR9XlndWM+adL2/6bokSerAbNolSTFTWQ3PF8AzBeE6dgjT9QOy4BDTdUmSJJt2SVJszKtJ1+dHpeu9kmFiDvQzXZckSQJs2iVJLayyGp4tgOei0vW4CPwsCw7OggTTdUmSpFo27ZKkFjOnJl1fEJWu904O165v2Sl2dUmSJLVWNu2SpGZXWR3uCv/Csvrp+kFZcKDpuiRJ0nrZtEuSmtXs0jBdX1heN9anJl3vY7ouSZK0QTbtkqRmUVENTy+FFwugJlwnPgIHdwvXr8dHYlqeJElSm2DTLklqcj+Wwr2LYFFUur5lJzg1F7ZIjl1dkiRJbY1NuySpyVRUw5NL4OVldel6QiQ8c31/03VJkqRGs2mXJDWJH2rS9byodL1fp3Dtei/TdUmSpE1i0y61ZosWQdeukGzHo9arvBqeWALT10jXD8uGcV3DXeIlSZK0aTxkR2qNggBOPBF69oTeveHrr2NdkbRO35XA1bPhlaiGfasUuKwvHJBlwy5JkrS5bNql1ui77+DBB8Pby5bBbbfFth5pDWXVMDUPbpoHiyvCscQIHNMdftcHcp0cIkmS1CScHi+1Rt27Q0oKlJVBVRVstVWsK5JqfVMCkxfBkoq6sQEp4dr1nKTY1SVJktQe2bRLrVHXrvDyy2HCPngwnHturCuSWFUFjy2B15bXjSVG4MjuMLqLU+E7nLwZ8O7pEEmAPSZD9z1iXZEkSe1SJAiCYOOXtW9FRUVkZmZSWFhIRkZGrMuRpFbnq5UwJQ+WRqXrA1NgQi70MF3vmJ7aGlb8CESgy1A46JNYVyRJUpvS0D7UpF2StF6rquCRxfBGYd1YUhwclQ2jukDEdL3jiksCIhBZfVuSJDUHm3apPXrwQZg8GfbcE37/e4hzz0k13hcrYcoiWFZZN7ZNKkzMgWx7NO0xGd7/ZTg9fsTtsa5GkqR2y6Zdam++/hpOOik8Nu7556FfPzjllFhXpTaktAoeXgxvRaXryXFwdHfYN9N0XTW6DYefvR/rKiRJHcWSJXD55VBSApddBgMGxLqiFmPTLrU3S5aEDTuE3VVeXmzrUZvy+Ypw7fryqHR9UGq4dr1bYuzqkiRJHdxZZ8GTT4a3P/wQZs6MbT0tyKZdam/22APGj4dp02DoUDj11FhXpDagpAqm5cM7RXVjneLCc9f3Nl2XJEmxNmcOVFeH4dT8+bGupkW50FVqb+Lj4aGHYNUq+OQTyM6OdUVq5T5bAVfOrt+wD06DK/rBPl1s2CVJUitw1VWQnBzu1XTddbGupkWZtEvtVXJyrCtQK7eyCh7Kh/+tka6P7wF7ZtisS5KkVuTgg6GgAKqqoHPnWFfTomzaJakD+qQY7s+Hoqi169unwck50NW165IkqTVKSYl1BTHh9HhJ6kBWVMJ/FsC/FtQ17ClxcGounLdF8zbsRWVFjJs8jozrMrjopYsIVm+YKEmSpPWyaZekDuKj4nDt+vvFdWM7dIYr+8EeLbDZ3L8/+DfTZ0+nuLyYG9++kU8WfdK8LyhJktQOOD1eioWCAvj+e9hpJ0hKinU1aueKK+HBfPgwqllPjYfje8Bu6S23dj0lMaVeut4poVPLvLAkSVIbZtMutbSvv4YRI6CoKGza33kHOtm8qOkFQdioP5gPK6rqxnfqDCfmQGYL/wvw811+zmd5n/H2vLf55fBfsl337Vq2AEmSpDbIpl1qaQ89BCtWhLc/+QTefx/22SemJan9KaqEB/Lg4xV1Y2nxcEIPGN6C6Xq05IRkbj/09pZ/YUmSpDbMpl1qabvsAtXV4RmTnTrBwIGxrmjzFRWF52UWF8NFF8GWW8a6og4rCMI161PzwyPdVtslPWzYM/xbX5IkqU3x1zeppR16KDz2GLz3Hhx3HOTmxrqizXfuufDAA2F8+8Yb8Omnsa6oQyqshPvz4NOodL1zfDgVflh67OqSJEkCYNYs+Mc/oFcv+NWvINFzZhvCpl2KhSOPDD/ai2++CWcPQLjBnlpUEMD/iuChxVASla4PTw83m0tv5N/0S0uW8sfX/0hZZRn/b5//R5/MPk1bsCRJ6niqqmDkSFiwIPy9cflyuPrqWFfVJti0S9p8l14azhqoqIDLL491NR3K8gq4Lw9mrqwbS69J13fZxHT9jKfO4L/f/heADxd+yHs/f68JKpUkSR1aaSnMmxfejkTg889jW08bYtMuafMdeSTk50NZGeTkxLqaDiEI4J0imJYPpdV147tlwHHdofNm/O3+Q8EPVAVhZD9r+azNrFRSuzV3LnzwAey9N/ToEetqJLV2nTvDmWfCf/4DCQnwy1/GuqI2Iy7WBUhqJ7p0sWFvIcsq4O8/wb2L6hr2jAQ4Zws4o+fmNewAV4y6gsS4ROIicVw16qrNL3gDgiDg+e+f59EvH6WiqqJZX0tqNqtWwT33wMMP1y0Vau+++Qa22w6OPhq23z5841Z6/PHwONvDD4clS2JdjVqj228P//746ScYNy7W1bQZkSAIglgXEWtFRUVkZmZSWFhIRkZGrMuRpHUKAnirEB5eDKui+oLdM2B8j/BIt6ZSVFZEVXUVXVO6Nt2TrsPVr13NFa9eAcCxg49l2rHTmvX1pGZx6KHw33BJCZdcEp6m0d797W9w/vl1nz/+OBxxRMzKUSuwciVkZUF5OcTHw9lnw623xroqqVVraB9q0i5JbUBBBfx1PkzJq2vYuyTAuVvAaT2btmEHyEjOaPaGHeDxrx+vvf30t083++tJzeKVV+puP/dc7OpoSfvuG05vBUhLg2HDYluPYq+qCior6z5ftSp2tUjtjE27pDpBADfdBLvvHu7m2Rom4ix4Dp4ZAi+PhpVzYl1NiwsCeH05XDkbviqpG98zE67oBzt0jlFhTeSIbY+ovX3wwINjV4gaZ/lMWPp+6/g7ojU49NC624sWQXFx7GppKTvtFB5d+ve/w8cfQx9PmejwMjLCo7y6dYMdd4TLLot1RVK74fR4nB4v1Xr1VRg9uu7zp56q/8toSwuq4eEuULkCInHQ+0jY5+HY1dNA93xyDw9/+TBj+o/hN7v/hkgksknPs6Q8TNa/jmrWuyTAKTmwfRtv1lcLgoDnvn+OleUrOXzQ4STFJ8W6JG3MN3+HD38d3t52Egy7OabltAq33VZ/Q6VHH4WjjopdPZKkNsHp8ZLW769/hV13DY9qi940qbCw/nXLl7doWesUVAE17y0GlRu8tDX4YMEHnPbkaTz73bNc8OIFmzTlOwjg1WVw9Zz6DfvemXBlv/bTsANEIhEOGngQxw451oa9rfjhjqjbd8aujtZku+3C/8bHh8cYbb11877eyy/DFlvAllvCG28072tJkmLOI9+kjuZ//4NJk8LbH3wAO+wAJ5wQfn7QQeFOwE8+CWPHwrHHxqxMIEzX95gMH02C5O6w0/WxracB8lbk1ft80YpFjXr84nKYnAffRjXrXRNgQi4MTmuKCqXN1H3vcHo8EcjePdbVtA4jR4Y7x7/8crhr9g47NO/rnX02LFwY3j73XPjss+Z9PUlSTNm0S23dF1+Em7809JfENddaRn+emAiPPNJ0tTWFLY8OP9qIcQPG8bOtf8bz3z/PsJ7DOH774xv0uCCAGcvh8SVQHjX5Yd8ucHQ2dGrijeakTbbLLdBlB6gqhQFnxrqa1uOYY8KPlpCSEib6q29Lkto117Tjmna1Yf/3f3DhheHtK66AK6/c+GOqquD002Hq1DAdevzxcOffzVVdBR9fAItegf4TYPDvNv8527CSihJSElIatJ49vxwmL4LvSuvGuiXChBwYZLouaU2ffALnnRdOx//Xv2Dw4FhXJEnaBA3tQ23asWlXG7b11vDDD+Ht7t0hPz92tcy6D945pe7z/d9x6uxGVAcwfRk8sQQqov4mHtUFjjRdlyRJatca2oc6PV5qy3bfHX78MZwmOWJEbGupKqn/eWXJuq8TAHnlcM8i+DEqXc9OhIm5sE1q7OqSJElS62LTLrVld9wBw4dDZWW4MVEs9TsZ5j8F+a9Bv5MgZ1Rs62mlqgN4eRk8tUa6vl9XOCIbkj3TQ5IkSVGcHo/T4xVDFRVw9dUwcyacdRYceGCsK1IzWlgG9y6CWavqxnokhWvXB5quS5IkdSie0y61Bf/8J/zpT/DUU+ExQYsadzxYrfvug8xM6NsXPvqoaWvUZqsO4PmlcM2cuoY9AoztCpf1XXfD/nn+53yz5JsWrVOSJEmtj027OoZ//Qt69gx3S8/L2/j1LWXhQoiLC8/7qqiAgoLGP0cQhCl9URHMnw+XXtr0dWqTLSiDP88Nj3KrrJnXlJMEv9sSju0BSev4W/jyGZcz9F9DGfSPQdz63q0tW7CaX1AN754BUzvB9P2hYkWsK5I6rs8/h3Hj4JBD6jZ2laRWxqZd7d/ixXDuuWGK/dZbcN11sa6ozjnnQJ8+4e0zzoDtttu050lLCzeji0TCxF0xVxXAszXp+pyodH3/rDBdH7CBo5WjG/V/vP+P5i1ULS//NfjxLqgug0Uvw+wpsa5I6riOPx6mT4fnnw//HZakVsiN6NT+xcWFzezq7RsSWtGP/ZZbhu/sl5Zu+lnpkQg8+SRccglkZcEttzRpiWq8+avCneHnldWN5SaFO8NvtYFmfbVde+3Ky7NeJggCdttit+YrVLGRkB71SbDG55JaVGEhVFeH/5YuWxbraiRpndyIDjei6xAmT4Y//hG23RbuvRe6dYt1RWqHKqvh+QJ4tiBM2iFM1w/IgkO6QWID5zYVrirkXx/8i6T4JH45/JekJDag01fb8s3fYNZkyNkPdrwO4uJjXZHUMT31FEycCImJ8NBDMHp0rCuS1IE0tA+1acemXdLmm1eTrs+PStd7JcPEHOhnzy1JkqQ1NLQPbUXzhKVWrrISPvgAevcOPyTCdP3ZAniuINwlHiAuAj/LgoOzIMGdQ9RQQRBO0ZUkSYrir5OKndtvhy22gH333fSjzlpKEIRnqO+xB2y1FcyYEeuK1ArMWQXXzoVnltY17FskwyVbwuHZHbBhnzMN3j0d5j0W60raltKF8OyOMDUJPrqwbv8NSZIkbNoVKwUF8MtfwoIF8Pbb4Vnlrdm8efDyy+Htqqpwjbw6rMpqeGJxeJTbTzXT4eMi4br1/7cl9O0U2/piYvFb8NZxMOteeONoWPp+rCtqO775OxR+AUElfP1/UPxdrCuSJEmtiNPjFRurjydbrTXt6L4uOTmQmwv5+eEus7vuGo6XlsKcObD11q3/a2gJK2ZD5UrIHNxup/nOLg3Xri8srxvrnQyn5kKfjtisr1b8ffjfoLrm8x+g266xq6ctSepS930jDhI6x7IaSZLUythlKDa6doW774arr4aBA+H3v491RRuWnAzvvgv33BM26CeeGKbvI0bAwoWwyy7w5puQ0oF3HPtxMrx7KhDAoAtgl5tiXVGTqqiGp5fCiwWwevJyfAQOyoIDu4W3O7Teh0PGICj6GjK3hy0OinVFbce2v4aSebDsk/B2aq/696+YDd/+HTr1gG0nQXxyDIqUJEmx4u7xuHu8NtFNN8FFF9WtP33xRRg3LrY1xdLzu0FBzZTouE5wfGls62lCP5bCvYtgUVS6vmWncGf43u00XV9QvIDK6kq2zNyy4Q+qroSS+ZDaG+J8T7hJBAE8NQBK5oZp/HYXws43xLqqprV4MTz7LGy/PQwbFutqJElqMQ3tQ13T3hFUVsJvfxtuovaf/8S6mvZj8ODwF+r4+HBq/FZbxbqi2Oo2HIhAJA667hDrappERTU8kg83zK1r2BMicER2uNlce23Y7/r4Lnr/pTd9b+nLTW83YsZEXAJ07mfD3pSqy2HlLAiqws+Xfx7bepraypXhTKVTTw2XHa3eO0SSJNWyae8I7r4bbr45nN7985/DV1/FuqL24aCD4IEH4Kyz4KWXYMCAWFcUW7vcDDvfBNtfDiOfaZKnfPnHl/nPR/9h+arlTfJ8jfFDKfxxDry0rG46fL9O8Pu+7X86/A1v3UBQ81Vf/9b1Ma6mg4tPhm1+Fd6OJMC2v4ptPU3t669h/vzwdiQCL7wQ23okSWqFjEM6gsJCiIsLN1ADKCqKbT3tyQknhB8Km4vtfttkT3f3x3dz+lOnA3Dzuzfz2dmfER8X32TPvz7l1fDEEpge1awnROCwbBjXNdwlvr0b2mMo3xV8R4QIg7sPjnU5a1s5F77+CyR2gcEXQUJqrCtqXsP+CtueD4mZ0Ck71tU0re22g759ww09ITxaU5Ik1WPT3hGccQY8/ji8/354e7fdYl2RtFEv/fgSccRRTTVfLv6SxSWLye2cy5zlc7jjozvok9GHM3c5s0kb+e9KwrXriyvqxvp3gom50LMD7f115+F3Mrj7YMqryrlgzwua9sm//w98ckm47n3fx6DzJiwrmXEgFH8TLk9ZtQh2u61pa2xtIhFIb6czeVJT4cMP4fnnYcgQ2GmnWFckSVKrY9PeEXTtCm+9Fesqms+rr8Kjj8K++8Kxx8a6GjWRIwYdwYOfPwjAiC1G0COtB5XVlexz9z4sKF5AVVDF8lXLuXjvizf7tcqq4fHFMGN53VhiTbo+toOk69EykjO4avRVG76oshTe/yUs+yhMgQecsfEnrlwJ758drs+uWA4zr4I97m1ccUEQnmO+eo134ZeNe7xan27d4KSTYl2FJEmtlk272rbvvgt3bA8CuPVWd3BvR8YPGc+ArgOYWziXA7Y+gLhIHMtKlzGvaB4AccTx0aKPNvt1vimByYtgSVS6PiAlTNdzkjb++J+KfuK0J09jYfFC/jz2zxy8zcGbXVOb8O3fYdZkIID/nQk5+0Hn/ht+TCQeIol1DXf8JuzkF4nAkEvg8z+Gz7XdGjMB8l4N68oaDgN/GV4vSZLUhrkRndq2774Ld8evqmkCvvgitvWoSQ3rNYwjtzuS1MRwzXK31G4cOzicTREfF88ZOzcg3V2PVVXwQB78ZV5dw54YgfE94MI+DWvYAS595VKmz5rOF4u/YPwj46msrtzkmtqUqlIgqiGuKtv4Y+I7wd7ToMtO0Osg2OGP4XjpwvAs8oba4Wo4Yh4ctTA8H361kp9gxv4w61744FyYff9GvoZyWPQKFH3T8NeWWoPPPgtPhBkxAj7a/DcvJUmtm0m72raRI2GHHcJfYHJznR7fAUw9Zir/L+//0SOtB73Se23Sc3y9EibnwdKodH1gCkzIhR4NbNZXK68Kz4ILCKisriQIgo08op3Y5leQNx2WfRJOj88c1LDH9T40/Fht1v3wzgSgGoZeDUMva9jzpPZee6xkPlSv/p8aB8Xf190XBPVT9yCAV38GeTPCa/d9on5dUmt2+unw8cfh7QkT4PN2dhSgJKkem3a1bWlp8MEH8O230L9/uKmR2rW4SBw75e60SY9dVQWPLIY3CuvGkuLgqGwY1WXTZlJfs981fLv0WxatWMRN+99EYnziJtXW5iRnwdjXNv95vv4/oOZki69uaHjTvi5ZwyB3HCx6CTr1gK0mQskCmPEzKPoKBv0Wdq45wm5VXk3DXmPOVJt2tR3l4ZuFBAGUNWCWiySpTbNpV9tSVRX+kpIQ9aObmBjuOixtwJcrw7Xry6Jmr2+TChNzILuR6Xq0rbO25qOznJ66yboMhWWfhu+YZG7m8XJxCTD6BSiZB51ywmMIP74Yir4M19F/dQNs/YtwJ/bkbOg8AFb8CFRD972a5MuRWsRtt8Epp4RHud5xR6yrkSQ1M5t2tR0vvQRHHx0mDHfe6W7DapDSKnh4MbwVla4n16TrI7u4T1nM7fpP6Lw1VK2EbX+z+c8XiUDalnWfJ3WBoCbJj8RDQlp4Oy4Bxr0Vrnvv3A96H9mw51+9/MEfHMXSnnvCDz/EugpJUguJBB1mAeb6FRUVkZmZSWFhIRkZGbEuR+szbFi4hi8IIDsbFi+OdUVq5T5fAVPyYHlUuj4oNVy73m0zZrE/991zzC2cy/gh4+ma0nW9102fNZ0Zs2ZwyDaHMKL3iE1/QW26qlXw0QWw/DPYdhJsefSmP9fcR+Dd0yAuGfZ5BHJGNVWVkiSpA2poH2rTjk17m3HQQeGRbkEAgwa5U3xDrcqHGQeGTcs258IuN7f7lLCkCqblwztFdWOd4uCY7rB35uZ9+Xd8eAe/+O8vABjcfTAzfzmTuMjaB3G8O/9d9rxzTyKRCPGReD4/53O26bbNpr+wYu+xnrBqERCBrjvDgR/GuiJJktSGNbQP9cg3tR133AHHHw+HHw6PPhpuvrP6yDet37f/DHf4Dirhm79CYdt6s+Odee8wbvI4Tnj0BPJX5m/0+s9WwJWz6zfsg9Pgin6wT5fNf7/ilVmvEKk56uzLxV+ypGTJOq/7aOFHBARUB9VUVFcwM2/m5r2wNq5kPnx1E/z038Y/9utb4L+D4d2fr//4uqQuQBxE4sKN+CRJklqAa9rVdmyxBdx3X5i0z58PAwfCvHmw887w5pvuHL8+SV2A1RNq4iAxPYbFNE4QBBz24GEUrCogQoSEuASmHDllndeurIKH8uF/a6Tr43vAnhlNN7ng6O2O5qEvHgJgrz570T21+zqvO2zbw7ji1StYUrKEvpl92a//fk1TgNatshSe3zXcFZ4A9rgP+jdw34vlM+GjmvX0RV9D1s6wzTlrX7f3w/Dx78Lz5ofd0lSVS5IkbZBNe3sQBGHy/PXX4eZs/fvHpo5Zs+DWW6FnT/j1ryGpkVty33IL3Hwz7LILTJ4M6etoLr/+GsaNg59+qtsQ6uOP4ZVX4FCPa1qngeeEO2QXfBhOj0/rG+uKGqw6qKaovIjqoJq4SBwFpQXrvO6TYrg/H/638EvmFM5ly8wtGd9vMCfnQNcmPoHt2CHH8nG3j5lXOI9xA8YRWc+7Ab0zevPdr77ji/wv2DF3RzondW7aQlRfydyaqeuEG84teavhTXt1+Rqfrydp77I9jH5u02uUJEnaBK5ppx2sab/nHjjtNIiLg27dYPbslk+dq6thq63CBLy6Gi65BK69tuGP/+EH2Hrr8HZcHFx9Nfz+92tfd+aZ4ddbVVV/PDc3TNsHDNjkLyEmqqth+XLo2rXdrzPfVHd8eAe/fv7XZKVk8fQJT7NLz11q71tRCVPz4f1iWFi8gKe/fRqqS2HxNF45/E/st9Xo2msfnPkgUz+fysh+I/nN7r9Zb7OtNqq6Cl7cAwreh0gC7PdSwzeKCwL45BL4/nbI3j1M1BN9k0WSJDWvhvahJu3twXvvQXx82MguXhw2ztu08IZXq1bBnDnh7Uik8ZvErfne0freS+rRI7wvEgnPaq+oCMcXL4a//Q3++tfGvW4sFRTAyJHw+eew337w7LOQnNy0rxEE4e7ZCSlN+7wt6OfDfs6Zu5y5VpP9UTE8kAfFNe/flFSWwMrPIO9+qCpk0cqFtdfOzJvJiY+dCMBT3z5F38y+HD14M3YRV+sTFw/jXofFb0LnrcKPhopEYOfrww9JkqRWxo3o2oMTTwzTaYC99opN2pyaCmefHd5OSIBz1rEedEO23hpuvDFct37QQeH0+nX5/e/D5z7wQHj44XAKfiQSJtY9e27e17AxDz8crp8fPz5MxzfXQw+FDTvA9OnhFP+mVLECXtwLpqXCK2PD5r2Nim7Yiyvh9gXw7wV1DXtqPFy2TW/2iv8MqgrZq89eHDHoiNrHLFqxqN7zLShe0BJla31WzoVF05v+ZzK+E+SObVzDLkmSFAsPPgi9ezfoUqfH0w6mx0OYrs+eDbvt1vi15E0lCMJp7l26hOeot4SXX4Z//CM8Au6qq5rva1++HLp3D3eqj4+H3/wmfJNhczz9NBx2WPimQxCEa/N32qkpqg39eE94pvRq+zwGfY5suudvYUEAHxbDg/mwImp1xI6d4aQcyEwIN64rqSghNTG1XqNfUVXB4VMP57nvn2Noj6G8euqrZKV08N2/l7wLlSshZ3S4G3pLWfwOvDISqivCY9MO+B/ENfHGA5IkSa1dZmbYh4LT4zdJdTX88Y/w+utwyilw6qmxrmjjevdu8Ds1zSYSqVuX3lLGjg0/mltFRf2j5UpLG/f4Tz6Biy+GtLRwCn+fPnDIIeHGfTNmwDHHNG3DDtApd43Pc5r2+VvIF/lfcPVbt7Ck8/5sucXhJMWHb8ykxcMJPWB4et12AJFIhLSktLWeIzE+kWdPepbismI6J3V2PfuXN8InF4W3tzoTdr+j/v2lC+GTS8Ojz3b8I6Q34Z/rudMgqA5vL/s43K29y9Cme35JkqS2ID0diovXvyw4ikk760jaH3gg3IV9tc8+g6Ed+JfK558P180fcwwMHhzramLn5pvDDfK23hoef7xxb5JstVW45j8SgZ/9DP67CedIN1YQwLd/h4XPQ+8jYeufN/9rNrHq6oDc2w9hSedxBPGpDOo2iH377svOneHEHMjwbcdN8+yOsPyz8HZ8Ghy3ov79Mw6ERS+FtzOHwEGfNt1rz5kGbx0HRMKzzg+b1aaOIWwzXn0VZs6EI4+M/Ru6kiRpbe+/T9Fvf0vmm2+atG+SJUvqpiwDLF0a23pi6fnnw/XjcXFwww3h9PectpnYrtNdd4XH5Y0bB+efv+Ed3H/zm/BjUyxfHs7giETCDehaQiQC2/46/GiDCith8qJqlmQeQRBUQwClZYv5eU8Ylu5m+5sld2xd076uHdZLF9ak4QGULlr7/s3RdzwkpMLyz6HvcTbszWH10huAP/0Jvv8eOrsbviRJrcquu8Izz0Bm5kYvdSO6dZkwAYYPD28fdxzss09s64ml994LG/bqali5Er75JjZ1rDk9vSm89x6ccUa4a/tvfhP+t7n885/h1Pjs7M1fC9/OBQG8WwhXzobPV8aza6/hQITIig+p+PH3fD93qg375trpBtjzftjt9vB4s7Xuvw7iUyEuCXa5qelff4tDYMgl0Ll/0z+3wpQ9Pj68nZcH330X03IkSdLmsWlfly5dwoauogKmTq375acjOvpoSKk5Lmy77erezGhJjz0GGRnhuo/HHmu65120RoK4cOG6r2sKxx8frlnJywt3+Nc6La+Afy6AuxdBSc1mc/tssTNHZuYTWfgfFiz/hlMeP4XisuLYFtrWxcVDvxPDJRNVpfDi3vBQKnx0QfiuSa8D4dhlcGwx9D8l1tWqsY48sm4qyqBBHXtZkyRJ7YBN+4YkdLDVA8uXw7ff1t8MYciQcEr8q6/CBx+ER7ttiqlTw6PaZsxo/GN/97vwHPhVq8LbTeWAA8Jp8RBOTxk/vumee10ikXXP6Q4CKPgYitpfGvbE108w4j8jmPj4xA022kEAbxfCVXPgs6jl1btlwJX9oEcwv3bzuOqgmurVG5lp831/Gyx5J2zev/4LLJ8ZjsclQnyMTqLQ5tl7b/jyS3jqqfAN6OTkWFfU8mbNCpd2jRwZ/tslSVIb1sG6Uq3Xe+/B6NFQUhJuODdtWl2DmZOzeevYn3sOTjghnLFw++3w9deN22U+NzfcxG317aaSnAwvvhh+zSkpsVsk/eH54YZxACPuggGnbfj6NmJZ6TLGPzyeiuoKPljwAVtkbMG1Y65d+7oKuC8PPl9ZN5aRACf1gJ1qljtftu9lzMyfyaxls/jj6D+S2Wnja3/UQAmdgag36hI28Y05tS4DB4YfHdVZZ8H06eE7gscdF775LElSG2XTrtDtt0NZWXj7kUfCc9/79Gma5/7667AhrqqZ7/zDD41r2h94AC69NHyOa9du+jbbps4eaCrf/zvq9m3tpmkvqyqjoroCgAiRtZL2IIC3i2BaPqyKCs53z4DxPcIj3VbbImML3jr9rZYom4qqCt6Y+wa5nXMZ3L0DTCve+qzw2LWl78HAXzbt8W5SrKw+Qqe6Glas2Pj1kiS1Yk6PV2jw4LCpjo+Hrl3DDdOayvjx0LNneHuXXWDffRv3+L59w8b9/vvD2+1N110I/yhGoNuIWFfTZHI753LtfteSkpDC4O6DuWivi2rvK6iAv/0EkxfVNexdEuDcLeC0nvUb9pYUBAFHPHQEYyaPYft/bs+0L6bFppCWFJ8Mu/4TfvYBDDgj1tVITePmm6FXL8jKgn//e+PXS5LUinlOO+s4p70jqqoKdzj//nv4xS/Cteyb69FH4eWX4fDDw3WFc+aECXtH2ytgY8oKwrQ9MQMG/LxdryMOAnijEB5dXD9d3zMTju0OqTHe87GorIjMP9dNvT9828N54vgnYleQJEmS2q2G9qF2T80tCMJp5506xbqSDYuPh1/9qume7/XXw7Xx8fFhyvHJJ7DDDk33/O1JchYMubTu84oV4VFbjWnel30Cn10BSVmw843QqQlnSjSRpRVhsv51Sd1YlwQ4JQe2byVHSKcnpTO4+2C+WvwVAQF7b7l3rEtSc/vxR7jrLhgwACZODI+4lCRJakVs2pvTjz+Gm7vNnRs2xH/7W6wrajmrz3NfvY79u+/aZtNeXBwen/TWW+Ev9P/8Z/P+Uv/ljfDJJeFmYKOegR4NWEoQBPDqIVC6MFz3X10Be93XfDU2UhDAa8vhsSVQFpWu71WTrqdsZrpeVV1FcXkxXTp12bwnAiKRCK+f+jpTPptCr/ReHDv42M1+TrViZWWw556wZEn4d1VxMfz617GuSq3F55/DV1/B/vtDpptfSpJix0ihOf3tb/DTT+Htv/89PIKmozjiCOjXL7w9eHD4S09bdPfd4Q7Eq1aFMwbefrv5Xqu6Cj79f0A1VK6Ez69p+GPLloaPCwJYlddcFTbaknL4y3x4ML+uYe+aAL/uDRNyN79hn7VsFv3+2o+u13fllMdPoSlW+3RL7cak3Scxfsj42mPmFGXJ/2DOQ+GMkLZu8WLIywsb9rg4+OijWFek1uKVV2DHHcM9WXbdtW6jVkmSYsCmvTnl5oY710YikJjYsd6p79493DX+66/DqfHp6bGuaNOkp9c/t75zM87jjsRBpxxqN6VLbeDu/ZEIDLsZIomQ1AV2uKr5amygIIAZy8Jz17+Nmg6/T2Z47vqQtKZ5nds+uI2FxQsBuO+z+/hy8ZdN88Rat9lT4cXd4a3j4eWREFRv/DGt2RZbwCGHhLcTEuC09nFyg5rA00/XHQP63Xd1s8ckSYoBp8c3p9/8BpYtgy+/DKfHZ2XFuqKWlZwM224bm9desCBM92fNgt//Hv7f/9u05znlFJg5M1yjf+qpsNNOTVllfZEIjH4BvrgWkrNhh6sb/tiBZ8OAM8PGPxLb9+Lyy8O169+V1o11SwzXrm/XRM36ar0zelMVVBEhQkJcAtmprW8tf7vy09OEbypVw7KPwlkdKT1jXdWmi0TgiSfg00/DncZzc2NdkVqLsWPhr38Nb/fu3bhjSiVJamLuHo+7x7dLe+8drkNfbd688BevTRFUw8KXwts9x8W8KW4Ob897m+e/f55xW41jn777bNJzVAcwfRk8sQQqov5WGdUFjsyGTs2wM3xldSXXvXEdn+V/xi92+QXjBoxr+hdRnVlT4J0J4e3MoXDgxxAX4y3/o11xBVx/PQwaBM8+Gzbi0qZ6+2344ovwBJQePWJdjSSpHWpoH2rTTgya9sWLwwT322/DXzInTmz+1+xo0tKgJGpedn5+OGV/U3z4G/jmlvD2tpPCqejtyMy8mez8750JCP8q+PAXH7JT7k6Neo68crh3EfwQla5nJ4br1rdNbcJiFXv5r8OKWdD7CEhqRUt+5syp20cjPj6c6XTjjTEtSZIkaUMa2oe2v8iwLbj22vD88lmz4PTToaCgZV43CGDSpHDa+ogR4Y7JLeHNN8MNfUaMCFOLxqrehHWze+5Zd3uPPTa9YQeY+/C6b///9u47PKpq6+P4d2bSQwpJSKN3EFAhgEpXAUVQsaGigKL3iiKviL1jA+xe5VqvBUUFCygWUKQpotKkV4FIT6hJSEibOe8fO6RACCmTzCT8Ps+ThzNnTlmJJ8iatffalWnfIlg4CP56AJyZlXqrlUkrcVpOXJYLl+Vixd4VpT7XZcFPB+HpxKIJ+/nh8Hgj9ybsf+78k5u/uZnnFj5HrivXfReWsonuAU2GeVfCDmZZTUde1d+yQKOmREREpIbQnHZPKE8S6g6rVxfM0Vu6FN58Ex57rPLve+ONZtk7mw1uv93MDy+NpCS46CIT94gRMHFiQWOgU/nyS3O8jw/ceWf5YweI6wdb/2e24y8p/picNNjwCriyoOXdpV8n3ZkN2z4CXNB4KDgCIDcD5vWF3Lws2OFftvntZdS3aV/iQ+LZnbabmOAYLm52canO25MFHyXB3xlOth7aht1mo1OdxtwcZ6e5m6vrqVmpXPjRhWTmZuKyXPjYfbinyz3uvYkUZVmAVX2mg8TEwGefwcsvQ9u2cI+eDxEREakZlLR7wsMPm/Vfjw2Pr6oGdbVqmaTXssxXVXWzP7ZWO0BuGSqkb75pEnaXy6yPPmIEtGtXunPDwkwDOnfo/CbEXmi2G1xd/DGL/w3/fG5+vvsWQu8Fpbv24n/Dtklme+9c6DYFco+YJd8AbA7I2FWx+E8hOjia9SPXsyppFe2i2xEWUPJz4bJg9iGYsR9yLZifuIC/D26Cw3Np0bguzZu6f/rAgYwDpOeYn4nD5mDroa1uv4cUsncO/HoVuLLhnPeg0fWejqh0rrnGfLnbrl0wZgwcOQITJpT+7yERERERN6gmJZQaJibGrAG7YwfcemvV3bdJE/jwQzj3XBg50iTBpZGVBe+/D5Mnly3pPuaDD6BxY9Mc6r//Ld05lmWW2Tk2KsFu99xwV7sPNLrOfNlP8jnXoZWYddKdcHhN6a+dXCi5T55v/gyIhlZjzLZfBLQaXY6gyybUP5RuDbqdMmHfnQXPbYdp+0zCDrDrwHLY8QLs+4IfN39bKfE1Cm/EDe1uACDMP4zbO90OQLYzm8fmPsY1X1zD/MT5lXLvcstNh7kXwdQg+PPf1Wt5tBUPQE4qOI/Csrs8HY3njRgBX30Fs2bBlVd6OhoRERE5zajSXlGWZdZvjYmB2rU9Hc2pDR1qvg4cgGXLzBJmgYElnzNkCHyRN5f7999Ln3gf07s3bNlStnO++QY+/bRgZMDLL0PDhmW7RlVqfS/8eStgQev7Sn9ek5tg9di87UJrRHd4CdqNBUfgyT8oqEJOC348CN8fKEjWbUCfCLDCt/Hu36byPajNoEq5v81mY/KVk3mhzwvUDqxNgE8AAK/8/grP/vosAN9u/JY99+yhdqCX/B5u+wj2zgYs2PIuNLoBYnp6OqrS8a+TNyzeMssPnu727TMfIFqW+btTREREpAp5PhuozizLVF2+/tp0K583Dzp18nRUp7Z5s4kzJQVat4YlS0z8JzNnTsH27NmVHx+YqQPHEnbw/uGoTYdD3EXgyoFajU5+nDMT/hgOSfOh6c3Q7mlznuWCqPOKHusbUpkRl9rOTJiUBNsL9cOL9YNhsdAkEK645HWuaDEAH7sPvZv0zj9m4faFJB5O5PKWlxPi757vJS6k6Jrgu9J2YbfZcVpOspxZHM487D1JuyMYKLQ4h4+bF6mvTOe8C8vvMc/r2eM9HY3nPf88XHEFHD0Kr79e9D3LMo1FXS7o08eMCqoM//wDU6dCmzbQv3/l3ENERES8kpL2ikhMNAk7QGYm/O9/1SNp/+orSE012+vXm+p5794nP37wYNPUDUxTuaoweLBpmrd7t+kE37Vr1dy3IoLqnvqYrZPgn8/M9tpx4MqF9s+5LYR3lr3DA7MfID40nm+u+4ZmEc3KfS2nBTMPwA8HzTaY6nrfCLg0EnzzchO7zU6/5v2KnDt51WSGTB8CwFkxZ7H8tuXYK6Gh2ajOo/hy3ZfsObKH2xJuo1F4I7ffo9wa3QCHVphpD42HQmRHT0dUekH1oNtUT0fhPXr0MKttWNaJSfmDD5qkHkzTy+OTendITzf/bzkWw5QpcO217r+PiIiIeCUl7RURHQ3h4ZCWZpqttWnj6YhKJyGh4B+ffn5mrnlJXnvNVJn8/Kouea5XD7ZuNQ2gGjWqvOpVVTs+cV3/PDS+EcIrPpIgIyeDO76/A6flJG1/Gk8ueJKPr/i4XNfakWnWXd+RVbAvzg9uioVGp5hNAfDD5h+w2+y4LBcrk1aSnJ5MbK3YcsVSkuaRzdlx9w7Sc9IJ9feyJb7sDkh4ufznp2+Hv9+F4AbQ9Jbq08W9prLZil+94vPPi25XRtK+bZsZog9mWbtFi5S0i4iInEaUtFdEcLBZg/zdd6FFi1M3dktPN//oC3Lzelhl1acPfP+9qbBfeaVJkEtis8EFF1RNbIX5+5vmeTVJ46Gw4VVIXVewL+eIWy7tsDnwc/iRmWvGsQf5lP05y3XBzIOmuu7Kq67bbXBRbRgQCT6lzBv7N+/PZ2vMiIL2se2JDo4ucyyl5bA7vC9hryhXLszuBkd3makT2QfhjAcq516WC7IOgn9k6ZdUlAL9+pmVLo5tV4aWLaF9e/jrL/MBZmV0yBcRERGvZbMsyzr1YTVbamoqYWFhpKSkEFpZHco//hiGDzf/KJ48GQZVTsMu8XI5R+DrepCTAoAV1Z3MXrMI9HPPBzkzN8/k8fmPUz+0Pm8PeJs6wXVKfe72TPhwL+wqVF2P9zfV9Yam7xtJR5IY9+s47DY7j/R4hKigkzcpW7RjEYmHE7m0xaVum9Ne7bhyIDMJAuPLVinPOgBfHfvZ2s1Sg5UxXD07BX7uAYdXQVQXuOBn8CnFUAop4HTCl1+aOe1XXw2+vpVzn6NH4bffoFkzM/pIREREqr3S5qFK2in0w3rgAULPPtsMO3R3xal+fdi502w3a2aawSUlmeH1/v7uvZe7WRb88osZHn/uuZVTjVu2zHSlb9YM7ruv8v7h62mpm+G7FgBYNgefHK3FkB0pDDtrGB9c/gE2D1Q6c13w/UGYdVx1/ZII6BdRtLre68NeLNy+EIA+Tfsw84aZlR5fcnoyvnZf72kwV1pHk+Cn8yB9G9TpZhJiRxl+13+9BnZ8CTZf6PUdxPV1f4xb3stb9SBP96+gvpY0ExEREakKpU3aNUmysOefh+uvh0mT3H/tBg3MXESHw2wPGQKxsWZo+vr17r+fO40eDb16mYZwzz5b/DEZGfDeewUVp7JITzfD7z/6CB59FF56qeTjp0418dx7L+TklO1enhbSFOIuBiDHsvP6vjQAJq2cxOrk1VUeTuJReHY7/HCgIGGv5w8PN4BLo04cDv/3wb9xWk6clpPNBzZXenyv/P4KMS/GUOeFOny+9vNTn+BN/vkM0hPN9r6FkLygbOd3mwoXL4fLt1VOwg4Q1CBvI+/DoqD6lXMfEXGvnBwz+kJERE4LHk3ax48fT6dOnQgJCSE6OpqBAweycePGIsdYlsXYsWOJj48nMDCQXr16sXbt2iLHZGVlMWrUKKKioggODuayyy5j57GqdllYlkmqly6tyLdVvKlT4aabzBD5p582Q+QBDh0qmA/prT4u1MzspZeKT8qvuAJuvdXMtRw7tmzXP3zYdLN3Os18zePXdE9PN8sdWZb5c/BgWLDArN3+1ltl/W7KzpUDC6+DqYHwy1XgzC7/tWx26PU9XLKGjxo/y+JM87N02BxEBEa4KeBTy3HBtH0wYTvszhsOb7eZrvAPNYD6AcWf90TPJ7Db7Nhtdh7v+Xj+/ld+f4X6r9Tnss8uIzUr1W1xPvXLUwA4LSfjfh3ntutWiVpNMEu+2c1XfoJcSjY7RLQv3aoE5RXXBzq/a4bfd/kEIqvB6hcip7s5c6B2bQgJ8f5/P4iIiFt4NGlfsGABI0eO5I8//mD27Nnk5ubSt29f0tPT8495/vnnefnll5k4cSJLliwhNjaWPn36kJaWln/M6NGjmT59OlOmTGHhwoUcOXKEAQMG4HQ6yx6Uj0/lLGtWr55ZEu6dd+CMMyAw0CSoLhc0buz++5VGZqbpzn6qGRJnnFGwffgwfPON2d6xAy69FLp3L7qW+48/li2OunXNBxpg/hFyxx0F7/31F8THmzmcN9xg7n/sQwO7HQ4cKNu9ymPXd7B9qlmzeuc02Dm9Ytez2SG8DTedczeP93ic/s37M+3aadQLPUVDwDLacnALby19izXJa4rs33oUnvkHfjxYsIp4gwB4pAEMKKa6Xti/Ev5F8r3J7LtvH0PPGpp/nzE/jWFn6k6+3/w9r/35mtu+h2YRzXDYHNhtdlpGtnTbdatE3UtNQtzoBug5A8JOsUpDRWTshB1fQ2Zy2c9tdit0+xwaDXZ7WCJSCZ54woxuczrNdDIREanxPNo9ftasWUVef/DBB0RHR7Ns2TJ69OiBZVm8+uqrPPLII1x5pZlnOWnSJGJiYvj000+57bbbSElJ4b333uPjjz+md95a45MnT6Z+/fr8/PPPXHTRRaUP6OefTYIaF+e277FY4eEweza8/Ta0bg2jRlXu/Yqzbp1Ze/jAAVMdnzr15HPV777bNEA6Jjuv0jxqFMycaZJ+Pz/zDwiA664rezwffGCG3teubT7QOOatt0ylHeCzz2DcOBg50lQX2rSB228v+72Ot+832PwWhLYyHbrtx/1a+ASX/LqcfOw+jO01lrnb5pKWnUaOMwdfh3vm8u9I2cFZb51Fek46vnZflv57Ka3rnMmMAzC7ULLusJmu8BdFmO3SiAyKdEuMpfH1tV/z3G/PEegTyEPdH6rcm7lyYOUjcHA5tLij4nO7bTaTEDe79dTHVkTaFph5NuQeMR3gL1kDge5fXk9EvETduuZDa8uq/H+viIiIV/CqJd9SUkxH7YgIM0x427Zt7N27l759C+Zz+vv707NnTxYtWsRtt93GsmXLyMnJKXJMfHw8bdu2ZdGiRcUm7VlZWWRlFbTITk3NG87bqRNUVvf443XtWro1z3ftMsmsn5+Z7x118m7dZfLOO6ZqDfDFF/DMM2bZuuIMHGiGvk+bBpdcYpaJAzOk3bJM5dvHB374AcLCzNz3wn74AZYsMR8OFK7aHy8+/sR9zZub6zscZom9qCiYONGsHe+OtduzD8PcPuDMAizwCYJWdxc9JrYPnPk07PgK6l4G8f0rft88ExZO4OG5DwNwzRnX8Pk17pm3vWT3EtJzzIcdOa4cvtq2AivjTJIKjexvGGA6w8dXsA9i04imvNz3ZV754xXax7Xn/875v4pdsJC6oXV5rZ/7Kvcl2vQGrH8RsCBpHgz8B4LcO/qhUuydbRJ2MF3nk3+Bhh5anWLNGrOcZLdupfv7TUTK7r//NR/+p6aaqruIiNR4XpO0W5bFmDFj6NatG23btgVg7969AMTExBQ5NiYmhn/++Sf/GD8/P2rXrn3CMcfOP9748eN58skn3f0tuMf06bB6tWmI17y5WUJoyRLz3pYt8O23xZ935Ag8+KCZ833//WbIekmaNjWVcYfDdK+vU8LSYA6HWYv+3XeL7n/hBbjqKkhJMZXv4tYo/uEH6N/fJNgvvmi+h+gyrNl9992mYrlpE4wYAbVqmf3uSNgBsvaDM6+Zj80BR7adeIzNBm0fNV9u9tX6r/K3Z2yc4bbrdqnfhcjASA5kpuIXPYiNgZcRlpew++TNXe8bYeaxu8Pd593N3efdfeoDK2LH17DhZQg7Azq84v6lybL2m6kLlhNwmeXQqkPSHtXFdJi3csAR6Ll56du3Q+fOZtoNwKJFZrUJEXGvqCgzUk9ERE4bXpO033nnnaxatYqFCxee8N7xy2BZlnXKpbFKOuahhx5izJgx+a9TU1OpX98LuiZPmWKSdbsd/vMf2LbNfB0bdv733yc/98knTeJsWTBvHuzfDwEn6SYGZt54VpYZJv/vf5th6WWVkACJiSUf8+efBXP3jxwxyXdZknaHA+65p+yxlVatptBoCCR+DH4R0NwNw+3LYECLASzbswyAvk3d1yE8tlYs39y8jpe37cc/sD4hfmad9MYBMCwW4rx8lcETZO6DhdeAlWumMwTWhXaPufcezW83oylSN0DzEebDgeqg9plw8WJTYY/tC7U81CNj5cqi3ax//11Ju4iIiLjHsdG9DoenI/EIr0jaR40axYwZM/jll1+oV6+gshUba+Zl7t27l7hC87aSk5Pzq++xsbFkZ2dz6NChItX25ORkuhw/TDuPv78//t64NvrixeZBdDrh4EGTED/5pEmw7faSh8ElJ5uKsMtl5oAfPVpy0u5wmCXTKts115iO8+npZg56QkLl37O0nFlg94MuH0GHl8A3DBx+VRrCEz2fICEugbTsNK5qfVWxx6zbt45xv46jdkBtnr7gacIDwku8ZpYLpu+D+YejiQozH5D42ODyKOhd233V9SrlzDAJO5jnPOew++8RFA8D1oEr98S+Bt6u9tnmy5O6dTMNN3fuNA0lBwzwbDwiIiJSM6xcaUb07t9vlugePdrTEVU5j3aPtyyLO++8k2nTpjF37lwaH9dFvXHjxsTGxjJ79uz8fdnZ2SxYsCA/IU9ISMDX17fIMXv27GHNmjUnTdq91nXXgW9eI7JOncz879tuMw/o/v0lN3i7/34zxN1uN0uuladyXhnatjVD4n/5xQzzD3TzkObysCxY+n8wNQBmNIUjiRBQ58SEPWk+TIuHabGwZ3ZxV6owm83GpS0vZXC7wfj7FP9B0iWfXMKUNVN4Y+kb3P1jyUPQN2XAU4kw73BBs7mmgfB4I/cOh69ywQ2hzSNmGHhoqxP7DrhTdUvYvcFff5n/iU6YALNmmRE1zZt7OioRERGpCZ55BpKSICfHjMA9NhXvNOLRf52OHDmSTz/9lG+++YaQkJD8OehhYWEEBgZis9kYPXo048aNo3nz5jRv3pxx48YRFBTE4MGD84+95ZZbuOeee4iMjCQiIoJ7772Xdu3a5XeTrzY6dzYJ7tatJmn3yfvPU5oEvE0b2L3bPMx+VVstPqWYGPNVEft+gy3/g7B20Gq0mXtcXke2wqbXzXbGdrPd4aWC9/+ZClveh0PLzTxnbLDkdrjsxOkJLsvFf/74D8v3Lufms2/mgsYXlD+uYliWxZ60PTgtJzZsbD+8vdjjsvLWXZ9/uGCfrw0GRsEF1bW6fryznjENAU8xNUaq2J49pulcVpYZ6fPttxCr7vUiIiLiJpF5KxfZbKZpuM/pV2Dx6Hf85ptvAtCrV68i+z/44ANuylu3+/777+fo0aPccccdHDp0iHPOOYeffvqJkJCQ/ONfeeUVfHx8GDRoEEePHuXCCy/kww8/xFEd5zzExxftov7bb6ba7udnlkU766yTn2uzeV/C7g6Z+2FOb9Noy3KaBmQVmXvuG5bXuCsXLBcEFPpAIXUz/HY9BXVqm/m5nmSZtw9XfMiYn8Zgt9mZumYqiaMTiQ8ppgt+OdlsNsZdOI77f76fQJ9AHu1xYjO8DenwURIcyCnY1yzQzF2PrmmPgxJ277N5c8FcdrvdVN01NF5ERETcZfx4UxzYswcef/y0TNptlmVZpz6sZktNTSUsLIyUlBRCq2rJt1PJyDAP6GuvQVqaSVYSEsy892OWLjXz3zt3rtnJzOG18INZUQCbA1qOhg4vVuyau2fCxtchvC2c+UzB0Pj9f8JPx5pn2UxTr6AG0PE1CG93wmUem/sY4xeOx2mZZoFL/7WUhHj3z9s/kn0EX7tvkSH0mU74aj/8crjgOD87XBEF54dX3iPx584/eWzeY0QFRfHqxa8SHVyGxoJS82RmwjnnwKpVZsnHP/+Eli09HZWIiIiI1yttHurROe3Vxr59MH++6X5eVR58EMaNK1gLHQr+BLN2e6dOpjvzo+5fiqxYv/5q/jF+xhkFy9BVhbDWUC9vbXi/CGj274pfM74fnP8DtH++6Fz2yE6mmzxAWFvo+wf0nldswg5wS4db8pPWS1tcytmxZ1c8tmLU8qtVJGFflw5jE4sm7C2C4PGGZjj88Qn7nrQ9dH63M+ETwnlxUfk/8LAsi0s/u5Q52+bw+drPGfPjmFOfJDVbQID5MHHxYjO1Rwm7iIiIiFup0s4pPuH4+29T4U5NhcaNYcUKM5eisvXrBz/+WJCot20LkyZBhw7mdZMmZjk4MEuoJSVVfkzNm5s59zabGaa/fHnl3/MYy4Kju8E/EhwldMV3F1cO2H05mnOU6RumExEYwUVNLyp2GcFsZzYHMg4QWyv2lEsRVtRRJ3yxD35LKdjnb4cro6Bn+Mmr62N+HMNrf76WPyJg95jdxIXEFX9wCVyWi8BnA8l2ZmO32bmo6UX8cMMP5fhO3CAnFRZeCweXQotR0O5xz8QhIiIiIlIOqrS7yzffmIQdTJJczDryleKee+DYsnQPPwyrVxck7ADdu5s/bTbo0aNqYnI4CrLCqu4XYLNBUN2KJ+xJ8+Cv+2HvnJKPs5su/gOnDuSGaTfQ75N+vPT7S8Ue6ufwIy4krtIT9jVH4MnEogl7q7zqeq9iquuFBfoEYuXN07fb7Pg6fMsVg91mZ2K/iQT4BBAdHM3T5z9druu4xaY3YM9Pplng6icgZZ3nYjmdLF1qRvf89JOnIxERERE5LajSzik+4fj1V+jZ02z7+8PGjdCggXmdng7z5kHTptC6dWUEZua2F9eJOSsLPvwQcnNh+PCqWUrtzz9NUzyHA95/v+SmeFUtNx12zoCgehDdvfhjDq2Amcfmm1tw8RKIOPn8c5flwucpn/xkt0fDHiy4acEpQ0nJTOHVP14FYPS5owkLCCvDN3KijLzq+qLjqutX14HuYaWbu56alcpt397G+v3rebDbg1zXtoTlA0vh2F8blf1BRYnWv2g+gDnWNHDABgithKHZlgVHtoBPCARWcBWE6m7bNmjVyvy943LBggVV96GhiIiISA1T2kr76dd6r6y6d4c5c0yF/bLLChL23FyzzNHKlaZj8qxZ0KePe+8dGnryofj+/iaBrkrnnGOmB3gbyzLd5Q/8YV6f8z40vfnE4w6vBVyFXq8pMWm32+xc3OxiZv49E4CBLQeWKpwh04fw/ebvAViyewnfDf6uVOcVZ9UR+CQJDucW7GsdBENiIbIMxfJQ/1A+u/qzcsdxPI8m68c0vwMO/gUHFkPLUZWTsAP8dS9seNk0Qez2JdQfWDn3qQ7WroXs7ILXy5efOml3OuHpp00fjFtugSuvrNwYRURERGoYVdopZ/f4jRtNxQlM5flf/4K8Jew87sgR+O47aNgQzjvP09FUvuxD8GVE3gsb1L8Cun914nFZB2BmB7M2e1A9uHg5BNQp8dJZuVl8u+lbIgMjOb/x+aUKp+GrDdmeYtZTrxdajx137yjLdwNAuhM+T4Y/Ugv2BdjhmjrQtZTVdXEDywWf+ZL/YU/0+dB7rnuunZEBn38OERFw6aXV4z9qaqqZprNli4l72TJo1Kjkc955p+ADRrvd9Alp3LjSQxURERHxdprTXtkaNoR69cy20wnHrTXvMS6XGc5//fXQpQt85r7qqtfyDYfIznkvLIjvX/xx/pEwYB1ctMQMpT5Fwg7g7+PP1WdcXeqEHeCe8+4pdru0Vh4xneELJ+xtgmFsI+gWXj1yuxrDZofQFqbKjg1qn+m+aw8YADffDJdfbpZ3rA5CQ83Sbr/9ZpLvUyXsYJpk2vP+V+NywYEDlRqiiIiISE2jSjsVWKd971748ktTce/du/ICLIu9eyEuryu43Q7XXgufflq598zNhR07oH598PHQjIucI7BrBgTWhZienomhkMTDiQA0Cm9U4nH7M/Yzc/NM2sW0o1nU2UxJhiVpBe8H2mFQNJwXqmTdYzJ2wsbXzIc+Le9yz+oFLpf5XTn212+PHmZ+eE20d6/5UHPjRrjxRrMKhl2fF4uIiIiUNg9V0k4FknZPeO01M/T90kth1KgT33e5oH17Uw0D+OgjGDKk8uJJSTEV/XXrzIcXixZB7dqVd78aJD07ndb/bc2O1B3YanXg6vOnUzu4Qf777YLhxhgIL1+j96qVvh32/gyR50B4G09HUz0MHGhWpwDze13c73NNYVmmeWZAFSzXKCIiIlJNqBFdTTRnDtx1l9mePdus3X7+ccO27XbT8f7rr83Q1cru7PzDDyZhB9iwAb79FoYOrdx71hDr9q1jR/ohiL0VK7QTmw7t4ZzgBgQ54No6cI4bq+spmSnc+u2trN+3noe6PcQNZ97gngsDHN0LP5wFOYfB5gsX/QkR7d13/Zrqiy9g5kyIjDRNLUvidMLUqZCZCYMHV7/k12arfjGLiIiIeAkl7dVJcnLJr48JDT0xcXa5zFD+tDQz3z0oyD0xNW1q/rTbzT2aNXPPdb1QtjObzNxMQv3dMxojM7ANtVq8xJFcM9ilXlg9zqoFN8RAmJt/M5/77Tmmr5+O03Iy9Ouh9G3alzrBp57TXyoHl5qEHcDKgaR5StpLw9fXrEhRGmPGmGo8mA/Gpk+vvLhERERExKsoaa9OgoOLbl9ySenPffTRgmZXn35qukCvWwf33w9PPFH+mDp3hmnTzJD9fv3MUPkaaMmuJfSd3JfDmYd5pPsjPHPBM+W+VmoufJYMy9OCuKLNEHakbKducG3+r3E0nUIqZ+56Zm5m/rbLcpHryi3h6DKK7Ax+kZB9AOx+EOsl/R1qktmzC7bnuql7fXVgWWrmICIiIqc9dQOqTmbOLGjglJ4Ou3eX/tyffirYXrAA/vrLLDk1diwkJlYsriuugPfeg6uvrth1vNiLv79IapZp5/7sr8+SlpV2ijNOZFmwJNV0hl+ed3qgTyDXNmzJG22i6VyJzebu73o/net2JiIwgpf6vkRcSJz7Lh4QDf1Xw3mT4ZLV7u2wLsaNNxZsDx7suTiqimXB//2fGY3Qvv3JRxWJiIiInAZUaa9OLrwQ3nrLbDdoYJadK63rrzdrKoOZC796tdm228s/1/TwGvNneNvynV+N1A+tD4DdZic8IJwAn7L9zFJz4ZMkWHGkYF8tB1wfDQmVVF0vLLZWLItuWVR5NwiMg8ZunCcvRT30kOlPkZkJF1zg6Wgq39q18PrrZnv1anjjDfMBo4iIiMhpSEl7dXL11WZo7IYNcOWVZUu277kHzjvPzGk/7zwYPdp0mL/nHoiNLXssayfAyofM9lnPQpuHy36NauSp85/Cho1dabu4t8u9+DpK19LdsmBxGkxJhgxnwf6OIXBdNIToN1BKw2aDbt08HUXVCQkp6JPhctWMFSmys00/gvBw88GLhv2LiIhIKWnJN6rZkm/e4usGkLHDbAfWhSt2ejYeL3Q4Bz5JhlWFqushDhgcAx1CPBeXSLUwZYqpsHfoAM8/D35+no6oYi6/HGbMMNsvvAD33uvZeERERMTjSpuHak67N3G5PB1B6UWeC9jMV9S5no7Gq1gW/J4CT/5TNGHvFAJjGylhFymV666DX34x69fv2ePpaCrGskyzzmPU/V9ERETKQEl7Vfn2W9Olfe3aE987dMh0YffxMUu1VYfk/bwPof2L5uu8SVV7b8uCg39ByoaqvW8pHMqBibvgw70Fw+FDfeD2eLg1HmppOLxI6T33nFlGslGjgn4e1ZHNBhddVPB6wADPxSIiIiLVjobH44bh8V98Ae+/D+ecA489Bg5H0fe//dasx2y3Q2AgbN0K0dEF77/8shkqeew/xa+/nl7zV8tq+X2w4UWz3ekNaH67Z+PB/KdblAqfJ0Nmoc9czgmFa6Mh2HHyc0XkJKKjYd8+s928OWza5Nl4KiIz01TYw8Ph4os1p11ERERKnYeq7ldRf/9thnG6XDBrlunqPnx40WOWLCloqpSeDps3Q24uhIWZ9dYjIgoSdqgZTZcq09+FKm6b3/J40n4wBz5OgnXpBfvCfODGGDizlufiEqn2zj4b5swx2+3bezSUCgsIMKt4iIiIiJSRkvaKOnCgYDi73Q5JSScec+21ppqeng7t2sGHH8L//ge1apl/kA4ZYpL/336DYcOgTZsq/RaqVNJ8WPMMBNWHhFfAL7zs14jsBEkLAMuj8+ktCxamwJf7ilbXu4TBNXUgSNV1kYqZOhX+8x8zdWj0aE9HIyIiIuIRGh5PBYfHu1xmHvonn5hke+7cokPfj0lONhX2hg2hvlnzG7sdBg+Gjz+u+DdRHTiz4KtIyM0wQ0Obj4SOr5X9OtkpptruCIJm/waHv/tjPYUDOfDRXtiQUbAv3AeGxEBbVddFREREROQUNDy+qtjtMHkyvPeeWZLoZPMUo6PNV1aWGQ6fkmIS/qZNqzZed3PlgOUqXeLsyoHco4AFlg2yDpTvnn5hcMYD5Tu3giwLfkmBr/ZBVqHqete86nqgqusiIiIiIuJGStrdxb+U1V5/f5g3D15/3VTd77+/cuOqTLtnwa9XgysbOr8FTYeXfLxvLWj/HKx8GALioO0jVROnm+zPhklJsKlQdb22DwyJhTbBnotLRERERERqLg2Pxw3d408nW96DXd9D3QGw+Q04uBywwK82XH2wdNewXGCrPqsNWhbMPwzT9kN2oep69zC4ug4EqLouIiIiIiJlVNo8tPpkTuJ5SQvgz1th59fw5y1gDzDJt81hKuelVY0S9uRseGkHTEkuSNgjfWF0PbgxVgm72yUmQocOUKeOadYoIiIiInKaqz7ZU1WyLHj4YWjRAsaMKegOX9jhw/Daa2Y+e3HvH7NxIyxYYJZ48ySn03SmDwgwawRnZJz6nONl7MzbyBuc0ehGaDwMGgyCHl+7K1Kv4LJgziF4KhE2Hy3Y3yscHm8IrTUcvnI8+SSsWgX798OIEXDkiKcjEhERERHxKM1pL87s2TB+vNl+5RXo1g2uvLLoMRdfDIsXmwR/0yZ46qkTrzNtGlx9tTlmwAD49tvKj/1k5s2Djz4y2z/+aLrd/+tfZbtGvcshohMcXAKR50KTIdBihPtj9bCkbJi0F7YUStajfGFoLLQM8lxcp4WAgIJtHx9waCiDiIiIiJzelLQXJzu75NcuV0HCDvDLL8Vf55NPCra/+850jA8Lc1+cZVHruHXIQkLKfg3fWnDRn5BzGHzDT94pv5o6Vl3/Zj/kFOr0cH44XFEH/DUupfI99RTs3Anbt5vtwEBPRyQiIiIi4lFKQ4rTrx/ceqtZmu3GG+GqqwreO3IE1q2D664r2Dd0aPHX6dLFJPY2G7RsWfZE2Z09As89F15+GRIS4MEHYdCg8l3HZjNN56ooYZ+9ZTZ9Pu7DiO9GkJ6dXmn32ZMFL+yAL/cVJOx1fOHe+nBdjBL2KlOnjhmRsnIlXH65p6MREREREfE4dY+nDN3jExOhUycz37ZDB5gwAWJi4Mwziz/esmDqVNi1yyT2deqULqDVq+GSS2DfPnjxRbjzzpKPP3oURo+GNWvMHPzCHzJUY2lZaUS/GE1WbhY2m40Huj7AuAvHufUeLgtmH4IZ+yE37zfBBlxQGwZGgZ+SdRERERERqQSlzUM1PL4sPvsMDhww28uXmzm3J0vYwVSjC1fkj9m8Gd5+26zTfscdJ87bffJJ2L3bDMMfPdrMPff3Nx8afPABNGliPgQ4Vu1+6SXTadvlgj//NB8SxMS44zv2qKO5R8nMzQTAjp39Gfvdev3dWWbuemJmwb5oP7gpFppqVLaIiIiIiHgBJe3Hy801XeG3bDHdq9u1K3ivbVtTPXc4wG6Hpk3Lfv2cHOje3VTrnU4z3P6hh4oeUztv+LnNZuai+/iYefVdukBSkknOU1Nh1ChzfEpKQQLvdJavM7wXig6OZmzPsTz9y9PUD6vPfV3uc8t1XRb8eBC+O1C0ut67NlweBb6qrouIiIiIiJdQ0n68l182c77tdlNZ37WroBnWpZeafb//DtdeCw0alP36hw+bxBvMPdasOfGYCRMgM9NU28eONR8S7Nljvo6dt2xZwfGjR5uO8Bs2wP33Q+PGZY/LSz3R6wke7fEoDrt7uojvzIRJSbC9UHU91g+GxUITVddFRERERMTLaE47x80luPtumDTJVKzBdLKuW9e9Nxw82CT//v7w00/Qo8epz7EsM8991izw9TVJ+vnnuzeuGsxpwayD8P0Bsw2mut43Ai6NVHVdRERERESqVmnntCtp57gf1saNJhlOTzfJ9eTJ7u+UblmwcSNERZmv0nI6zVz6+Hj3f5BQg+3INHPXd2QV7IvLm7veSNV1ERERERHxADWiK69Oncyw9AMHoFGjylnazGaDVq3Kfp7DYeKTUsl1wcyD8MNBM48dwG6Di2rDgEjwUXVdRERERES8nJL24oSGmi+ptrbnVdd3Fqqux/ub6nrDAM/FJSIiIiIiUhZK2qVGyXXB9wfN/PXC1fV+EXBJhKrrRVguWP0k7PsVGg+FJjd5OiIRERERETmOknapMRKPms7wuwtV1+vlVdfrq7p+osRPYM1TZjtpHkR0hPC2no1JRERERESKUNIu1V6Oy6y5/uNBONZV0W6D/hFwsarrJ5d1ANNDP++nln3Qk9GIiIiIiEgxlM54yjffmKZynTvDV195Oppqa9tRePYfMxz+WMJe3x8eaQADopSwl6jJMIhIMNsNr4eorp6NR0RERERETqAl3yh9q3232bcP4uIK1oIHk8Rfdln5rpeyAVLWQOyF4FfbPTF6uRwXzDgAswsl6w6b6Qp/UYTZllJyOcHu8HQUIiIiIiKnldLmoapDFta+PcyYUfn3SU8vmrDbbLBkSfmute93+KEdLLwGZnaA3HT3xOjFthyFp/+Bnwol7A0D4NGGcEmkEvYyU8IuIiIiIuK1lLQXtnUrXH990YS6MjRqBPfeW/A6IAAGDSrftXZ/Z7qAA6QnwqFVFY3Oa2W74ItkeGE7JGWbfT42uCIKHmxglnQTERERERGpSZS0H68qZgvs2gWPPAIZGfDLL+bDgnbtynetmAvIrzf714GwM9wWpjfZnGGq6z8fKqiuN8qrrl8caRrPiYiIiIiI1DTqHl9Ygwbw6qvgqMThwvffDy+8AP7+Zih+374Vu17shdB3ERxaAXUvBb8wt4TpLbJc8PV+mFcoWfexweVR0Lu2knUREREREanZ1IiOKmxEl51thsJblpnHfvHF8MMPlXe/am5TBkzaC/tzCvY1CYRhMRCrofAiIiIiIlKNlTYPVaW9Kvn6mmr+zp0mcW/Z0tMReaUsF0zbB/MPF+zztcHAKLhA1XURERERETmNKGmvSjYb/PwzvPIKREebofJSxIZ0+CgJDhSqrjcLhGGxEO3nubhEREREREQ8QUl7VWvWDP77X09H4XUynfDVfvjlcME+XxtcWQfODzefd4iIiIiIiJxulLRXF65cWDoKds+EhtfC2RNqTCa7Pq+6frBQdb1FEAyNgTqqrouIiIiIyGlMSXt1sf1L+Psts73+eYjrA7G9PRtTBR11wpf7YGFKwT5/O1wZBT3Da8xnEiIiIiIiIuWmpL3acBV9abmKP6yaWJsOH++FQ7kF+1rmVdejVF0XEREREREBlLRXrezDkLIWws8C31plO7fBNbDnJ9gzCxoMqrZV9gwnfLEPFh1XXb+6DnQPU3VdRERERESkMCXtVSV9B8zqAFn7IbgR9FsOfrVLf77dF877sLKiqxKrj8DkJDhcqLreOgiGxEKkr+fiEhERERER8VZK2qvKrm9Nwg6QnghJ86D+lR4NqaqkO+HzZPgjtWBfgB2uqQNdVV0XERERERE5KSXtVSWiA2AzXzYHhLXzdERVYmVedT21UHW9TTAMiYHaqq6LiIiIiIiUSEl7VYk6Fy6YDUnzoe4ACG3u6YgqVboTpiTD4kLV9UA7DIqG80JVXRcRERERESkNJe0V5cwy881t9lMfG3uh+arh/kqDT5IgzVmwr10w3BgD4ZVcXd+esp2kI0l0iOuAw+6o3JuJiIiIiIhUslJkmnJSa56BqUEwLQ4OrfR0NB6Xlgvv7oa3dhck7EEOuDkWRtat/IR95uaZNPlPEzr/rzODvhhUuTcTERERERGpAkrayysnDVY9Drggez+se87TEXnUsjR4MhGWphXsO6sWjG0E51ZRs7kPVnyAK2/9+mkbpnHw6MHKv6mIlCwxEV54AX780dORiIiIiFRLGh5fXnZ/8A2BnCNgAQExno7II9Jy4dNkWF4oWQ92wHXR0CmkaueuJ8Ql8MW6L7Db7NQPrU+Yf1jV3VxETpSaCh07wsGDYFkwfToMHOjpqERERESqFSXthX36KSQlwc03Q4MGJR/r8INes2DdBAhuAGc+BVkHzHv+kZUfq4dZlqmqf5Zsms4d074WDI6BUA88Wfd1vY86wXXYkbKDWzrcojntIp72999wIO/vRYcDfvtNSbuIiIhIGdksy7I8HYSnpaamEhYWRgoQardDfDxs3Qq+ZZiEveU9+PPfZvucd6DpLZUSK0B6djp7juyhae2m2DzQhj011zSaW3GkYF8tB1wfDQlVXF0XES+WlWUq7WvWgJ8fLFgA557r6ahEREREvEJ+HpqSQmho6EmPU9JOoR+WzUbosR/H3r0QU4Yh7183hIztZju4IVye6PY4AdbvW0/X97tyKPMQFze7mO8Hf4+9NJ3r3cCyYHGaWcoto1B1PSHEJOwhlVRdz3ZmM2XNFHzsPgxqMwgfuwaIiFQbGRmmwt68OTRq5OloRERERLxGaZN2ZT+F2e3gdMKAARAdXbZzQ1rA0V0F25Xk/b/eJzXLLH4+6+9ZrE1eS7uYdpV2v2MO58AnybCqUHU9xGGGwncIqdx73/T1TXy25jMAFm5fyBv936jcG4qI+wQFQZ8+no5CREREpNpS0l7YqlWQlmaGc5Z1jHfXT2HtOLPd5mH3x5anVVQrnJYTh82Bv48/8SHxlXYvMNX1P1Lh831Fq+udQkyzuVpV8ATN3jo7f/vHv9WBWkRERERETh9K2gurVw9KGJZQooA6kPCKe+MpxvD2w8l2ZrMqaRXD2w8nMqjymt4dyoHJSbAmvWBfqA8Mjob2lVxdL+y6ttcxcfFEAAa3G1x1NxYREREREfEwzWmn9HMJSP8Hsg9B+Fk1utuaZcGiVPg8GTJdBfvPCYVro82SblXJZbmYu20uPnYfejbs6ZHmeyIiIiIiIu6kOe3utv1LWHgt4IImt8K573o6okpxMK+6vrZQdT3MB26IgbNqeSYmu81O7ya9PXNzERERERERD1LSXlp/vw3klZ23/g86vwH2MiwJ5+UsCxamwJf7ilbXzwuFQdEQpCXPRUREREREqlzVrBVWE0R0NH/aHBB6RpUl7Mv3LKfb+924YNIFbNy/sVLucSAH/rPTVNiPJezhPnBnXbgpTgm7iIiIiIiIp6jSXlpnPg1B9SBrPzS7rcpue8NXN7Dp4CYAhs8Yzm/Df3PbtS0LfkmBr/ZBVqHqetcwuLqOknURERERERFPU9JeWnYfaDGy+PdcOXBoJdRqDP5l6+b+9YavGfHdCEL8Q5h69VQ6xHUo8n5GTgbHegVm5GSUK/Ti7M+Gj5JgY6FL1vaBIbHQJthttxEREREREZEK0PD4inLlwOwe8GMn+KYRHFpVptNvmXELSelJbD20lTE/jjnh/bcvfZuYWjHUD63PxH4TKxyuZcG8Q/DkP0UT9u5hMLZR6RP2Xam7WLJrCU6X89QHi4iIiIiISLmo0l5Rh1fBgT/MtjMDEj+B2meW+vRAn0Ds2LFhI8g36IT3L252MXvu2eOWUJOz4aO9sPlowb4IXxgaA63LUF2fu20uF0++mBxXDv2a9eP7wd9rGTYREREREZFKoKS9ooIbgU8tcB4Fywm125fp9M+v+Zy7f7ybEL8QJl5S8Up6cSwL5h6G6fsgxyrY3zMcroyCgDLOXZ+0chJOy1TYZ/49k91pu6kbWtdt8YqIiIiIiIihpL2i/COh7yJI/BRqnw0NBpXp9C71u/DnrX9WTmxAUjZM2gtbClXXo3xhSAy0Kufc9YS4BD5a+RF2m52Y4BjqBNdxT7AiIiIiIiJShJJ2dwhvB2eP93QURbgsmHMIvtlftLp+fjhcUQf8K9DNYFTnUYT5h7H10FZubn8zfg6/CscrIiIiIiIiJ1LSXgPtzYJJSbC1UHW9ji8MjYUWJ06bLzObzcaws4dV/EIiIiIiIiJSIiXtNYjLgtmHYMZ+yM2rrtuAC2rD5VEVq66LiIiIiIhI1VPSfiqH15gO8bF9ISDK09Gc1O4sM3c9MbNgX7QfDIuBZm6orouIiIiIiEjVU9JekuRfYc75pit8UH3ovw58axU5JNeVy7Ldy6gfVp/4kPgqD9FlwY8H4bsDRavrvWvDZVHgp+q6iIiIiIhItaWkvSS7Z5r10gAydkDKGog6N/9tl+Xioo8vYm7iXPwcfvw85Ge6N+xeZeHtyquu/1Oouh7jBzfFQpPAKgtDREREREREKonqsCWJ61OwHRALYWcUeTvxcCJzE+cC4HQ5+XjVxydcYunupczYOIPM3MwT3isvpwXfH4Bn/ylI2G3ARRHwWEMl7CIiIiIiIjWFKu0liTkfLl4Mh1ZC/CXgG1rk7bhacUQHR7M/Yz9Oy0nH+I5F3p+8ajJDpg8BoFejXswdOhebzVahkHZmwod7YUdWoTj8YFgsNFayLiIiIiIiUqMoaT+ViATzVYxA30B+v+V3Plr5ES0iW3B92+uLvD9t/TRs2LCwmJ84n5SsFMIDwssVRq4LZh6EHw6aeewAdhtcVBv6R4KvxkyIiIiIiIjUOEraK6hJ7SaM7TW22Pd6N+nN9A3TATg79mzC/MNKvJZlWXyy+hPWJK9h6FlDOaOOGY6/PdPMXd9ZqLoe72/mrjcMcMu3ISIiIiIiIl7IZlnHOq2dvlJTUwkLCyMlJYXQ0NBTn1BKlmUx6+9Z7EzdyaA2gwgLKDlp/3DFh9z8zc04bA5q+dViy13/sDA9jFnHVdf7RcAlEeCj6rqIiIiIiEi1VNo8VJX2SmSz2ejXvF+pj1+5dyUOmwOn5SSFMB7fmkVuof9C9fKq6/VVXRcRERERETktqFbrRYacNQQ/32CIHEjcGa+R44gCTHX90kh4qIESdhERERERkdOJKu1epHZ4B+68ag9b0tOJCIzEZrNTP6+6Xk/JuoiIiIiIyGlHSbsXyHHBjAMw+yBYBBEVFITDBgMizdrrjoqtEiciIiIiIiLVlJJ2D9ty1HSGT8ou2NcwwKy7Xtffc3GJiIiIiIiI5ylp95BsF3yzH+YcgmPt+33y5q73jTDz2EVEREREROT0pqTdAzZnwEdJkFyout4owMxdj1N1XURERERERPIoaa9CWS74ej/MO666fnkU9K6t6rqIiIiIiIgUpaS9gnak7OCT1Z/QIrIFV7S6Aput+Mx7U4aZu74/p2Bfk0AYFgOxqq6LiIiIiIhIMZS0V0Bmbibn/O8c9h7Zi4XF+5e9z83tby5yTJYLpu2D+YcL9vnaYGAUXKDquoiIiIiIiJTA7ukAqrPdabvZc2QPFhYOm4Pfd/5e5P0N6fBkYtGEvVkgPNYIeqvZnIiIiIiIiJyCKu0V0Ci8EV3rd+W3Hb9hs9m4ru11AGQ64av98MvhgmN9bXBlHTg/HE4ygl5ERERERESkCCXtFWC32Zk7bC6LdiyiYVhDGtduzPp00xn+YKG5680DYWgsRPt5LlYRERERERGpfpS0V5Cfw49ejXpx1AmT98KvKQXv+dvhyijoGa7quoiIiIiIiJSdknY3WJsOH++FQ7kF+1oGwdAYiFJ1XURERERERMpJSXsFZDjhi32w6Ljq+tV1oHuYqusiIiIiIiJSMUray2n1EZicBIcLVddbB8GQWIj09VxcIiIiIiIiUnMoaS+jDCdMTYY/Ugv2BdjhmjrQVdV1ERERERERcSMl7WWwMq+6nlqout4mGG6MgQhV10VERERERMTNlLSXQnpedf3PQtX1QDsMiobzQlVdFxERERERkcqhpP0U/kqDT5OLVtfb5VXXw1VdFxERERERkUqkpP0k0nJhSjIsTSvYF+SAa+vAOaqui4iIiIiISBVQ0l6MZWnwWRKkOQv2nVULBkerui4iIiIiIiJVx+7pANzljTfeoHHjxgQEBJCQkMCvv/5a5muk5cLbu+Gd3QUJe7ADbomD2+OVsIuIiIiIiEjVqhFJ+9SpUxk9ejSPPPIIf/31F927d6dfv35s3769TNcZ9w8sLzQcvn0tGNsIOms4vIiIiIiIiHiAzbIsy9NBVNQ555xDhw4dePPNN/P3tW7dmoEDBzJ+/PhTnp+amkpYWBg3LU3Br1YowQ4zFD4hRMm6iIiIiIiIuN+xPDQlJYXQ0NCTHlft57RnZ2ezbNkyHnzwwSL7+/bty6JFi4o9Jysri6ysrPzXKSkp5lpHUjmrFlwTASFAWlqxp4uIiIiIiIhUSGqqWVP8VHX0ap+079+/H6fTSUxMTJH9MTEx7N27t9hzxo8fz5NPPnnC/k971edT4O7KCFRERERERETkOGlpaYSFhZ30/WqftB9jO24cu2VZJ+w75qGHHmLMmDH5rw8fPkzDhg3Zvn17iT8skeosNTWV+vXrs2PHjhKH34hUd3rW5XSg51xOB3rOpaazLIu0tDTi4+NLPK7aJ+1RUVE4HI4TqurJycknVN+P8ff3x9/f/4T9YWFh+gtBarzQ0FA953Ja0LMupwM953I60HMuNVlpisbVvnu8n58fCQkJzJ49u8j+2bNn06VLFw9FJSIiIiIiIlJx1b7SDjBmzBiGDBlCx44dOe+883jnnXfYvn07I0aM8HRoIiIiIiIiIuVWI5L2a6+9lgMHDvDUU0+xZ88e2rZtyw8//EDDhg1Ldb6/vz9PPPFEsUPmRWoKPedyutCzLqcDPedyOtBzLmLUiHXaRURERERERGqiaj+nXURERERERKSmUtIuIiIiIiIi4qWUtIuIiIiIiIh4KSXtIiIiIiIiIl7qtE/a33jjDRo3bkxAQAAJCQn8+uuvng5JpNTGjx9Pp06dCAkJITo6moEDB7Jx48Yix1iWxdixY4mPjycwMJBevXqxdu3aIsdkZWUxatQooqKiCA4O5rLLLmPnzp1V+a2IlNr48eOx2WyMHj06f5+ec6kpdu3axY033khkZCRBQUGcffbZLFu2LP99PetS3eXm5vLoo4/SuHFjAgMDadKkCU899RQulyv/GD3nIkWd1kn71KlTGT16NI888gh//fUX3bt3p1+/fmzfvt3ToYmUyoIFCxg5ciR//PEHs2fPJjc3l759+5Kenp5/zPPPP8/LL7/MxIkTWbJkCbGxsfTp04e0tLT8Y0aPHs306dOZMmUKCxcu5MiRIwwYMACn0+mJb0vkpJYsWcI777zDmWeeWWS/nnOpCQ4dOkTXrl3x9fVl5syZrFu3jpdeeonw8PD8Y/SsS3X33HPP8dZbbzFx4kTWr1/P888/zwsvvMDrr7+ef4yec5HjWKexzp07WyNGjCiyr1WrVtaDDz7ooYhEKiY5OdkCrAULFliWZVkul8uKjY21JkyYkH9MZmamFRYWZr311luWZVnW4cOHLV9fX2vKlCn5x+zatcuy2+3WrFmzqvYbEClBWlqa1bx5c2v27NlWz549rbvuusuyLD3nUnM88MADVrdu3U76vp51qQn69+9vDR8+vMi+K6+80rrxxhsty9JzLlKc07bSnp2dzbJly+jbt2+R/X379mXRokUeikqkYlJSUgCIiIgAYNu2bezdu7fIc+7v70/Pnj3zn/Nly5aRk5NT5Jj4+Hjatm2r3wXxKiNHjqR///707t27yH4951JTzJgxg44dO3LNNdcQHR1N+/bteffdd/Pf17MuNUG3bt2YM2cOmzZtAmDlypUsXLiQSy65BNBzLlIcH08H4Cn79+/H6XQSExNTZH9MTAx79+71UFQi5WdZFmPGjKFbt260bdsWIP9ZLu45/+eff/KP8fPzo3bt2icco98F8RZTpkxh+fLlLFmy5IT39JxLTbF161befPNNxowZw8MPP8zixYv5v//7P/z9/Rk6dKiedakRHnjgAVJSUmjVqhUOhwOn08mzzz7L9ddfD+jvdJHinLZJ+zE2m63Ia8uyTtgnUh3ceeedrFq1ioULF57wXnmec/0uiLfYsWMHd911Fz/99BMBAQEnPU7PuVR3LpeLjh07Mm7cOADat2/P2rVrefPNNxk6dGj+cXrWpTqbOnUqkydP5tNPP6VNmzasWLGC0aNHEx8fz7Bhw/KP03MuUuC0HR4fFRWFw+E44dO45OTkEz7ZE/F2o0aNYsaMGcybN4969erl74+NjQUo8TmPjY0lOzubQ4cOnfQYEU9atmwZycnJJCQk4OPjg4+PDwsWLOC1117Dx8cn/znVcy7VXVxcHGeccUaRfa1bt85vkKu/06UmuO+++3jwwQe57rrraNeuHUOGDOHuu+9m/PjxgJ5zkeKctkm7n58fCQkJzJ49u8j+2bNn06VLFw9FJVI2lmVx5513Mm3aNObOnUvjxo2LvN+4cWNiY2OLPOfZ2dksWLAg/zlPSEjA19e3yDF79uxhzZo1+l0Qr3DhhReyevVqVqxYkf/VsWNHbrjhBlasWEGTJk30nEuN0LVr1xOW7dy0aRMNGzYE9He61AwZGRnY7UVTEIfDkb/km55zkWJ4qAGeV5gyZYrl6+trvffee9a6deus0aNHW8HBwVZiYqKnQxMpldtvv90KCwuz5s+fb+3Zsyf/KyMjI/+YCRMmWGFhYda0adOs1atXW9dff70VFxdnpaam5h8zYsQIq169etbPP/9sLV++3Lrggguss846y8rNzfXEtyVySoW7x1uWnnOpGRYvXmz5+PhYzz77rLV582brk08+sYKCgqzJkyfnH6NnXaq7YcOGWXXr1rW+++47a9u2bda0adOsqKgo6/77788/Rs+5SFGnddJuWZb13//+12rYsKHl5+dndejQIX+pLJHqACj264MPPsg/xuVyWU888YQVGxtr+fv7Wz169LBWr15d5DpHjx617rzzTisiIsIKDAy0BgwYYG3fvr2KvxuR0js+addzLjXFt99+a7Vt29by9/e3WrVqZb3zzjtF3tezLtVdamqqddddd1kNGjSwAgICrCZNmliPPPKIlZWVlX+MnnORomyWZVmerPSLiIiIiIiISPFO2zntIiIiIiIiIt5OSbuIiIiIiIiIl1LSLiIiIiIiIuKllLSLiIiIiIiIeCkl7SIiIiIiIiJeSkm7iIiIiIiIiJdS0i4iIiIiIiLipZS0i4iIiIiIiHgpJe0iIiLiFmPHjuXss8/2dBgA3HTTTQwcONDTYYiIiFSYknYREREvs3fvXu666y6aNWtGQEAAMTExdOvWjbfeeouMjAxPh1cuY8eOxWazlfiVmJhY5usmJiZis9lYsWKF22MWERHxBj6eDkBEREQKbN26la5duxIeHs64ceNo164dubm5bNq0iffff5/4+Hguu+yyYs/NycnB19e3iiMunXvvvZcRI0bkv+7UqRP//ve/+de//pW/r06dOvnb2dnZ+Pn5VWmMIiIi3kiVdhERES9yxx134OPjw9KlSxk0aBCtW7emXbt2XHXVVXz//fdceuml+cfabDbeeustLr/8coKDg3nmmWcAePPNN2natCl+fn60bNmSjz/+OP+c4irThw8fxmazMX/+fADmz5+PzWZjzpw5dOzYkaCgILp06cLGjRuLxDphwgRiYmIICQnhlltuITMz86TfV61atYiNjc3/cjgchISE5L9+8MEHueqqqxg/fjzx8fG0aNEi/3v8+uuvi1wrPDycDz/8EIDGjRsD0L59e2w2G7169Spy7IsvvkhcXByRkZGMHDmSnJycU/43EBER8SZK2kVERLzEgQMH+Omnnxg5ciTBwcHFHmOz2Yq8fuKJJ7j88stZvXo1w4cPZ/r06dx1113cc889rFmzhttuu42bb76ZefPmlTmeRx55hJdeeomlS5fi4+PD8OHD89/7/PPPeeKJJ3j22WdZunQpcXFxvPHGG2W+R2Fz5sxh/fr1zJ49m++++65U5yxevBiAn3/+mT179jBt2rT89+bNm8eWLVuYN28ekyZN4sMPP8xP9kVERKoLDY8XERHxEn///TeWZdGyZcsi+6OiovKr2CNHjuS5557Lf2/w4MFFkunBgwdz0003cccddwAwZswY/vjjD1588UXOP//8MsXz7LPP0rNnTwAefPBB+vfvT2ZmJgEBAbz66qsMHz6cW2+9FYBnnnmGn3/+ucRq+6kEBwfzv//9r0zD4o8NqY+MjCQ2NrbIe7Vr12bixIk4HA5atWpF//79mTNnTpEh+SIiIt5OlXYREREvc3w1ffHixaxYsYI2bdqQlZVV5L2OHTsWeb1+/Xq6du1aZF/Xrl1Zv359meM488wz87fj4uIASE5Ozr/PeeedV+T441+XVbt27dw6j71NmzY4HI7813Fxcfnxi4iIVBeqtIuIiHiJZs2aYbPZ2LBhQ5H9TZo0ASAwMPCEc4obRn980m9ZVv4+u92ev++Yk83zLtzU7tj5LpfrlN9HeZ3seykcK5w83uMd35TPZrNVavwiIiKVQZV2ERERLxEZGUmfPn2YOHEi6enp5bpG69atWbhwYZF9ixYtonXr1kDBcPI9e/bkv1+e5dJat27NH3/8UWTf8a/doU6dOkVi3bx5c5Fl745V5p1Op9vvLSIi4g1UaRcREfEib7zxBl27dqVjx46MHTuWM888E7vdzpIlS9iwYQMJCQklnn/fffcxaNAgOnTowIUXXsi3337LtGnT+PnnnwFTrT/33HOZMGECjRo1Yv/+/Tz66KNljvOuu+5i2LBhdOzYkW7duvHJJ5+wdu3a/FEB7nLBBRcwceJEzj33XFwuFw888ECRCnp0dDSBgYHMmjWLevXqERAQQFhYmFtjEBER8SRV2kVERLxI06ZN+euvv+jduzcPPfQQZ511Fh07duT111/n3nvv5emnny7x/IEDB/Kf//yHF154gTZt2vD222/zwQcfFFkK7f333ycnJ4eOHTty11135S8VVxbXXnstjz/+OA888AAJCQn8888/3H777WW+zqm89NJL1K9fnx49ejB48GDuvfdegoKC8t/38fHhtdde4+233yY+Pp7LL7/c7TGIiIh4ks06fqKYiIiIiIiIiHgFVdpFREREREREvJSSdhEREREREREvpaRdRERERERExEspaRcRERERERHxUkraRURERERERLyUknYRERERERERL6WkXURERERERMRLKWkXERERERER8VJK2kVERERERES8lJJ2ERERERERES+lpF1ERERERETES/0/tcSrR2+ub0gAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "Tester.test(gb, test)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "9f759bd2-7a7e-4c1a-80a0-e12470feca89", + "metadata": {}, + "outputs": [], + "source": [ + "product = \"Quadcast HyperX condenser mic for high quality audio for podcasting\"" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "e44dbd25-fb95-4b6b-bbbb-8da5fc817105", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "189.0\n", + "154.59\n", + "296.79030000000023\n", + "227.5062013552033\n" + ] + } + ], + "source": [ + "print(specialist.price(product))\n", + "print(frontier.price(product))\n", + "print(random_forest.price(product))\n", + "print(gradient_boosting.price(product))" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "1779b353-e2bb-4fc7-be7c-93057e4d688a", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 0%|▎ | 1/250 [00:04<17:04, 4.11s/it]INFO:backoff:Backing off send_request(...) for 0.1s (requests.exceptions.ReadTimeout: HTTPSConnectionPool(host='us.i.posthog.com', port=443): Read timed out. (read timeout=15))\n", + "100%|████████████████████████████████████████████████████████████████████████████████| 250/250 [15:38<00:00, 3.75s/it]\n" + ] + } + ], + "source": [ + "specialists = []\n", + "frontiers = []\n", + "random_forests = []\n", + "gradient_boostings = []\n", + "prices = []\n", + "for item in tqdm(test[1000:1250]):\n", + " text = description(item)\n", + " specialists.append(specialist.price(text))\n", + " frontiers.append(frontier.price(text))\n", + " random_forests.append(random_forest.price(text))\n", + " gradient_boostings.append(gradient_boosting.price(text))\n", + " prices.append(item.price)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "f0bca725-4e34-405b-8d90-41d67086a25d", + "metadata": {}, + "outputs": [], + "source": [ + "mins = [min(s,f,r,g) for s,f,r,g in zip(specialists, frontiers, random_forests, gradient_boostings)]\n", + "maxes = [max(s,f,r,g) for s,f,r,g in zip(specialists, frontiers, random_forests, gradient_boostings)]\n", + "\n", + "X = pd.DataFrame({\n", + " 'Specialist': specialists,\n", + " 'Frontier': frontiers,\n", + " 'RandomForest': random_forests,\n", + " 'GradientBoosting' : gradient_boostings,\n", + " 'Min': mins,\n", + " 'Max': maxes,\n", + "})\n", + "\n", + "# Convert y to a Series\n", + "y = pd.Series(prices)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "1be5be8a-3e7f-42a2-be54-0c7e380f7cc4", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Specialist: 0.75\n", + "Frontier: 0.45\n", + "RandomForest: -0.02\n", + "GradientBoosting: 0.09\n", + "Min: -0.15\n", + "Max: -0.16\n", + "Intercept=24.08\n" + ] + } + ], + "source": [ + "# Train a Linear Regression\n", + "np.random.seed(42)\n", + "\n", + "lr = LinearRegression()\n", + "lr.fit(X, y)\n", + "\n", + "feature_columns = X.columns.tolist()\n", + "\n", + "for feature, coef in zip(feature_columns, lr.coef_):\n", + " print(f\"{feature}: {coef:.2f}\")\n", + "print(f\"Intercept={lr.intercept_:.2f}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "0bdf6e68-28a3-4ed2-b17e-de0ede923d34", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['ensemble_model.pkl']" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "joblib.dump(lr, 'ensemble_model.pkl')" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "e762441a-9470-4dd7-8a8f-ec0430e908c7", + "metadata": {}, + "outputs": [], + "source": [ + "from agents.ensemble_agent import EnsembleAgent\n", + "ensemble = EnsembleAgent(collection)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "1a29f03c-8010-43b7-ae7d-1bc85ca6e8e2", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "177.20276709193624" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ensemble.price(product)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "e6a5e226-a508-43d5-aa42-cefbde72ffdf", + "metadata": {}, + "outputs": [], + "source": [ + "def ensemble_pricer(item):\n", + " return max(0,ensemble.price(description(item)))" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "8397b1ef-2ea3-4af8-bb34-36594e0600cc", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[92m1: Guess: $414.77 Truth: $374.41 Error: $40.36 SLE: 0.01 Item: OEM AC Compressor w/A/C Repair Kit For F...\u001b[0m\n", + "\u001b[92m2: Guess: $210.12 Truth: $225.11 Error: $14.99 SLE: 0.00 Item: Motorcraft YB3125 Fan Clutch\u001b[0m\n", + "\u001b[92m3: Guess: $50.48 Truth: $61.68 Error: $11.20 SLE: 0.04 Item: Dorman 603-159 Front Washer Fluid Reserv...\u001b[0m\n", + "\u001b[93m4: Guess: $380.50 Truth: $599.99 Error: $219.49 SLE: 0.21 Item: HP Premium 17.3-inch HD Plus Touchscreen...\u001b[0m\n", + "\u001b[92m5: Guess: $25.65 Truth: $16.99 Error: $8.66 SLE: 0.15 Item: 5-Position Super Switch Pickup Selector ...\u001b[0m\n", + "\u001b[92m6: Guess: $48.76 Truth: $31.99 Error: $16.77 SLE: 0.17 Item: Horror Bookmarks, Resin Horror Bookmarks...\u001b[0m\n", + "\u001b[92m7: Guess: $120.04 Truth: $101.79 Error: $18.25 SLE: 0.03 Item: SK6241 - Stinger 4 Gauge 6000 Series Pow...\u001b[0m\n", + "\u001b[92m8: Guess: $343.88 Truth: $289.00 Error: $54.88 SLE: 0.03 Item: Godox ML60Bi LED Light Kit, Handheld LED...\u001b[0m\n", + "\u001b[93m9: Guess: $867.46 Truth: $635.86 Error: $231.60 SLE: 0.10 Item: Randall RG75DG3PLUS G3 Plus 100-Watt Com...\u001b[0m\n", + "\u001b[92m10: Guess: $69.98 Truth: $65.99 Error: $3.99 SLE: 0.00 Item: HOLDWILL 6 Pack LED Shop Light, 4FT 24W ...\u001b[0m\n", + "\u001b[92m11: Guess: $246.95 Truth: $254.21 Error: $7.26 SLE: 0.00 Item: Viking Horns V103C/1005ATK 3 Gallon Air ...\u001b[0m\n", + "\u001b[92m12: Guess: $420.74 Truth: $412.99 Error: $7.75 SLE: 0.00 Item: CURT 70110 Custom Tow Bar Base Plate Bra...\u001b[0m\n", + "\u001b[92m13: Guess: $239.59 Truth: $205.50 Error: $34.09 SLE: 0.02 Item: 10-Pack Solar HAMMERED BRONZE Finish Pos...\u001b[0m\n", + "\u001b[92m14: Guess: $283.99 Truth: $248.23 Error: $35.76 SLE: 0.02 Item: COSTWAY Electric Tumble Dryer, Sliver\u001b[0m\n", + "\u001b[92m15: Guess: $329.95 Truth: $399.00 Error: $69.05 SLE: 0.04 Item: FREE SIGNAL TV Transit 32\" 12 Volt DC Po...\u001b[0m\n", + "\u001b[92m16: Guess: $370.01 Truth: $373.94 Error: $3.93 SLE: 0.00 Item: Bilstein 5100 Monotube Gas Shock Set com...\u001b[0m\n", + "\u001b[92m17: Guess: $124.73 Truth: $92.89 Error: $31.84 SLE: 0.09 Item: Sangean K-200 Multi-Function Upright AM/...\u001b[0m\n", + "\u001b[93m18: Guess: $105.55 Truth: $51.99 Error: $53.56 SLE: 0.49 Item: Charles Leonard Magnetic Lapboard Class ...\u001b[0m\n", + "\u001b[91m19: Guess: $287.70 Truth: $179.00 Error: $108.70 SLE: 0.22 Item: Gigabyte AMD Radeon HD 7870 2 GB GDDR5 D...\u001b[0m\n", + "\u001b[92m20: Guess: $37.60 Truth: $19.42 Error: $18.18 SLE: 0.41 Item: 3dRose LLC 8 x 8 x 0.25 Inches Bull Terr...\u001b[0m\n", + "\u001b[92m21: Guess: $488.72 Truth: $539.95 Error: $51.23 SLE: 0.01 Item: ROKINON 85mm F1.4 Auto Focus Full Frame ...\u001b[0m\n", + "\u001b[92m22: Guess: $153.75 Truth: $147.67 Error: $6.08 SLE: 0.00 Item: AUTOSAVER88 Headlight Assembly Compatibl...\u001b[0m\n", + "\u001b[92m23: Guess: $28.77 Truth: $24.99 Error: $3.78 SLE: 0.02 Item: ASI NAUTICAL 2.5 Inches Opera Glasses Bi...\u001b[0m\n", + "\u001b[93m24: Guess: $79.27 Truth: $149.00 Error: $69.73 SLE: 0.39 Item: Behringer TUBE OVERDRIVE TO100 Authentic...\u001b[0m\n", + "\u001b[92m25: Guess: $31.67 Truth: $16.99 Error: $14.68 SLE: 0.36 Item: Fun Express Insect Finger Puppets - 24 f...\u001b[0m\n", + "\u001b[92m26: Guess: $25.92 Truth: $7.99 Error: $17.93 SLE: 1.20 Item: WAFJAMF Roller Stamp Identity Theft Stam...\u001b[0m\n", + "\u001b[92m27: Guess: $204.56 Truth: $199.99 Error: $4.57 SLE: 0.00 Item: Capulina Tiffany Floor Lamp 2-Light 16\" ...\u001b[0m\n", + "\u001b[92m28: Guess: $296.82 Truth: $251.45 Error: $45.37 SLE: 0.03 Item: Apple Watch Series 6 (GPS, 44mm) - Space...\u001b[0m\n", + "\u001b[92m29: Guess: $253.13 Truth: $231.62 Error: $21.51 SLE: 0.01 Item: ICON 01725 Tandem Axle Fender Skirt FS17...\u001b[0m\n", + "\u001b[92m30: Guess: $155.98 Truth: $135.00 Error: $20.98 SLE: 0.02 Item: SanDisk 128GB Ultra (10 Pack) MicroSD Cl...\u001b[0m\n", + "\u001b[92m31: Guess: $407.45 Truth: $356.62 Error: $50.83 SLE: 0.02 Item: Velvac 2020,L,C/Hr,W,E2003,102\",Bk - 715...\u001b[0m\n", + "\u001b[92m32: Guess: $271.71 Truth: $257.99 Error: $13.72 SLE: 0.00 Item: TCMT Passenger Backrest Sissy Bar & Lugg...\u001b[0m\n", + "\u001b[92m33: Guess: $48.35 Truth: $27.99 Error: $20.36 SLE: 0.28 Item: Alnicov 63.5MM Brass Tremolo Block,Tremo...\u001b[0m\n", + "\u001b[93m34: Guess: $125.03 Truth: $171.20 Error: $46.17 SLE: 0.10 Item: Subaru Forester Outback Legacy OEM Engin...\u001b[0m\n", + "\u001b[91m35: Guess: $392.21 Truth: $225.00 Error: $167.21 SLE: 0.31 Item: Richmond Auto Upholstery - 2012 Dodge Ra...\u001b[0m\n", + "\u001b[91m36: Guess: $189.81 Truth: $105.00 Error: $84.81 SLE: 0.35 Item: AP-39 Automotive Paint Primer Grey 2K Ur...\u001b[0m\n", + "\u001b[92m37: Guess: $319.24 Truth: $299.99 Error: $19.25 SLE: 0.00 Item: Road Top Wireless Carplay Retrofit Kit D...\u001b[0m\n", + "\u001b[92m38: Guess: $632.83 Truth: $535.09 Error: $97.74 SLE: 0.03 Item: Gibson Performance Exhaust 5658 Aluminiz...\u001b[0m\n", + "\u001b[92m39: Guess: $32.90 Truth: $12.33 Error: $20.57 SLE: 0.87 Item: Bella Tunno Happy Links - Baby Montessor...\u001b[0m\n", + "\u001b[92m40: Guess: $120.19 Truth: $84.99 Error: $35.20 SLE: 0.12 Item: CANMORE H300 Handheld GPS Golf Device, S...\u001b[0m\n", + "\u001b[92m41: Guess: $28.26 Truth: $15.99 Error: $12.27 SLE: 0.30 Item: DCPOWER AC Adapter Compatible Replacemen...\u001b[0m\n", + "\u001b[92m42: Guess: $58.26 Truth: $62.44 Error: $4.18 SLE: 0.00 Item: Sharp, VX2128V, Commercial Desktop Calcu...\u001b[0m\n", + "\u001b[92m43: Guess: $94.21 Truth: $82.99 Error: $11.22 SLE: 0.02 Item: Melissa & Doug Lifelike Plush Stork Gian...\u001b[0m\n", + "\u001b[93m44: Guess: $365.69 Truth: $599.95 Error: $234.26 SLE: 0.24 Item: Sony SSCS8 2-Way 3-Driver Center Channel...\u001b[0m\n", + "\u001b[93m45: Guess: $251.62 Truth: $194.99 Error: $56.63 SLE: 0.06 Item: ASUS Chromebook CX1, 14\" Full HD NanoEdg...\u001b[0m\n", + "\u001b[92m46: Guess: $315.80 Truth: $344.95 Error: $29.15 SLE: 0.01 Item: FiiO X7 32GB Hi-Res Lossless Music Playe...\u001b[0m\n", + "\u001b[92m47: Guess: $61.31 Truth: $37.99 Error: $23.32 SLE: 0.22 Item: TORRO Leather Case Compatible with iPhon...\u001b[0m\n", + "\u001b[92m48: Guess: $230.81 Truth: $224.35 Error: $6.46 SLE: 0.00 Item: Universal Air Conditioner KT 1031 A/C Co...\u001b[0m\n", + "\u001b[92m49: Guess: $799.29 Truth: $814.00 Error: $14.71 SLE: 0.00 Item: Street Series Stainless Performance Cat-...\u001b[0m\n", + "\u001b[93m50: Guess: $317.66 Truth: $439.88 Error: $122.22 SLE: 0.11 Item: Lenovo IdeaPad 3 14-inch Laptop, 14.0-in...\u001b[0m\n", + "\u001b[92m51: Guess: $345.02 Truth: $341.43 Error: $3.59 SLE: 0.00 Item: Access Bed Covers TonnoSport 22050219 - ...\u001b[0m\n", + "\u001b[92m52: Guess: $52.11 Truth: $46.78 Error: $5.33 SLE: 0.01 Item: G.I. JOE Hasbro 3 3/4\" Wave 5 Action Fig...\u001b[0m\n", + "\u001b[93m53: Guess: $234.35 Truth: $171.44 Error: $62.91 SLE: 0.10 Item: T&S Brass B-0232-BST Double Pantry Fauce...\u001b[0m\n", + "\u001b[92m54: Guess: $480.97 Truth: $458.00 Error: $22.97 SLE: 0.00 Item: ZTUOAUMA Fuel Injection Pump 3090942 309...\u001b[0m\n", + "\u001b[93m55: Guess: $178.10 Truth: $130.75 Error: $47.35 SLE: 0.09 Item: 2AP18AA#ABA Hp Prime Graphing Calculator...\u001b[0m\n", + "\u001b[92m56: Guess: $56.86 Truth: $83.81 Error: $26.95 SLE: 0.15 Item: Lowrance 000-0119-83 Nmea 2000 25' Exten...\u001b[0m\n", + "\u001b[91m57: Guess: $167.67 Truth: $386.39 Error: $218.72 SLE: 0.69 Item: Jeep Genuine Accessories 82213051 Hood L...\u001b[0m\n", + "\u001b[92m58: Guess: $176.92 Truth: $169.00 Error: $7.92 SLE: 0.00 Item: GODOX CB-06 Hard Carrying Case with Whee...\u001b[0m\n", + "\u001b[92m59: Guess: $29.57 Truth: $17.95 Error: $11.62 SLE: 0.23 Item: Au-Tomotive Gold, INC. Ford Black Valet ...\u001b[0m\n", + "\u001b[92m60: Guess: $285.89 Truth: $269.00 Error: $16.89 SLE: 0.00 Item: Snailfly Black Roof Rack Rail + Cross Ba...\u001b[0m\n", + "\u001b[92m61: Guess: $105.87 Truth: $77.77 Error: $28.10 SLE: 0.09 Item: KING SHA Anti Glare LED Track Lighting H...\u001b[0m\n", + "\u001b[92m62: Guess: $102.21 Truth: $88.99 Error: $13.22 SLE: 0.02 Item: APS Compatible with Chevy Silverado 1500...\u001b[0m\n", + "\u001b[92m63: Guess: $333.99 Truth: $364.41 Error: $30.42 SLE: 0.01 Item: Wilwood Engineering 14011291R Brake Cali...\u001b[0m\n", + "\u001b[92m64: Guess: $160.69 Truth: $127.03 Error: $33.66 SLE: 0.05 Item: ACDelco Gold 336-1925A Starter, Remanufa...\u001b[0m\n", + "\u001b[92m65: Guess: $660.87 Truth: $778.95 Error: $118.08 SLE: 0.03 Item: UWS EC10783 69-Inch Matte Black Heavy-Wa...\u001b[0m\n", + "\u001b[92m66: Guess: $193.16 Truth: $206.66 Error: $13.50 SLE: 0.00 Item: Dell Latitude E5440 14in Business Laptop...\u001b[0m\n", + "\u001b[92m67: Guess: $48.29 Truth: $35.94 Error: $12.35 SLE: 0.08 Item: (Plug and Play) Spare Tire Brake Light W...\u001b[0m\n", + "\u001b[92m68: Guess: $169.10 Truth: $149.00 Error: $20.10 SLE: 0.02 Item: The Ultimate Roadside Rescue Assistant\u001b[0m\n", + "\u001b[92m69: Guess: $236.94 Truth: $251.98 Error: $15.04 SLE: 0.00 Item: Brand New 18\" x 8.5\" Replacement Wheel f...\u001b[0m\n", + "\u001b[93m70: Guess: $225.17 Truth: $160.00 Error: $65.17 SLE: 0.12 Item: Headlight Headlamp LH Left & RH Right Pa...\u001b[0m\n", + "\u001b[92m71: Guess: $71.69 Truth: $39.99 Error: $31.70 SLE: 0.33 Item: Lilo And Stitch Deluxe Oversize Print La...\u001b[0m\n", + "\u001b[93m72: Guess: $267.58 Truth: $362.41 Error: $94.83 SLE: 0.09 Item: AC Compressor & A/C Clutch For Hyundai A...\u001b[0m\n", + "\u001b[92m73: Guess: $409.01 Truth: $344.00 Error: $65.01 SLE: 0.03 Item: House Of Troy PIN475-AB Pinnacle Collect...\u001b[0m\n", + "\u001b[92m74: Guess: $36.40 Truth: $25.09 Error: $11.31 SLE: 0.13 Item: Juno T29 WH Floating Electrical Feed Sin...\u001b[0m\n", + "\u001b[92m75: Guess: $140.88 Truth: $175.95 Error: $35.07 SLE: 0.05 Item: Sherman GO-PARTS - for 2013-2016 Toyota ...\u001b[0m\n", + "\u001b[91m76: Guess: $335.75 Truth: $132.64 Error: $203.11 SLE: 0.85 Item: Roland RPU-3 Electronic Keyboard Pedal o...\u001b[0m\n", + "\u001b[93m77: Guess: $276.96 Truth: $422.99 Error: $146.03 SLE: 0.18 Item: Rockland VMI14 12,000 Pound 12 Volt DC E...\u001b[0m\n", + "\u001b[92m78: Guess: $165.91 Truth: $146.48 Error: $19.43 SLE: 0.02 Item: Max Advanced Brakes Elite XDS Front Cros...\u001b[0m\n", + "\u001b[92m79: Guess: $186.72 Truth: $156.83 Error: $29.89 SLE: 0.03 Item: Quality-Built 11030 Premium Quality Alte...\u001b[0m\n", + "\u001b[93m80: Guess: $167.44 Truth: $251.99 Error: $84.55 SLE: 0.17 Item: Lucida LG-510 Student Classical Guitar, ...\u001b[0m\n", + "\u001b[91m81: Guess: $342.92 Truth: $940.33 Error: $597.41 SLE: 1.01 Item: Longacre 52-79800 Aluminum Turn Plates\u001b[0m\n", + "\u001b[92m82: Guess: $70.32 Truth: $52.99 Error: $17.33 SLE: 0.08 Item: Motion Pro 08-0380 Adjustable Torque Wre...\u001b[0m\n", + "\u001b[93m83: Guess: $302.97 Truth: $219.95 Error: $83.02 SLE: 0.10 Item: Glyph Thunderbolt 3 NVMe Dock (0 GB)\u001b[0m\n", + "\u001b[92m84: Guess: $451.60 Truth: $441.03 Error: $10.57 SLE: 0.00 Item: TOYO Open Country MT Performance Radial ...\u001b[0m\n", + "\u001b[92m85: Guess: $181.95 Truth: $168.98 Error: $12.97 SLE: 0.01 Item: Razer Seiren X USB Streaming Microphone ...\u001b[0m\n", + "\u001b[92m86: Guess: $27.18 Truth: $2.49 Error: $24.69 SLE: 4.36 Item: Happy Birthday to Dad From Your Daughter...\u001b[0m\n", + "\u001b[92m87: Guess: $94.46 Truth: $98.62 Error: $4.16 SLE: 0.00 Item: Little Tikes My Real Jam First Concert S...\u001b[0m\n", + "\u001b[92m88: Guess: $216.10 Truth: $256.95 Error: $40.85 SLE: 0.03 Item: Studio M Peace and Harmony Art Pole Comm...\u001b[0m\n", + "\u001b[92m89: Guess: $34.01 Truth: $30.99 Error: $3.02 SLE: 0.01 Item: MyVolts 12V Power Supply Adaptor Compati...\u001b[0m\n", + "\u001b[93m90: Guess: $767.40 Truth: $569.84 Error: $197.56 SLE: 0.09 Item: Dell Latitude 7212 Rugged Extreme Tablet...\u001b[0m\n", + "\u001b[92m91: Guess: $201.17 Truth: $177.99 Error: $23.18 SLE: 0.01 Item: Covermates Contour Fit Car Cover - Light...\u001b[0m\n", + "\u001b[92m92: Guess: $972.55 Truth: $997.99 Error: $25.44 SLE: 0.00 Item: Westin 57-4025 Black HDX Grille Guard fi...\u001b[0m\n", + "\u001b[92m93: Guess: $201.93 Truth: $219.00 Error: $17.07 SLE: 0.01 Item: Fieldpiece JL2 Job Link Wireless App Tra...\u001b[0m\n", + "\u001b[92m94: Guess: $250.76 Truth: $225.55 Error: $25.21 SLE: 0.01 Item: hansgrohe Talis S Modern Premium Easy Cl...\u001b[0m\n", + "\u001b[91m95: Guess: $775.41 Truth: $495.95 Error: $279.46 SLE: 0.20 Item: G-Technology G-SPEED eS PRO High-Perform...\u001b[0m\n", + "\u001b[92m96: Guess: $924.45 Truth: $942.37 Error: $17.92 SLE: 0.00 Item: DreamLine SHDR-1960723L-01 Shower Door, ...\u001b[0m\n", + "\u001b[92m97: Guess: $27.71 Truth: $1.94 Error: $25.77 SLE: 5.19 Item: Sanctuary Square Backplate Finish: Oiled...\u001b[0m\n", + "\u001b[92m98: Guess: $273.73 Truth: $284.34 Error: $10.61 SLE: 0.00 Item: Pelican Protector 1750 Long Case - Multi...\u001b[0m\n", + "\u001b[92m99: Guess: $194.77 Truth: $171.90 Error: $22.87 SLE: 0.02 Item: Brock Replacement Driver and Passenger H...\u001b[0m\n", + "\u001b[93m100: Guess: $222.34 Truth: $144.99 Error: $77.35 SLE: 0.18 Item: Carlinkit Ai Box Mini, Android 11, Multi...\u001b[0m\n", + "\u001b[92m101: Guess: $406.35 Truth: $470.47 Error: $64.12 SLE: 0.02 Item: StarDot NetCamLIVE2 YouTube Live Stream ...\u001b[0m\n", + "\u001b[92m102: Guess: $79.62 Truth: $66.95 Error: $12.67 SLE: 0.03 Item: Atomic Compatible FILXXCAR0016 16x25x5 M...\u001b[0m\n", + "\u001b[92m103: Guess: $126.27 Truth: $117.00 Error: $9.27 SLE: 0.01 Item: Bandai Awakening of S. H. s.h.figuarts s...\u001b[0m\n", + "\u001b[91m104: Guess: $271.20 Truth: $172.14 Error: $99.06 SLE: 0.20 Item: Fit System 62135G Passenger Side Towing ...\u001b[0m\n", + "\u001b[92m105: Guess: $359.25 Truth: $392.74 Error: $33.49 SLE: 0.01 Item: Black Horse Black Aluminum Exceed Runnin...\u001b[0m\n", + "\u001b[92m106: Guess: $50.62 Truth: $16.99 Error: $33.63 SLE: 1.11 Item: Dearsun Twinkle Star Color Night Light P...\u001b[0m\n", + "\u001b[92m107: Guess: $23.97 Truth: $1.34 Error: $22.63 SLE: 5.61 Item: Pokemon - Gallade Spirit Link (83/108) -...\u001b[0m\n", + "\u001b[93m108: Guess: $254.32 Truth: $349.98 Error: $95.66 SLE: 0.10 Item: Ibanez GA34STCE-NT GIO Series Classical ...\u001b[0m\n", + "\u001b[92m109: Guess: $414.40 Truth: $370.71 Error: $43.69 SLE: 0.01 Item: Set 2 Heavy Duty 12-16.5 12x16.5 12 Ply ...\u001b[0m\n", + "\u001b[92m110: Guess: $73.27 Truth: $65.88 Error: $7.39 SLE: 0.01 Item: Hairpin Table Legs 28\" Heavy Duty Hairpi...\u001b[0m\n", + "\u001b[93m111: Guess: $280.92 Truth: $229.99 Error: $50.93 SLE: 0.04 Item: Marada Racing Seat with Adjustable Slide...\u001b[0m\n", + "\u001b[92m112: Guess: $25.05 Truth: $9.14 Error: $15.91 SLE: 0.89 Item: Remington Industries 24UL1007STRWHI25 24...\u001b[0m\n", + "\u001b[91m113: Guess: $377.12 Truth: $199.00 Error: $178.12 SLE: 0.41 Item: Acer S3-391-6046 13.3-inch Ultrabook, In...\u001b[0m\n", + "\u001b[91m114: Guess: $195.37 Truth: $109.99 Error: $85.38 SLE: 0.33 Item: ICBEAMER 7\" RGB LED Headlights Bulb Halo...\u001b[0m\n", + "\u001b[93m115: Guess: $395.30 Truth: $570.42 Error: $175.12 SLE: 0.13 Item: R1 Concepts Front Rear Brakes and Rotors...\u001b[0m\n", + "\u001b[92m116: Guess: $253.52 Truth: $279.99 Error: $26.47 SLE: 0.01 Item: Camplux 2.64 GPM Tankless , Outdoor Port...\u001b[0m\n", + "\u001b[92m117: Guess: $46.52 Truth: $30.99 Error: $15.53 SLE: 0.16 Item: KNOKLOCK 10 Pack 3.75 Inch(96mm) Kitchen...\u001b[0m\n", + "\u001b[92m118: Guess: $40.11 Truth: $31.99 Error: $8.12 SLE: 0.05 Item: Valley Enterprises Yaesu USB FTDI CT-62 ...\u001b[0m\n", + "\u001b[93m119: Guess: $62.65 Truth: $15.90 Error: $46.75 SLE: 1.76 Item: G9 LED Light Bulbs,8W,75W 100W replaceme...\u001b[0m\n", + "\u001b[93m120: Guess: $106.37 Truth: $45.99 Error: $60.38 SLE: 0.68 Item: ZCHAOZ 4 Lights Antique White Farmhouse ...\u001b[0m\n", + "\u001b[91m121: Guess: $234.32 Truth: $113.52 Error: $120.80 SLE: 0.52 Item: Honeywell TH8320R1003 Honeywell VisionPr...\u001b[0m\n", + "\u001b[92m122: Guess: $501.78 Truth: $516.99 Error: $15.21 SLE: 0.00 Item: Patriot Exhaust H8013-1 1-7/8\" Clippster...\u001b[0m\n", + "\u001b[93m123: Guess: $140.05 Truth: $196.99 Error: $56.94 SLE: 0.11 Item: Fitrite Autopart New Front Left Driver S...\u001b[0m\n", + "\u001b[93m124: Guess: $92.57 Truth: $46.55 Error: $46.02 SLE: 0.46 Item: Technical Precision Replacement for GE G...\u001b[0m\n", + "\u001b[93m125: Guess: $278.54 Truth: $356.99 Error: $78.45 SLE: 0.06 Item: Covercraft Carhartt SeatSaver Front Row ...\u001b[0m\n", + "\u001b[92m126: Guess: $279.54 Truth: $319.95 Error: $40.41 SLE: 0.02 Item: Sennheiser SD Pro 2 (506008) - Double-Si...\u001b[0m\n", + "\u001b[93m127: Guess: $143.18 Truth: $96.06 Error: $47.12 SLE: 0.16 Item: Hitachi MAF0110 Mass Air Flow Sensor\u001b[0m\n", + "\u001b[93m128: Guess: $239.09 Truth: $190.99 Error: $48.10 SLE: 0.05 Item: AmScope SE305R-P-LED-PS36A 10X-30X LED C...\u001b[0m\n", + "\u001b[93m129: Guess: $161.55 Truth: $257.95 Error: $96.40 SLE: 0.22 Item: Front Left Driver Side Window Regulator ...\u001b[0m\n", + "\u001b[92m130: Guess: $84.35 Truth: $62.95 Error: $21.40 SLE: 0.08 Item: Premium Replica Hubcap Set, Fits Nissan ...\u001b[0m\n", + "\u001b[93m131: Guess: $92.57 Truth: $47.66 Error: $44.91 SLE: 0.43 Item: Excellerations Phonics Spelling Game for...\u001b[0m\n", + "\u001b[92m132: Guess: $218.86 Truth: $226.99 Error: $8.13 SLE: 0.00 Item: RC4WD BigDog Dual Axle Scale Car/Truck T...\u001b[0m\n", + "\u001b[92m133: Guess: $291.86 Truth: $359.95 Error: $68.09 SLE: 0.04 Item: Unknown Stage 2 Clutch Kit - Low Altitud...\u001b[0m\n", + "\u001b[92m134: Guess: $78.20 Truth: $78.40 Error: $0.20 SLE: 0.00 Item: 2002-2008 Dodge Ram 1500 Mopar 4X4 Emble...\u001b[0m\n", + "\u001b[92m135: Guess: $179.42 Truth: $172.77 Error: $6.65 SLE: 0.00 Item: Pro Comp Alloys Series 89 Wheel with Pol...\u001b[0m\n", + "\u001b[92m136: Guess: $305.83 Truth: $316.45 Error: $10.62 SLE: 0.00 Item: Detroit Axle - Front Rear Strut & Coil S...\u001b[0m\n", + "\u001b[92m137: Guess: $95.42 Truth: $87.99 Error: $7.43 SLE: 0.01 Item: ECCPP Rear Wheel Axle Replacement fit fo...\u001b[0m\n", + "\u001b[92m138: Guess: $221.32 Truth: $226.63 Error: $5.31 SLE: 0.00 Item: Dell Latitude E6520 Intel i7-2720QM 2.20...\u001b[0m\n", + "\u001b[92m139: Guess: $44.53 Truth: $31.49 Error: $13.04 SLE: 0.11 Item: F FIERCE CYCLE 251pcs Black Universal Mo...\u001b[0m\n", + "\u001b[93m140: Guess: $239.87 Truth: $196.00 Error: $43.87 SLE: 0.04 Item: Flash Furniture 4 Pk. HERCULES Series 88...\u001b[0m\n", + "\u001b[92m141: Guess: $51.09 Truth: $78.40 Error: $27.31 SLE: 0.18 Item: B&M 30287 Throttle Valve/Kickdown Cable,...\u001b[0m\n", + "\u001b[92m142: Guess: $125.85 Truth: $116.25 Error: $9.60 SLE: 0.01 Item: Gates TCK226 PowerGrip Premium Timing Be...\u001b[0m\n", + "\u001b[92m143: Guess: $146.88 Truth: $112.78 Error: $34.10 SLE: 0.07 Item: Monroe Shocks & Struts Quick-Strut 17149...\u001b[0m\n", + "\u001b[93m144: Guess: $82.47 Truth: $27.32 Error: $55.15 SLE: 1.17 Item: Feit Electric BPMR16/GU10/930CA/6 35W EQ...\u001b[0m\n", + "\u001b[92m145: Guess: $139.40 Truth: $145.91 Error: $6.51 SLE: 0.00 Item: Yellow Jacket 2806 Contractor Extension ...\u001b[0m\n", + "\u001b[92m146: Guess: $185.59 Truth: $171.09 Error: $14.50 SLE: 0.01 Item: Garage-Pro Tailgate SET Compatible with ...\u001b[0m\n", + "\u001b[93m147: Guess: $116.05 Truth: $167.95 Error: $51.90 SLE: 0.13 Item: 3M Perfect It Buffing and Polishing Kit ...\u001b[0m\n", + "\u001b[92m148: Guess: $56.66 Truth: $28.49 Error: $28.17 SLE: 0.45 Item: Chinese Style Dollhouse Model DIY Miniat...\u001b[0m\n", + "\u001b[92m149: Guess: $148.08 Truth: $122.23 Error: $25.85 SLE: 0.04 Item: Generic NRG Innovations SRK-161H Steerin...\u001b[0m\n", + "\u001b[92m150: Guess: $58.72 Truth: $32.99 Error: $25.73 SLE: 0.32 Item: Learning Resources Coding Critters Range...\u001b[0m\n", + "\u001b[93m151: Guess: $114.50 Truth: $71.20 Error: $43.30 SLE: 0.22 Item: Bosch Automotive 15463 Oxygen Sensor, OE...\u001b[0m\n", + "\u001b[92m152: Guess: $90.17 Truth: $112.75 Error: $22.58 SLE: 0.05 Item: Case of 24-2 Inch Blue Painters Tape - 6...\u001b[0m\n", + "\u001b[92m153: Guess: $131.93 Truth: $142.43 Error: $10.50 SLE: 0.01 Item: MOCA Engine Water Pump & Fan Clutch fit ...\u001b[0m\n", + "\u001b[93m154: Guess: $304.84 Truth: $398.99 Error: $94.15 SLE: 0.07 Item: SAREMAS Foot Step Bars for Hyundai Palis...\u001b[0m\n", + "\u001b[93m155: Guess: $589.85 Truth: $449.00 Error: $140.85 SLE: 0.07 Item: Gretsch G9210 Square Neck Boxcar Mahogan...\u001b[0m\n", + "\u001b[92m156: Guess: $198.86 Truth: $189.00 Error: $9.86 SLE: 0.00 Item: NikoMaku Mirror Dash Cam Front and Rear ...\u001b[0m\n", + "\u001b[92m157: Guess: $112.44 Truth: $120.91 Error: $8.47 SLE: 0.01 Item: Fenix HP25R v2.0 USB-C Rechargeable Head...\u001b[0m\n", + "\u001b[92m158: Guess: $182.50 Truth: $203.53 Error: $21.03 SLE: 0.01 Item: R&L Racing Heavy Duty Roll-Up Soft Tonne...\u001b[0m\n", + "\u001b[92m159: Guess: $341.67 Truth: $349.99 Error: $8.32 SLE: 0.00 Item: Garmin 010-02258-10 GPSMAP 64sx, Handhel...\u001b[0m\n", + "\u001b[92m160: Guess: $29.90 Truth: $34.35 Error: $4.45 SLE: 0.02 Item: Brown 5-7/8\" X 8-1/2\" X 3/16\" Thick Heav...\u001b[0m\n", + "\u001b[92m161: Guess: $331.67 Truth: $384.99 Error: $53.32 SLE: 0.02 Item: GAOMON PD2200 Pen Display & 20 Pen Nibs ...\u001b[0m\n", + "\u001b[93m162: Guess: $262.90 Truth: $211.00 Error: $51.90 SLE: 0.05 Item: VXMOTOR for 97-03 Ford F150/F250 Lightdu...\u001b[0m\n", + "\u001b[91m163: Guess: $226.38 Truth: $129.00 Error: $97.38 SLE: 0.31 Item: HP EliteBook 2540p Intel Core i7-640LM X...\u001b[0m\n", + "\u001b[93m164: Guess: $38.95 Truth: $111.45 Error: $72.50 SLE: 1.07 Item: Green EPX Mixing Nozzles 100-Pack-fits 3...\u001b[0m\n", + "\u001b[92m165: Guess: $45.80 Truth: $81.12 Error: $35.32 SLE: 0.32 Item: Box Partners 6 1/4 x 3 1/8\" 13 Pt. Manil...\u001b[0m\n", + "\u001b[92m166: Guess: $437.99 Truth: $457.08 Error: $19.09 SLE: 0.00 Item: Vixen Air 1/2\" NPT Air Ride Suspension H...\u001b[0m\n", + "\u001b[92m167: Guess: $82.78 Truth: $49.49 Error: $33.29 SLE: 0.26 Item: Smart Floor Lamp, 2700-6500K+RGBPink Mul...\u001b[0m\n", + "\u001b[93m168: Guess: $122.46 Truth: $80.56 Error: $41.90 SLE: 0.17 Item: SOZG 324mm Wheelbase Body Shell RC Car B...\u001b[0m\n", + "\u001b[92m169: Guess: $301.87 Truth: $278.39 Error: $23.48 SLE: 0.01 Item: Mickey Thompson ET Street S/S Racing Rad...\u001b[0m\n", + "\u001b[92m170: Guess: $425.78 Truth: $364.50 Error: $61.28 SLE: 0.02 Item: Pirelli 275/40R20 106W XL RFT P0 PZ4-LUX...\u001b[0m\n", + "\u001b[93m171: Guess: $520.14 Truth: $378.99 Error: $141.15 SLE: 0.10 Item: Torklift C3212 Rear Tie Down\u001b[0m\n", + "\u001b[93m172: Guess: $220.74 Truth: $165.28 Error: $55.46 SLE: 0.08 Item: Cardone 78-4226 Remanufactured Ford Comp...\u001b[0m\n", + "\u001b[93m173: Guess: $98.70 Truth: $56.74 Error: $41.96 SLE: 0.30 Item: Kidde AccessPoint 001798 Supra TouchPoin...\u001b[0m\n", + "\u001b[93m174: Guess: $214.16 Truth: $307.95 Error: $93.79 SLE: 0.13 Item: 3M Protecta 3100414 Self Retracting Life...\u001b[0m\n", + "\u001b[93m175: Guess: $102.49 Truth: $38.00 Error: $64.49 SLE: 0.95 Item: Plantronics 89435-01 Wired Headset, Blac...\u001b[0m\n", + "\u001b[92m176: Guess: $91.64 Truth: $53.00 Error: $38.64 SLE: 0.29 Item: Logitech K750 Wireless Solar Keyboard fo...\u001b[0m\n", + "\u001b[92m177: Guess: $537.72 Truth: $498.00 Error: $39.72 SLE: 0.01 Item: Olympus PEN E-PL9 Body Only with 3-Inch ...\u001b[0m\n", + "\u001b[91m178: Guess: $134.82 Truth: $53.99 Error: $80.83 SLE: 0.82 Item: Beck/Arnley 051-6066 Hub & Bearing Assem...\u001b[0m\n", + "\u001b[92m179: Guess: $363.60 Truth: $350.00 Error: $13.60 SLE: 0.00 Item: Eibach Pro-Kit Performance Springs E10-6...\u001b[0m\n", + "\u001b[92m180: Guess: $311.21 Truth: $299.95 Error: $11.26 SLE: 0.00 Item: LEGO DC Batman 1989 Batwing 76161 Displa...\u001b[0m\n", + "\u001b[92m181: Guess: $97.05 Truth: $94.93 Error: $2.12 SLE: 0.00 Item: Kingston Brass KS3608PL Restoration 4-In...\u001b[0m\n", + "\u001b[92m182: Guess: $321.44 Truth: $379.00 Error: $57.56 SLE: 0.03 Item: Polk Vanishing Series 265-LS In-Wall 3-W...\u001b[0m\n", + "\u001b[92m183: Guess: $252.24 Truth: $299.95 Error: $47.71 SLE: 0.03 Item: Spec-D Tuning LED Projector Headlights G...\u001b[0m\n", + "\u001b[92m184: Guess: $39.72 Truth: $24.99 Error: $14.73 SLE: 0.20 Item: RICHMOND & FINCH Airpod Pro Case, Green ...\u001b[0m\n", + "\u001b[91m185: Guess: $135.40 Truth: $41.04 Error: $94.36 SLE: 1.39 Item: LFA Industries 43B-5A-33JT 1/16-1/2-1.5-...\u001b[0m\n", + "\u001b[92m186: Guess: $298.91 Truth: $327.90 Error: $28.99 SLE: 0.01 Item: SAUTVS LED Headlight Assembly for Slings...\u001b[0m\n", + "\u001b[92m187: Guess: $36.90 Truth: $10.99 Error: $25.91 SLE: 1.32 Item: 2 Pack Combo Womens Safety Glasses Impac...\u001b[0m\n", + "\u001b[92m188: Guess: $23.51 Truth: $14.99 Error: $8.52 SLE: 0.18 Item: Arepa - Venezuelan cuisine - Venezuela P...\u001b[0m\n", + "\u001b[93m189: Guess: $43.32 Truth: $84.95 Error: $41.63 SLE: 0.44 Item: Schlage Lock Company KS23D2300 Padlock, ...\u001b[0m\n", + "\u001b[92m190: Guess: $144.93 Truth: $111.00 Error: $33.93 SLE: 0.07 Item: Techni Mobili White Sit to Stand Mobile ...\u001b[0m\n", + "\u001b[92m191: Guess: $159.17 Truth: $123.73 Error: $35.44 SLE: 0.06 Item: Special Lite Products Contemporary Wall ...\u001b[0m\n", + "\u001b[92m192: Guess: $519.71 Truth: $557.38 Error: $37.67 SLE: 0.00 Item: Tascam DP-24SD 24-Track Digital Portastu...\u001b[0m\n", + "\u001b[92m193: Guess: $117.26 Truth: $95.55 Error: $21.71 SLE: 0.04 Item: Glow Lighting 636CC10SP Vista Crystal Fl...\u001b[0m\n", + "\u001b[92m194: Guess: $164.33 Truth: $154.00 Error: $10.33 SLE: 0.00 Item: Z3 Wind Deflector, Smoke Tint, Lexan, Wi...\u001b[0m\n", + "\u001b[91m195: Guess: $333.36 Truth: $198.99 Error: $134.37 SLE: 0.26 Item: Olympus E-20 5MP Digital Camera w/ 4x Op...\u001b[0m\n", + "\u001b[91m196: Guess: $215.62 Truth: $430.44 Error: $214.82 SLE: 0.47 Item: PHYNEDI 1:1000 World Trade Center (1973-...\u001b[0m\n", + "\u001b[92m197: Guess: $46.01 Truth: $45.67 Error: $0.34 SLE: 0.00 Item: YANGHUAN Unstable Unicorns Adventure Car...\u001b[0m\n", + "\u001b[92m198: Guess: $268.04 Truth: $249.00 Error: $19.04 SLE: 0.01 Item: Interlogix NX-1820E NetworX Touch Screen...\u001b[0m\n", + "\u001b[92m199: Guess: $57.29 Truth: $42.99 Error: $14.30 SLE: 0.08 Item: Steering Damper,Universal Motorcycle Han...\u001b[0m\n", + "\u001b[93m200: Guess: $224.93 Truth: $181.33 Error: $43.60 SLE: 0.05 Item: Amprobe TIC 410A Hot Stick Attachment\u001b[0m\n", + "\u001b[92m201: Guess: $21.04 Truth: $6.03 Error: $15.01 SLE: 1.31 Item: MyCableMart 3.5mm Plug/Jack, 4 Conductor...\u001b[0m\n", + "\u001b[93m202: Guess: $73.50 Truth: $29.99 Error: $43.51 SLE: 0.77 Item: OtterBox + Pop Symmetry Series Case for ...\u001b[0m\n", + "\u001b[92m203: Guess: $768.64 Truth: $899.00 Error: $130.36 SLE: 0.02 Item: Dell XPS X8700-1572BLK Desktop ( Intel C...\u001b[0m\n", + "\u001b[93m204: Guess: $521.15 Truth: $399.99 Error: $121.16 SLE: 0.07 Item: Franklin Iron Works Sperry Industrial Br...\u001b[0m\n", + "\u001b[92m205: Guess: $22.80 Truth: $4.66 Error: $18.14 SLE: 2.06 Item: Avery Legal Dividers, Standard Collated ...\u001b[0m\n", + "\u001b[92m206: Guess: $250.76 Truth: $261.41 Error: $10.65 SLE: 0.00 Item: Moen 8346 Commercial Posi-Temp Pressure ...\u001b[0m\n", + "\u001b[92m207: Guess: $152.89 Truth: $136.97 Error: $15.92 SLE: 0.01 Item: Carlisle Versa Trail ATR All Terrain Rad...\u001b[0m\n", + "\u001b[92m208: Guess: $106.34 Truth: $79.00 Error: $27.34 SLE: 0.09 Item: SUNWAYFOTO 44mm Tripod Ball Head Arca Co...\u001b[0m\n", + "\u001b[92m209: Guess: $426.61 Truth: $444.99 Error: $18.38 SLE: 0.00 Item: NanoBeam AC NBE-5AC-Gen2-US 4 Units 5GHz...\u001b[0m\n", + "\u001b[92m210: Guess: $470.28 Truth: $411.94 Error: $58.34 SLE: 0.02 Item: WULF 4\" Front 2\" Rear Leveling Lift Kit ...\u001b[0m\n", + "\u001b[93m211: Guess: $204.70 Truth: $148.40 Error: $56.30 SLE: 0.10 Item: Alera ALEVABFMC Valencia Series Mobile B...\u001b[0m\n", + "\u001b[93m212: Guess: $167.36 Truth: $244.99 Error: $77.63 SLE: 0.14 Item: YU-GI-OH! Ignition Assault Booster Box\u001b[0m\n", + "\u001b[92m213: Guess: $114.17 Truth: $86.50 Error: $27.67 SLE: 0.08 Item: 48\" x 36\" Extra-Large Framed Magnetic Bl...\u001b[0m\n", + "\u001b[91m214: Guess: $131.30 Truth: $297.95 Error: $166.65 SLE: 0.66 Item: Dell Latitude D620 Renewed Notebook PC\u001b[0m\n", + "\u001b[92m215: Guess: $474.25 Truth: $399.99 Error: $74.26 SLE: 0.03 Item: acer Aspire 5 Laptop, AMD Ryzen 3 5300U ...\u001b[0m\n", + "\u001b[92m216: Guess: $616.57 Truth: $599.00 Error: $17.57 SLE: 0.00 Item: Elk 31080/6RC-GRN 30 by 6-Inch Viva 6-Li...\u001b[0m\n", + "\u001b[92m217: Guess: $71.30 Truth: $105.99 Error: $34.69 SLE: 0.15 Item: Barbie Top Model Doll\u001b[0m\n", + "\u001b[92m218: Guess: $568.89 Truth: $689.00 Error: $120.11 SLE: 0.04 Item: Danby Designer 20-In. Electric Range wit...\u001b[0m\n", + "\u001b[92m219: Guess: $340.73 Truth: $404.99 Error: $64.26 SLE: 0.03 Item: FixtureDisplays® Metal Truss Podium Doub...\u001b[0m\n", + "\u001b[92m220: Guess: $230.27 Truth: $207.76 Error: $22.51 SLE: 0.01 Item: ACDelco 13597235 GM Original Equipment A...\u001b[0m\n", + "\u001b[92m221: Guess: $190.44 Truth: $171.82 Error: $18.62 SLE: 0.01 Item: EBC S1KF1135 Stage-1 Premium Street Brak...\u001b[0m\n", + "\u001b[92m222: Guess: $293.87 Truth: $293.24 Error: $0.63 SLE: 0.00 Item: FXR Men's Boost FX Jacket (Black/Orange/...\u001b[0m\n", + "\u001b[92m223: Guess: $385.94 Truth: $374.95 Error: $10.99 SLE: 0.00 Item: SuperATV Scratch Resistant 3-in-1 Flip W...\u001b[0m\n", + "\u001b[92m224: Guess: $125.86 Truth: $111.99 Error: $13.87 SLE: 0.01 Item: SBU 3 Layer All Weather Mini Van Car Cov...\u001b[0m\n", + "\u001b[92m225: Guess: $66.44 Truth: $42.99 Error: $23.45 SLE: 0.18 Item: 2 Pack Outdoor Brochure Holder Advertisi...\u001b[0m\n", + "\u001b[92m226: Guess: $145.97 Truth: $116.71 Error: $29.26 SLE: 0.05 Item: Monroe Shocks & Struts Quick-Strut 17158...\u001b[0m\n", + "\u001b[91m227: Guess: $201.35 Truth: $118.61 Error: $82.74 SLE: 0.28 Item: Elements of Design Magellan EB235AL Thre...\u001b[0m\n", + "\u001b[92m228: Guess: $142.35 Truth: $147.12 Error: $4.77 SLE: 0.00 Item: GM Genuine Parts 15-62961 Air Conditioni...\u001b[0m\n", + "\u001b[93m229: Guess: $173.74 Truth: $119.99 Error: $53.75 SLE: 0.14 Item: Baseus 17-in-1 USB C Docking Station to ...\u001b[0m\n", + "\u001b[93m230: Guess: $490.03 Truth: $369.98 Error: $120.05 SLE: 0.08 Item: Whitehall™ Personalized Whitehall Capito...\u001b[0m\n", + "\u001b[92m231: Guess: $291.51 Truth: $315.55 Error: $24.04 SLE: 0.01 Item: Pro Circuit Works Pipe PY05250 for 02-19...\u001b[0m\n", + "\u001b[93m232: Guess: $261.90 Truth: $190.99 Error: $70.91 SLE: 0.10 Item: HYANKA 15 \"1200W Professional DJ Speaker...\u001b[0m\n", + "\u001b[92m233: Guess: $193.70 Truth: $155.00 Error: $38.70 SLE: 0.05 Item: Bluetooth X6BT Card Reader Writer Encode...\u001b[0m\n", + "\u001b[92m234: Guess: $373.37 Truth: $349.99 Error: $23.38 SLE: 0.00 Item: AIRAID Cold Air Intake System by K&N: In...\u001b[0m\n", + "\u001b[92m235: Guess: $256.72 Truth: $249.99 Error: $6.73 SLE: 0.00 Item: Bostingner Shower Faucets Sets Complete,...\u001b[0m\n", + "\u001b[92m236: Guess: $37.83 Truth: $42.99 Error: $5.16 SLE: 0.02 Item: PIT66 Front Bumper Turn Signal Lights, C...\u001b[0m\n", + "\u001b[92m237: Guess: $39.64 Truth: $17.99 Error: $21.65 SLE: 0.58 Item: Caseology Bumpy Compatible with Google P...\u001b[0m\n", + "\u001b[92m238: Guess: $355.64 Truth: $425.00 Error: $69.36 SLE: 0.03 Item: Fleck 2510 Timer Mechanical Filter Contr...\u001b[0m\n", + "\u001b[93m239: Guess: $303.37 Truth: $249.99 Error: $53.38 SLE: 0.04 Item: Haloview MC7108 Wireless RV Backup Camer...\u001b[0m\n", + "\u001b[93m240: Guess: $61.21 Truth: $138.23 Error: $77.02 SLE: 0.65 Item: Schmidt Spiele - Manhattan\u001b[0m\n", + "\u001b[93m241: Guess: $520.03 Truth: $414.99 Error: $105.04 SLE: 0.05 Item: Corsa 14333 Tip Kit (Ford Mustang GT)\u001b[0m\n", + "\u001b[93m242: Guess: $223.31 Truth: $168.28 Error: $55.03 SLE: 0.08 Item: Hoshizaki FM116A Fan Motor Kit 1\u001b[0m\n", + "\u001b[92m243: Guess: $222.89 Truth: $199.99 Error: $22.90 SLE: 0.01 Item: BAINUO Antler Chandelier Lighting,6 Ligh...\u001b[0m\n", + "\u001b[92m244: Guess: $166.09 Truth: $126.70 Error: $39.39 SLE: 0.07 Item: DNA MOTORING HL-OH-FEXP06-SM-AM Smoke Le...\u001b[0m\n", + "\u001b[92m245: Guess: $23.59 Truth: $5.91 Error: $17.68 SLE: 1.61 Item: Wera Stainless 3840/1 TS 2.5mm Hex Inser...\u001b[0m\n", + "\u001b[92m246: Guess: $200.99 Truth: $193.06 Error: $7.93 SLE: 0.00 Item: Celestron - PowerSeeker 127EQ Telescope ...\u001b[0m\n", + "\u001b[93m247: Guess: $185.86 Truth: $249.99 Error: $64.13 SLE: 0.09 Item: NHOPEEW 10.1inch Android Car Radio Carpl...\u001b[0m\n", + "\u001b[92m248: Guess: $75.71 Truth: $64.12 Error: $11.59 SLE: 0.03 Item: Other Harmonica (Suzuki-2Timer24- A)\u001b[0m\n", + "\u001b[93m249: Guess: $194.92 Truth: $114.99 Error: $79.93 SLE: 0.27 Item: Harley Air Filter Venturi Intake Air Cle...\u001b[0m\n", + "\u001b[93m250: Guess: $646.25 Truth: $926.00 Error: $279.75 SLE: 0.13 Item: Elite Screens Edge Free Ambient Light Re...\u001b[0m\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+0AAAK7CAYAAACH525NAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAA0rBJREFUeJzs3Xd8VfX9x/HXzd6BkAXKBkVkOHChMkTFvZW6wFm3YrVaa92r2jo6ftXWheJAqzhqreJAXLgnOFCQoUDCTFjZ5/fHDckNM4GEm4TXs488mnzvued8Em9CPnl/v98TCoIgQJIkSZIkNTsx0S5AkiRJkiStm027JEmSJEnNlE27JEmSJEnNlE27JEmSJEnNlE27JEmSJEnNlE27JEmSJEnNlE27JEmSJEnNlE27JEmSJEnNlE27JEmSJEnNlE27pGZtzJgxhEKh9b699dZb0S5xs7z11luEQiGeeeaZjR57/fXXEwqFGv3aq99iY2PJy8vj+OOP59tvv63XORq7ps215ue05tuYMWOiXWKjOO200+r92v/mm29ITEwkFArxySefrPX4q6++yt57701ycjKZmZkcfvjhTJ06tV7nfvLJJxk0aBB5eXkkJibSoUMHDj/8cN5///06x23sv8u55567wevMnDmzzvExMTG0bduWYcOGMWHChLWOX/26jImJYcaMGWs9vmLFCjIyMgiFQpx22ml1HpszZw7nn38+2223HcnJyWRlZdG3b1/OPvts5syZs9Y1Fi5cuN66t9Tr8fXXX2evvfYiJSWF7OxsTjvtNAoLCxt8noKCAtq1a7fen0mff/45Rx11FB06dCAlJYVevXpx4403snLlyo2ee2Nfrz59+jBkyJA6Y6FQiOuvv77m42+++Ybrr7+emTNnNuTTahQLFy7kkksuoUuXLiQmJpKXl8fBBx/M4sWL6xz30UcfMXz4cNLT00lLS2Po0KG899579brG+PHjOfHEE+nRowfJycl06dKFk08+mR9++GGtY++99166dOlC27ZtOeWUU1i6dGmdxysqKthpp5249tprN/lzltR8xEW7AEmqj4cffphevXqtNd67d+8oVNO63HrrrQwdOpSysjI++eQTbrzxRt544w2+/vprttlmmw0+96yzzuKggw7aQpXW3+rPaU3du3ePQjXRU1lZyRlnnEF2djZz585d6/EXXniBo48+miOPPJJnn32WoqIibrjhBvbdd18+/vjjjX69Fi1axN57780ll1xCdnY28+bN46677mLQoEG88cYbDB48GIBddtmFyZMnr/X8e++9l0cffZSjjz66Xp/PRRddxEknnURlZSXfffcdN9xwA4cccghvvvkmgwYNWuv4tLQ0Hn74YW666aY64//+978pLy8nPj6+zvjPP//MLrvsQps2bbjsssvYfvvtKSoq4ptvvuHpp59mxowZdOzYsV61RmrK1+OkSZM4+OCDOfTQQ3nhhRcoLCzkyiuvZNiwYXzyySckJibW+1wXXHABSUlJ63zsm2++YeDAgWy//fbcc889ZGdn8/bbb3PjjTfy6aef8sILL2z257KmyZMns+2229ap4YYbbmDIkCF06dKl0a+3PnPnzmXfffclLi6Oa665hp49e7Jw4UImTpxIWVlZzXEff/wxgwYNYvfdd2fs2LEEQcAdd9zBsGHDmDhxInvttdcGr3P77beTn5/P1VdfTbdu3ZgzZw633noru+yyCx988AE77rgjAG+//TYXXXQRd955Jz169ODSSy/l8ssv54EHHqg511133cXKlSu5+uqrm+aLImnLCiSpGXv44YcDIPj444+jXUqTmDhxYgAE//73vzd67HXXXRc05o/t9V37wQcfDIDg5ptvXu9zV6xY0Wh1NNSGrt2Qr+e6rFy5cp3jZWVlQXl5+Sadc7XN/ZotXrw4OPvss4P8/PwgFAoFsbGxQfv27YMjjjgiKC4uXudz/vSnPwXbbLNN8Je//GWd30fbb7990K9fv6CqqqpmbObMmUFCQkJw0kknbVKdS5cuDeLj44NTTz11g8dVVVUF3bp1Czp37hxUVlZu8NiffvopAII//elPdcYnTZoUAMHIkSPrjK/+XjnrrLOCjh07rnX+ffbZJzjxxBOD1NTUYNSoUTXj1157bQAEM2bMWGcdkedZfY0FCxast+7NfT3Wx2677Rb07t27zuvzvffeC4DgH//4R73P88wzzwRpaWnBI488ss6ar7766gAIfvzxxzrjv/71rwMgWLx48QbPv7Gv14477hgMHjx4g+f497//HQDBxIkTN/r5NKYjjzwy2GabbTb6OQ4fPjzIy8ur871eXFwcZGdnBwMHDtzodQoKCtYa++WXX4L4+PjgzDPPrBm74oorggMPPLDm48cffzzIy8ur+XjGjBlBSkpK8Oabb270mpJaBqfHS2o1QqEQF154IWPHjmWHHXYgJSWF/v3789JLL9U5bsGCBfz617+mY8eOJCYmkpOTw957783rr79e57jXX3+dYcOGkZGRQUpKCnvvvTdvvPFGnWNWT/n86quvOP7448nMzCQrK4vf/OY3VFRU8P3333PQQQeRnp5Oly5duOOOO9ZZe0lJCb/5zW/Iz88nOTmZwYMH8/nnn9fr837qqafYa6+9SE1NJS0tjeHDh9f7ueuy5557AjBr1qw6n+Nnn33GcccdR9u2bWsSwvVNj3/iiSfYa6+9SEtLIy0tjZ122okHH3ywzjEN+fqu69qbq0uXLhx22GGMHz+enXfemaSkJG644YaaKc1jx47lsssuY5tttiExMZEff/wRgIceeoj+/fuTlJREVlYWRx999FrLCU477TTS0tL4+uuvOfDAA0lPT2fYsGGbVe+vf/1rnnzySa655hoOOeQQ7rzzTu644w4SExMpLS1d6/gffviBa6+9ln/84x9kZGSs9fiiRYv4/vvvOfjgg+v8N+zcuTN9+vTh+eefp7KyssF1pqenk5SURFzchifzTZw4kRkzZnD66acTE7Npv44MGDAACE/rXpczzjiDOXPm8Nprr9WMTZs2jXfffZczzjhjreMXLVpETEwMubm56zzfptbZVH755Rc+/vhjTj311Dpf74EDB7Lddtvx3HPP1es8ixcv5oILLuCWW26hU6dO6zxm9ayEzMzMOuNt2rQhJiaGhISETfws1i9yevyYMWM4/vjjARg6dOhaSww+//xzDjvsMHJzc2uWahx66KH8/PPPm1XDzJkzefHFFzn77LNp27btBo997733GDJkCCkpKTVj6enpDBo0iPfff5958+Zt8Pnret116NCBbbfdts7SjJKSElJTU2s+TktLo6SkpObj8847jxEjRqxzdoeklql5/esjSetRWVlJRUVFnbd1NRT//e9/+fvf/86NN97Is88+W9NURa5rPfXUU3n++ee59tprmTBhAg888AD7778/ixYtqjnmscce48ADDyQjI4NHHnmEp59+mqysLIYPH75WYwlwwgkn0L9/f5599lnOPvts7r77bi699FKOOuooDj30UJ577jn2228/rrzySsaPH7/W83//+98zY8YMHnjgAR544AHmzp3LkCFD1rkeN9Ktt97KiSeeSO/evXn66acZO3Ysy5YtY9999+Wbb75pyJe4xurmNCcnp874McccQ48ePfj3v//Nfffdt97nX3vttZx88sl06NCBMWPG8NxzzzFq1KiaPwJAw7++9b32alVVVWu9XioqKtY67rPPPuO3v/0tF198Ma+88grHHntszWNXXXUVs2fP5r777uM///kPubm53HbbbZx55pnsuOOOjB8/nr/85S989dVX7LXXXmutOy0rK+OII45gv/3244UXXuCGG27YYG0be31PmDCBM888k/PPP5/s7Gz69+/PKaecwtNPP012dnadY4Mg4KyzzuKwww7jiCOOWOfXaPW03nVNn05MTGTlypVMnz59o19rCH9/lpeXM3PmTM477zyCIOCCCy7Y4HMefPBBYmJiOP300+t1jXX56aefANhuu+3W+XjPnj3Zd999eeihh2rGHnroIbp06bLOP6LstddeVFVVccwxx/Dqq69SXFy8ybVFqs/rcVNeF1OmTAGgX79+a12zX79+NY9vzMUXX0zXrl258MIL13vMqFGjaNOmDeeddx4zZsxg2bJlvPTSS/zzn//kggsuqNNEbsi6fpav63tzTYceeii33norAP/3f//H5MmTmTx5MoceeigrVqzggAMOoKCggP/7v//jtdde45577qFTp04sW7Zso9de862qqqrmOe+88w5BENChQwdOPPFE0tLSSEpKYsiQIWst+SgrK1vv9xPA119/Xa+vUaQZM2Ywa9asmqnxEP6jzIQJE5g8eTKFhYX89a9/ZeDAgUD4D6afffYZf/rTnxp8LUnNWJSTfknaoNXT49f1FhsbW+dYIMjLy6szVXj+/PlBTExMcNttt9WMpaWlBaNHj17vNVesWBFkZWUFhx9+eJ3xysrKoH///sHuu+9eM7Z6yuedd95Z59iddtopAILx48fXjJWXlwc5OTnBMcccUzO2evrsLrvsstYU5fj4+OCss85a61qrzZ49O4iLiwsuuuiiOtdetmxZkJ+fH5xwwgnr/Rwjr/3UU08F5eXlwcqVK4O333476NGjRxAbGxt8+eWXda577bXXrnWONWuaMWNGEBsbG5x88snrve6mfH3Xde0NfU7re5szZ07NsZ07dw5iY2OD77//fp3nGDRoUJ3xJUuWBMnJycEhhxxSZ3z27NlBYmJinenko0aNCoDgoYceWqvG1Z/Txt46d+5c53m9evUK9txzz6CoqCgYNWrUBqcI/+1vfwvatm0bzJ8/PwiCdS8zqaysDLKysoJhw4at9Xmmp6cHQPD++++v9xqRtt9++5q627dvH7z77rsbPH7JkiVBUlJSMHz48Hqdf/X0+Ntvvz0oLy8PSkpKgi+++CLYa6+9gvbt2wc//fRTneMjp2I//PDDQWJiYrBo0aKgoqIiaN++fXD99dcHQRCsNT2+qqoqOOecc4KYmJgACEKhULDDDjsEl1566QavsT4NeT2ufs1s7C1yCvnjjz8eAMHkyZPXuvavf/3rICEhYaNf25deeimIj48Pvv766zo1r2tK/7fffhv06tWrTj0XX3xxnZ9d61Of1/2a0+OB4Lrrrqv5eH3T4z/55JMACJ5//vkN1jB48OB6fY0jXxO33XZbAAQZGRnBkUceGbzyyivBs88+G/Tr1y9ISkqq+TkZBOGf+9ttt12dZRTl5eVBt27dAiB44oknNvp1ilReXh4MGTIkyMjICGbPnl0zXlVVVef1sv322wfTpk0LFi1aFOTm5gZjx45t0HUkNX9uRCepRXj00UfZYYcd6oyta1r20KFDSU9Pr/k4Ly+P3NzcOinv7rvvzpgxY2jXrh37778/u+66a50Nqd5//30WL17MqFGj1kqADjroIO644w5WrFhRJ1k67LDD6hy3ww478OWXX3LwwQfXjMXFxdGjR486tax20kknrTVFeeDAgUycOHG9X5NXX32ViooKRo4cWafOpKQkBg8evMHnRhoxYkSdj7t27cozzzyzVnoXmUKvz2uvvUZlZeUGU9ZN+frW59qRbr/9dvbbb7+1xvPy8up83K9fv/WmtGtec/LkyaxatWqt3cY7duzIfvvtt84ZAuuq+9e//vVar5d1WTOxu/fee/nVr35F+/btSUpKYuXKlcyfP5+jjjqqzuZhs2bN4qqrruKee+5Z6/ONFBMTwwUXXMBNN93ETTfdxDnnnENxcTGjR4+u2Q28vtPBn332WVasWFEzM+Hggw/mxRdfXGs38NUef/xxSkpKOOuss+p1/tWuvPJKrrzyypqP09PTmThx4gY3JTv++OO5+OKLefzxx+nSpQvz589f67/haqFQiPvuu4+rrrqKl19+mU8++YS3336bu+++m3/+85+8/PLLNZvrNUR9Xo/XX3/9BpPu1SJ/vkXWvS4bu7NDUVER55xzDldeeSV9+vTZ4LEzZ87k8MMPJy8vj2eeeYacnBw+/PBDbr75ZpYvX77W8pf1ef3119eaYg/wq1/9ql7PX5cePXrQtm1brrzySubNm8egQYPWuUnpP//5zzrJ+/pEzlxZnbpvu+22PPvss8TGxgLhWRk9evTgjjvu4LHHHgPCGyWeeeaZXHjhhVx99dVUVVVxww031PzMb8jyiiAIOPPMM3nnnXd49tln62yAuHpZwJ/+9CeKioro1q0bMTExnHnmmTUzcL7++msuvPBCvvrqK7p3787dd9/NvvvuW+/rS2pebNoltQg77LBDzfrVDWnXrt1aY4mJiaxatarm46eeeoqbb76ZBx54gGuuuYa0tDSOPvpo7rjjDvLz82vWxx533HHrvc7ixYvrNJVZWVl1Hk9ISCAlJWWtnZgTEhLWOeU2Pz9/nWNffvnlemtYXeduu+22zsfr+wvi6oYiNjaW7Ozs9e6O3b59+42ea8GCBQB1dnxe06Z8fetz7UjdunWr1+tlQ+dd87HVyyfW9ZwOHTrUWTcNkJKSss615Pn5+etdMx1pzYZryJAhTJ8+nTfffJPrr7+eadOmccYZZ3D55Zfzyiuv1DRdF1xwAX369OHYY4+tuQ3U6iZ8+fLlFBUV1TRN1157LcuXL+fmm2+uuTXUoYceyumnn84DDzyw0bsHrLZ66u7uu+/OUUcdxc4778wll1yy3tfvgw8+SE5ODkceeWS9zr/aJZdcwimnnEJpaSkffPABf/jDHzjyyCP58ssv1/m9D5CamsqIESN46KGH6Ny5M/vvvz+dO3fe4HU6d+7MeeedV/Px008/zYknnshvf/tbPvroowbVDPV7PXbq1GmD3zerRb4uVn/OkUt7Vlu8ePFaP5fWdPXVVxMfH8+FF15Y81pZvnw5EH7NLF26lMzMTEKhEL/73e8oLi7miy++qPneHDRoENnZ2ZxxxhmMHDmyXn/Q6N+//1rLOYD17lpfH5mZmUyaNIlbbrmF3//+9yxZsoT27dtz9tln84c//KHmj7I9evQgCIKNni/yZ+fqr/H+++9f07BD+OdA//79+eyzz2rGzjjjDBYsWMDNN9/MvffeC4Sb+8svv5zbb7+93t9PQfXylscee4xHHnlkvd8nOTk5NcuYJk2axLhx4/jqq68oLy/nqKOO4pRTTuGVV15h7NixHHnkkfz4448bfU1Iap5c0y5pq5Odnc0999zDzJkzmTVrFrfddhvjx4+vSd9W/0L5t7/9jY8//nidbxtKMDfF/Pnz1zm2vkYkss5nnnlmnTV++OGH9br26oZi55133uDtrOpzP/bVv0BuaPOnTfn6NtW94Dd03jUfW/3fYl2bSc2dO3etRmR9577xxhuJj4/f6Nu6NtxLTU3l8MMPp2/fvtxzzz18//33lJWVcfnll9ccM2XKFD744APatm1b87Z65sPQoUPrNKxxcXHcddddLFq0iK+++oq5c+fy0ksvMXv2bLp27VqvJnJNcXFx7LLLLkybNm2dj3/++ed8/vnnjBw5cq1brm3Mtttuy4ABA9h777257LLLeOCBB/jll1+47rrrNvi8M844gy+++IL//Oc/69yAbmNOOOGEBq0R3xRnnHFGvV4XkWvxV/+hZl1rpb/++uuNpudTpkxh5syZ5Ofn17xWDj/8cCC8hr1t27YUFRUB8MUXX9C7d++11q6v/qNhU35t6qNv376MGzeORYsW8cUXXzBixAhuvPFG7rzzzppjhg0bVq+vceRrZF37BawWBMFafxy98sorWbhwIV9//TUzZ87k/fffZ8mSJaSmprLrrrtu9PNY3bA//PDDPPDAA5xyyikbfU5paSnnnHMO11xzDd27d+f7779nxowZXH755SQnJ/PrX/+aUCi0ztsuSmoZTNolbdU6derEhRdeyBtvvMF7770HwN57702bNm345ptv6jVdtTE8+eST/OY3v6lp9GbNmsX777/PyJEj1/uc4cOHExcXx/Tp0xs8fbypHHjggcTGxnLvvfeu957E0fj6Noa99tqL5ORkHnvssZpdrCH8B4o333xzgzMHIm3q9PggCNb6Q0DHjh3p2bMnhYWFNWPjxo2rs5M0wCuvvMLtt9/OfffdV2dDq9XS0tLo27cvEN6c74033qjT7DRESUkJH3zwAT169Fjn46unUZ955pmbdP5IJ598Mg888AD3338/v/3tb9eboO+1116cccYZFBUVbfCe8PPmzVvnTIrly5czZ84cOnTosNk1r8+mTI/fZptt2H333Xnssce4/PLLa5LgDz74gO+//57Ro0dv8Fz33HNPTcK+2hdffMGll17K9ddfz+DBg0lLSwPCs0mmTJnC8uXLa8aAmkZwU/7A01CrvyciZ06tKRQK0b9/f+6++27GjBlTJwnflOnxe+yxB9tuuy0TJkygsrKy5ms8d+5cvvzyS0466aR11rn6DyazZ8/mqaee4uyzzyY5OXmD1w2CgLPPPpuHH36Yf/7zn/XepPHWW28lISGh5o93q2cTrFixgvT0dMrLyyktLa3XLANJzZNNu6QWYcqUKevcYbh79+5r7XK+IUVFRQwdOpSTTjqJXr16kZ6ezscff8wrr7zCMcccA4QbmL/97W+MGjWKxYsXc9xxx5Gbm8uCBQv48ssvWbBgQc3Ux8ZSWFjI0Ucfzdlnn01RURHXXXcdSUlJXHXVVet9TpcuXbjxxhu5+uqrmTFjBgcddBBt27aloKCAjz76iNTU1Jody7eULl268Pvf/56bbrqJVatWceKJJ5KZmck333zDwoULueGGG7bI1/eHH37ggw8+WGt822233eTmok2bNlxzzTX8/ve/Z+TIkZx44oksWrSIG264gaSkpI2mvat16NBhk5q/Pn36cOGFFzJgwABWrFjBjz/+yBtvvMH7779fc1ssqL1lX6SZM2cCsOuuu9aZpv3WW2/x8ccf069fP4Ig4KOPPuL222/noIMOWquBHDZsGJMmTarzfThw4ECOOOIIdthhBzIzM5k5cyb33nsv06dPX+ftxkpKSnjiiScYOHDgWntUbKrbb7+dPfbYg5tuuokHHnhgvcfVZ831LbfcwnvvvceIESPYaaedSE5O5qeffuLvf/87ixYtWueO3P/5z3/Wuc488o849Xk9dunSZYNr89fn9ttv54ADDuD444/n/PPPp7CwkN/97nf06dOnTtM3a9YsunfvzqhRo2q+FjvttNN6z7vjjjvW2ZNg9OjRHHXUURxwwAFceumlZGdn88EHH3DbbbfRu3fvOvt3NJXVjfC//vWvmlsLdu3alcmTJ/OPf/yDo446im7duhEEAePHj2fp0qUccMABNc/ffvvtG3zNmJgY7r77bk444QSOPPJIzjvvPFasWMFNN91EQkJCnZ/RU6ZM4dlnn2XAgAEkJiby5Zdf8sc//pGePXty00031TnvmWeeySOPPML06dNr/th08cUX8+CDD3LGGWfQt2/fOq+ZxMREdt5557Xq++6777jjjjuYOHFizW3/tt9++5olHhdccAFPPfUUcXFx6/zZIKmFiNIGeJJULxvaPR4I7r///ppjgeCCCy5Y6xydO3eu2Q24pKQkOPfcc4N+/foFGRkZQXJycrD99tsH1113XbBixYo6z5s0aVJw6KGHBllZWUF8fHywzTbbBIceemidXZXXt4P0qFGjgtTU1LVqGTx4cLDjjjvWfLx6p+axY8cGF198cZCTkxMkJiYG++67b/DJJ5/Uee6aO7Wv9vzzzwdDhw4NMjIygsTExKBz587BcccdF7z++usb+MpueJfodV13Xbtkr6+mRx99NNhtt92CpKSkIC0tLdh5552Dhx9+uM4xm/P13djntL63q6++uubYzp07B4ceeuh6z7G+r8sDDzwQ9OvXL0hISAgyMzODI488Mpg6dWqdY9b3339z/OlPfwr23XffICcnJwiFQkFSUlKw/fbbB7fccktQUVGxweeua/f4IAiC9957L9hjjz1qXjt9+vQJ/vznPwdlZWVrnWP1ztuRLrvssqB///5BZmZmEBcXF+Tn5wdHH3108N57762zjtW7na9rV/0NWb17/J/+9Kd1Pn788ccHcXFxwY8//hgEQf1fN2vuHv/BBx8EF1xwQdC/f/8gKysriI2NDXJycoKDDjooePnll+s8d2O7oQdBw16Pm2PChAnBnnvuGSQlJQVZWVnByJEjg4KCgjrHrP4aRn6+67Kh1/+bb74ZHHjggUF+fn6QnJwcbLfddsFll10WLFy4cKM1buy/yY477rjR3eODIAjuueeeoGvXrkFsbGwABA8//HDw3XffBSeeeGLQvXv3IDk5OcjMzAx23333YMyYMRutq76ef/75mp9pmZmZwRFHHLHW9/33338fDBo0KMjKygoSEhKCHj16BH/4wx+C5cuXr3W+1bu/R96VoHPnzvW+m0QQhHeR33fffdf5796nn34a7LnnnkFqamrQt2/fjf57IKl5CwWBc2UkSWpJTjvtNE477bT17s4uSZJaDzeikyRJkiSpmbJplySphTnqqKM2af2zJElqeZweL0mSJElSM2XSLkmSJElSM2XTLkmSJElSM2XTLkmSJElSMxUX7QKag6qqKubOnUt6ejqhUCja5UiSJEmSWrkgCFi2bBkdOnQgJmb9ebpNOzB37lw6duwY7TIkSZIkSVuZOXPmsO222673cZt2ID09HQh/sTIyMqJcjSRJkiSptQgC+KQYnl0Iq6pqx3egmCsHdKzpR9fHph1qpsRnZGTYtEuSJEmSGsXSchhbAFNWAimQAGTEwUm50D2AK2GjS7Rt2iVJkiRJakRBAJOL4enCuun6HhkwIhdSY6G4uH7nsmmXJEmSJKmRLKlO16euqB3LiINT8qB/WsPPZ9MuSZIkSdJmCgJ4twieWQAlEen6nhlwQnW6vils2iVJkiRJ2gyLymHsfPh2Ze1Ym+p0ve8mpOuRbNolSZIkSdoEQQDvVKfrpRHp+t6ZcFwOpGxiuh7Jpl2SJEmSpAZaWAaPFsD3Eel62zg4NR92TG2869i0S5IkSZJUT0EAk5bC+IV10/V9M+HYHEhuhHQ9kk27JEmSJEn1sKA6XZ8Wka5nxcPIPNihEdP1SDbtkiRJkiRtQBDAm0vhuQVQHtSOD2oDx2ZDUiOn65Fs2iVJkiRJWo/CMnhkPvy4qnasXXW63quJ0vVINu2SJEmSJK2hKoA3l8DzC+um60PbwNE5kBiz6edeXracBz97sF7H2rRLkiRJkhRhfik8UgAzItL17HgYlQ/bpWz++Y8adxRvfPtGvY61aZckSZIkiXC6/voSeGEhVFSn6yFgv7ZwZPbmpeuR3p71dr2PbaRLSpIkSZLUcs0rhdtnw7MLahv23AS4vCOckNt4DTvASX1PqvexoSAIgo0f1roVFxeTmZlJUVERGRkZ0S5HkiRJkrSFVAXw6mJ4aVHddH1Ydbqe0ARRd2VVJS9PeZkj+h+x0T7U6fGSJEmSpK3S3FIYMx9mldSO5SWE1653T26668bGxDK4y+B6HWvTLkmSJEnaqlRGpOuVEen6gVlweDuIb0YLyW3aJUmSJElbjZ9Lwun6nNLasfbV6XrXJkzXN5VNuyRJkiSp1auoglcWw38Xh9exA8SEYHhbOLSZpeuRbNolSZIkSa3anOp0/eeIdL1DIpyWD52ToldXfdi0S5IkSZJapYqqcLL+yhrp+kFZcGgWxDXTdD2STbskSZIkqdWZVZ2uz41I17dNDK9d79TM0/VINu2SJEmSpFajoiq8K/yrS+qm64dmhRP2lpCuR7JplyRJkiS1CjNXhdP1eWW1Yx2r165v24LS9Ug27ZIkSZKkFq28Cv6zCCYshupwndgQHNYOhmeF32+pbNolSZIkSS3WjOp0vSAiXe+cFF67vk1i9OpqLDbtkiRJkqQWp6wKXlgIbyypTdfjItL1mBacrkeyaZckSZIktSg/roRHCqAwIl3vUp2ud2gF6Xokm3ZJkiRJUotQWp2uv7lGun5ENhzQtvWk65Fs2iVJkiRJzd60lfDofFhQXjvWLRlG5UF+K0vXI9m0S5IkSZKardIqeG4BTFxaOxYfgqOyYb9Wmq5HsmmXJEmSJDVL362AsQWwMCJd754cXruelxC9urYkm3ZJkiRJUrNSUgnjF8KkpbVj8SE4OgeGtmn96Xokm3ZJkiRJUrPxbXW6vigiXe+ZDCPzIXcrSdcj2bRLkiRJkqKupBKeWQDvFNWOJcTAMdkwpA2EtqJ0PZJNuyRJkiQpqqaugLHzYUlF7dj2KTAyD7K3wnQ9kk27JEmSJCkqVlan6+9FpOuJMXBcDuybufWm65Fs2iVJkiRJW9zXy+GxAlgaka7vkAKn5kO7+OjV1dzYtEuSJEmStpiVlfB0IUwurh1Lqk7X9zFdX4tNuyRJkiRpi/hyOTxeAEUR6fqOqXBKHmSZrq+TTbskSZIkqUmtqISnCuHDNdL1E3JhYMbG0/U5RXO45JVLWFm+ktv3v53++f2btuBmxKZdkiRJktRkPl8GTxRCcUS63qc6XW9bz3T9nJfOYcL0CQQE/Pj0j/x48Y9NU2wzZNMuSZIkSWp0yytgXCF8vKx2LCUWRuTAHvVI1yMtXrWYqqCKgIClJUsbvdbmLCbaBUiSJEmSWpfPlsH1M+s27P3S4LrOsOcmbDb3pwP+RHZKNqnxqfzfIf/XqLU2dybtkiRJkqRGsawCniyET9dI13+VC7unb/rO8Pt23peCywsACG1l28vbtEuSJEmSNksQhBv1JwtheWXt+E5pcHIeZDRC57m1Neur2bRLkiRJkjZZcQU8UQCfL68dS42FE3NhwGak6wqzaZckSZIkNVgQwEfLwrdyWxGRru+SHm7YGyNdl027JEmSJKmBiirg8QL4MiJdT4+FE/Ng1/To1dUa2bRLkiRJkuolCODDYnhqAayMSNcHpIc3m0u3w2x0fkklSZIkSRu1tBweK4CvV9SOpceGN5rb2XS9ydi0S5IkSZLWKwhgcjE8XQirqmrHd88Ip+upsdGrbWtg0y5JkiRJWqcl5TC2AKZGpOsZcXBKHvRPi15dWxObdkmSJElSHUEA7xbBMwugJCJd3zMDTjBd36Js2iVJkiRJNRaVw9j58O3K2rE21el6X9P1Lc6mXZIkSZJEEMA71el6aUS6PjATjs+BFNP1qLBplyRJkqSt3MKy8Nr17yLS9bZxcGo+7Jgavbpk0y5JkiRJW60ggElLYfzCuun6PplwXA4km65HnU27JEmSJG2FFpTBowUwLSJdz4qHU/Ogt+l6s2HTLkmSJElbkSCAN5fC8wuhLCJdH9QGjs2GJNP1ZsWmXZIkSZK2EoVl8Mh8+HFV7Vi7eBiZB71M15slm3ZJkiRJauWqAnhzSThdLw9qx4e0gWNyIDEmaqVpI2zaJUmSJKkVKyiDMfNhRkS6nh0Po/Jhu5To1aX6sWmXJEmSpFaoKoDXl8ALC6GiOl0PAUPbwlHZpusthU27JEmSJLUy80rD6frMktqx3ITw2vWepustik27JEmSJLUSVQG8uhheWlQ3XR/WFo7MhgTT9RbHpl2SJEmSWoG51en6rIh0PS8hvHa9e3L06tLmsWmXJEmSpBasMiJdr4xI1w/IgiPaQbzpeotm0y5JkiRJLdTPJeF0fU5p7Vj76nS9q+l6q2DTLkmSJEktTEUVvLIY/rs4vI4dwun68Cw4zHS9VbFplyRJkqQWZE51uv5zRLreIRFG5UEX0/VWx6ZdkiRJklqAiip4eTH8LyJdjwnBQVlwaBbEma63SjbtkiRJktTMzapO1+dGpOvbJobXrndKil5dano27ZIkSZLUTFVUhXeFf3VJ3XT9kCw42HR9q2DTLkmSJEnN0MxV4XR9XlntWMfqdL2j6fpWw6ZdkiRJDTf7GSiYCB2Phvz9o12N1KqUV8F/FsGExVAdrhMbgkPbhdevx4aiWp62MJt2SZIkNcz8N+Hd4yEUCz/cB4dOgcwdol2V1CrMWAWPzIf5Eel6pyQ4LR+2SYxeXYoem3ZJkiQ1TPG34f8PKsP/v+wHm3ZpM5VXwQsL4fUltel6XCh8z/UDTde3ajbtkiRJapiOx8I3f4SVP0NmH8jbL9oVSS3a9Op0vSAiXe+SFF673sF0fatn0y5JkqSGSc6Hw6bBipmQ3gNi4qNdkdQilVXB8wvhzTXS9SOy4YC24V3iJZt2SZIkNVxcslPipc3ww8pwur6gvHasWzKMyoN803VFsGmXJEmSpC2ktAqeWwATl9aOxYfgyGwYZrqudbBplyRJkqQt4PuV8Oh8WBiRrndPDq9dz0uIXl1q3mzaJUmSJKkJlVTC+IUwaWntWHwIjs6BoW1M17VhNu2SJEmS1ES+XQFjC2BRRLreMxlG5kOu6brqwaZdkiRJkhpZSSU8swDeKaodS4iBY7JhSBsIma6rnmzaJUmSJKkRTV0BY+fDkorase1SwjvDZ5uuq4Fs2iVJkiSpEayqhH8vgPci0vXEGDg2BwZlmq5r09i0S5IkSdJmmrI8vHZ9aUS63islvHa9XXz06lLLZ9MuSZIkSZtoZSU8XQiTi2vHkmLguBzYx3RdjcCmXZIkSZI2wVfL4bECKIpI13unwql5kGW6rkZi0y5JkiRJDbCiEp4qhA/XSNdPyIWBGabralw27ZIkSZJUT18sg8cLoTgiXe+TCqfkQVvTdTUBm3ZJkiRJ2ojlFTCuED5eVjuWEgsn5MCeputqQjbtkiRJkrQBny2DJwpgWWXtWL80ODkX2piuq4nZtEuSJEnSOiyrgCcL4dM10vVf5cLu6abr2jJs2iVJkiQpQhCEG/UnC2F5RLq+UxqcnAcZdlHagny5SZIkSVK14orwVPjPl9eOpcbCibkwwHRdUWDTLkmSJGmrFwThTebGFYZv6bbaLunhht10XdHiS0+SJEnSVq2oAh4vgC8j0vW0WDgpD3ZNj15dEti0S5IkSdpKBQF8WAxPLYCVEen6gPTwZnPpdktqBnwZSpIkSdrqLC2Hxwrg6xW1Y+nV6fouputqRmzaJUmSJG01ggAmF8PThbCqqnZ89wwYkQNpdkhqZnxJSpIkSdoqLCmHsQUwNSJdz4iDU/Kgf1r06pI2xKZdkiRJUqsWBPBeEfx7AZREpOt7ZsAJueFbuknNlU27JEmSpFZrcTk8Oh++XVk71iYOTs6DfqbragFs2iVJkiS1OkEA7xTBMwugNCJdH5gJx+dAium6WgibdkmSJEmtysKy8Nr179ZI10/Ngz6m62phbNolSZIktQpBAJOWwviFddP1fTLhuBxINl1XC2TTLkmSJKnFW1AGjxbAtIh0vW0cjMyH3qnRq0vaXDbtkiRJklqsIICJS+G5hVAWka4PagPHZkOS6bpaOJt2SZIkSS1SYVl4Z/gfVtWOtYuHkXnQy3RdrYRNuyRJkqQWpSqAN5fA8wuhPKgdH9IGjjZdVytj0y5JkiSpxSgogzHzYUZEup4dD6PyYbuU6NUlNRWbdkmSJEnNXlUAry+BF9dI1/drC0dlQ2JM9GqTmlJUX9oVFRX84Q9/oGvXriQnJ9OtWzduvPFGqqpqd5AIgoDrr7+eDh06kJyczJAhQ5g6dWqd85SWlnLRRReRnZ1NamoqRxxxBD///POW/nQkSZIkNYF5pXDHbHh2QW3DnpsAl3eEEbk27Grdovryvv3227nvvvv4+9//zrfffssdd9zBn/70J/72t7/VHHPHHXdw11138fe//52PP/6Y/Px8DjjgAJYtW1ZzzOjRo3nuuecYN24c7777LsuXL+ewww6jsrIyGp+WJEmSpEZQFcAri+DmWfBTSXgsBOzfFq7pDD2dDq+tQCgIgmDjhzWNww47jLy8PB588MGasWOPPZaUlBTGjh1LEAR06NCB0aNHc+WVVwLhVD0vL4/bb7+dc845h6KiInJychg7diwjRowAYO7cuXTs2JGXX36Z4cOHb7SO4uJiMjMzKSoqIiMjo2k+WUmSJEn1Nrc0vHZ9VkntWF5CeO169+R1P2fiTxN5a+ZbHL794QzoMGDLFCptovr2oVFN2vfZZx/eeOMNpk2bBsCXX37Ju+++yyGHHALATz/9xPz58znwwANrnpOYmMjgwYN5//33Afj0008pLy+vc0yHDh3o06dPzTFrKi0tpbi4uM6bJEmSpOirDODl6nR9VkS6fmBWOF1fX8M+ec5khj06jJvfuZmBDw7kx8U/brGapaYU1Y3orrzySoqKiujVqxexsbFUVlZyyy23cOKJJwIwf/58APLy8uo8Ly8vj1mzZtUck5CQQNu2bdc6ZvXz13Tbbbdxww03NPanI0mSJGkz/FwSTtfnlNaO5Ven693W06yv9um8TwkICIKAqqCKrwu+pkdWj6YtWNoCopq0P/XUUzz22GM88cQTfPbZZzzyyCP8+c9/5pFHHqlzXCgUqvNxEARrja1pQ8dcddVVFBUV1bzNmTNn8z4RSZIkSZusogpeWgi3zq5t2EPAQVnwh84bb9gBjtj+CNoltwOgc2ZnhnQZ0mT1SltSVJP23/72t/zud7/jV7/6FQB9+/Zl1qxZ3HbbbYwaNYr8/HwgnKa3b9++5nmFhYU16Xt+fj5lZWUsWbKkTtpeWFjIwIED13ndxMREEhMTm+rTkiRJklRPc6rT9Z8j0vUOiTAqD7rUo1lfrVNmJ6ZdNI2phVPZuf3OpCWkNX6xUhRENWlfuXIlMTF1S4iNja255VvXrl3Jz8/ntddeq3m8rKyMSZMm1TTku+66K/Hx8XWOmTdvHlOmTFlv0y5JkiQpuiqqwvdcv3V2bcMeE4JD2sHVnRrWsK+WlZzFvp33tWFXqxLVpP3www/nlltuoVOnTuy44458/vnn3HXXXZxxxhlAeFr86NGjufXWW+nZsyc9e/bk1ltvJSUlhZNOOgmAzMxMzjzzTC677DLatWtHVlYWl19+OX379mX//feP5qcnSZIkaR1mlcAj8+GXiHR9m8Tw2vXOSdGrS2qOotq0/+1vf+Oaa67h/PPPp7CwkA4dOnDOOedw7bXX1hxzxRVXsGrVKs4//3yWLFnCHnvswYQJE0hPT6855u677yYuLo4TTjiBVatWMWzYMMaMGUNsbGw0Pi1JkiRJ61BRBS8tgleXhO/BDtXpehYcnAVxUZ0HLDVPUb1Pe3PhfdolSZKkpjVzVXjt+ryy2rFtE+G0fOhouq6tUH370Kgm7ZIkSZJat/Iq+M8imLAYVqeFsavT9Xbh9yWtn027JEmSpCYxY1V47fr8iHS9U1J4Z/htTdelerFplyRJktSoyqvghYXw+pLadD0uBIe1gwOzTNelhrBplyRJktRoplen6wUR6XqXpPDO8B0So1eX1FLZtEuSJEnabGVV8PxCeHONdP2IbDigbXiXeEkNZ9MuSZIkabP8sDKcri8orx3rWp2utzddlzaLTbskSaq/WbPgkktgxQr485+hf/9oVyQpikqr4LkFMHFp7Vh8dbq+v+m61Chs2iVJUv2dcw68/joEARx3HPzwQ7QrkhQl36+ER+fDwoh0vXtyOF3PS4heXVJrY9MuSZLqb8kSqKoKN+1Ll0a7GklRUFIJ4xfCpKW1Y/EhODoHhrYxXZcam027JEmqvzvvhGOOgZIS+Mc/ol2NpC3suxXwaAEsikjXeybDyHzINV2XmoRNuyRJqr999oHCwmhXIWkLK6mEZxbAO0W1YwkxcEw2DGkDIdP1Fu/Dnz/k0S8fZZf2u3DGzmcQ8j9qs2HTLkmStDkWvA+fXgJxabDH/ZDeI9oVSY3qmxXhtetLKmrHtkuBUXmQbbreKhQsL2DII0MoryynMqgkKS6Jk/udHO2yVM2mXZIkaXO8NwJWzg1HjR+fD/tNiHZFUqNYVQn/XgDvRaTridXp+uA2puutyZziOZRUlAAQE4rh24XfRrkiRbJplyRJ2hyVJUAVBDHV70st35TlMLYAlkak671SwmvX28VHry41jZ3yd2Jol6FMnDmRNkltGNl/ZLRLUgSbdkmSpM2x58Pw0TkQlwq73hPtaqTNsrISni6EycW1Y0kxcFwO7JNput5axcXE8frI1/lh0Q9sk7ENaQlp0S5JEWzaJUmSNsc2h8HRv0S7CmmzfbUcHiuAooh0vXcqnJoHWabrrV5MKIbts7ePdhlaB5t2SZIkaSu2ohKeKoQP10jXT8iFgRmm61K02bRLkiRJW6kvlsHjhVAcka73SYVT8qCt6brULNi0S5IkSVuZ5RUwrhA+XlY7llydru9lui41KzbtkiRJ0lbks2XwRAEsq6wd65cGJ+dCG9N1qdmxaZckSZK2Assq4MlC+DQiXU+JhV/lwu7pputSc2XTLkmSJLViQRBu1J8shOUR6Xr/NDg5DzLtCKRmzW9RSZIkqZUqrghPhf98ee1YaiycmAsDTNelFsGmXZIkSWplggA+qU7XV0Sk6zunwUl5kGEXILUYfrtKkiRJrUhRBTxeAF9GpOtp1en6rqbrUotj0y5JkiS1AkEAHxbDUwtgZUS6PiA9vNlcur/5Sy2S37qSJElSC7e0HB4vhK8i0vX02PBU+F3So1eXpM1n0y5JkiS1UEEAk4vh32uk67tnwIgcSPO3fanF89tYkiRJaoGWlMNjBTBlRe1YRhycnAs7ma5LrYZNuyRJktSCBAG8XwxPF0JJVe34nhlwQm74lm6SWg+bdkmSJKmFWFwOYwvgm4h0vU0cnJwH/dKiV5ekpmPTLkmSJDVzQQDvFMGzC+qm6wMz4fgcSDFdl1otm3ZJkiSpGVtUDo/Oh+9W1o61iYNT86CP6brU6tm0S5IkSc1QEMCkpTB+IZRGpOv7ZMJxOZBsui5tFWzaJUmSpGZmYRk8UgDTItL1tnFwaj7smBq9uiRteTbtkiRJUjMRBPDW0nC6XhaRrg9qA8dmQ5LpurTVsWmXJEmSmoHCsvDa9R9W1Y61i4eRedDLdF3aatm0S5IkSVFUFcCbS+D5hVAe1I4PaQNHm65LWz2bdkmSJClKCsrgkfkwPSJdz46HkfmwfUr06pLUfNi0S5IkSVtYVQCvL4EX10jXh7aBo3MgMSZqpUlqZmzaJUmSpC1oXik8WgAzItL1nHgYlQ89TdclrcGmXZIkSdoCqgJ4rTpdr6hO10PAsLZwZDYkmK5LWgebdkmSJKmJzS0Nr12fWVI7lpcQTte7J0evLknNn027JEmS1EQqA3h1Mfx3Ud10/YAsOKIdxJuuS9oIm3ZJkiSpCfxcAo8UwOyIdD2/Ol3vZrouqZ5s2iVJkqRGVBnA/xbBy4vD70M4XT8wCw43XZfUQDbtkiRJUiOZUxJeuz6ntHasfQKclg9dTNclbQKbdkmSJGkzVVTB/xaH0/Wq6nQ9JgTD28Jh7SDOdF3SJrJplyRJkjbD7BIYMx9+iUjXOySG0/XOSdGrS1LrYNMuSZIkbYKKKvjvYnhljXT9kCw4OMt0XVLjsGmXJEmSGmjmqvDO8HMj0vVtq9P1jqbrkhqRTbskSZJUT+VV8J9FMGExVIfrxITg0Cw4yHRdUhOwaZckSZLqYcaq8M7w88tqxzolwag82NZ0XVITsWmXJEmSNqC8Cl5cBK9FpOuxofCu8MOzwu9LUlOxaZckSZLWY3p1ul4Qka53TgqvXe+QGL26JG09bNolSZKkNZRVwQsL4Y0ltel6XAgObwcHZoXXsUvSlmDTLkmSJEX4YSU8WgCFEel61yQYlQ/tTdclbWE27ZIkSRJQWgXPLYC3ltZN14/Mhv3bmq5Lig6bdkmSJG31pq0Mr11fWF471j05nK7nJUSvLkmyaZckSdJWq7QKxlen66vFh+CobNjPdF1SM2DTLkmSpK3SdyvCa9cXRaTrParT9VzTdUnNhE27JEmStiollfDsQnh7ae1YQgwcnQ1D20DIdF1SM2LTLkmSpK3GNyvg0fmwpKJ2bLsUGJkHOabrkpohm3ZJkiS1eqsq4d8L4L2i2rHEGDgmGwa3MV2X1HzZtEuSJKlVm7IcHiuom673SoFT8yDbdF1SM2fTLkmSpFZpZXW6/v4a6fpxObBvpum6pJbBpl2SJEmtzlfL4fECWBqRru+QAqfmQ7v46NUlSQ1l0y5JkqRWY0UlPF0IHxTXjiXFwPE5sLfpuqQWyKZdkiRJrcKX1WvXiyPS9R1Tw2vX25quS2qhbNolSZLUoi2vgHGF8PGy2rHkGDghF/bKMF2X1LLZtEuSJKnF+nxZeO36ssrasb6pcEoetDFdl9QK2LRLkiSpxVlWna5/EpGup8TCiBzYw3RdUiti0y5JkqQW5dNl8EQBLI9I1/unwcl5kOlvt5JaGX+sSZIkqUUoroAnC+GziHQ9NRZ+lQu7pZuuS2qdbNolSZLUrAVBeBr8k4XhW7qttnManJQHGf5GK6kV80ecJEmSmq3iivBGc18srx1Li4UTc2FX03VJWwGbdkmSJDU7QQAfLQtvNrcyIl0fkB6eDp/ub7HNUnFpMclxycTHunW/1Fhiol2AJEmSFGlpOfxjLjw0r7ZhT4+FczrA2R1s2JurK167gsw/ZtL+zvZ8Mf+LaJcjtRo27ZIkSWoWggAmF8ENs+CriOnwu6XD9V1gl/SolaaNWLxqMX96/08ALClZwp2T74xyRVLr4d8pJUmSFHVLyuGxApiyonYsIw5OzoWdbNabvdT4VDISM1heFv5rS8eMjlGuSGo9bNolSZIUNUEA7xfD04VQUlU7vkcGjMgN39JNzV9iXCKvnfoad02+i86Znblm0DXRLklqNUJBEATRLiLaiouLyczMpKioiIyMjGiXI0mStFVYXA5jC+CbiHQ9Mw5OyYN+adGrS5K2hPr2oSbtkiRJ2qKCAN4tgmcW1E3XB2bC8TmQYrouSTVs2iVJkrTFLCqHR+fDdytrx9rEwal50Md0XZLWYtMuSZKkJhcE8HYRPLsASiPS9b2r0/Vk03VJWiebdkmSJDWphWXwSAFMi0jX28bBqfmwY2r06pIUBRWrICYBYvxLXX3ZtEuSJKlJBAG8tRTGL4SyiHR930w4LgeS/J1d2rpMuQW+uhYS2sJ+EyBrl2hX1CLYtEuSJKnRFZaF167/sKp2rF18eO36Dqbr0tanYgV8dQ0QQNkS+OZ22OepaFfVIti0S5IkqdFUBTBxKTy3AMojbiw8pA0cnW26Lm21YhIhoQ2UFYU/TsqPajktiU27JEmSGkVBGTwyH6ZHpOvZ8TAyH7ZPiV5dkpqBmDgY8ko4YU/pAP1vjnZFLYZNuyRJkjZLVQBvLIEXFtZN14e2gaNzIDEmaqVJak6yd4dBz0a7ihbHpl2SJEmbbF4pPFoAMyLS9Zx4GJUPPU3XJWmz2bRLkiSpwaoCeG0JvLgQKqrT9RCwX1s4KhsSTNclqVHYtEuSJKlB5paG167PLKkdy02A0/Khe3L06pKk1simXZIktWj3fHAPT099moN6HMQ1g64hFApFu6RWqyqAVxfDS4vqpuv7t4UjsyHedF2SGp1NuyRJarHenf0ul756KQCTf55Mv7x+HNXrqOgW1Ur9XAKPFMDsiHQ9PyG8dr2b6bokNRmbdkmS1GItLVm6wY+1+SoDeGUx/HdR+H0Ip+sHZsHh7UzXJamp2bRLkqQWa3j34RzX+zie+/Y59uu6HyfseEK0S2pV5pSE167PKa0da1+9dr2L6bokbRE27ZIkqcWKj43n38f/myAIXMveiCqq4H+L4eXF4XXsADEhGN4WDmsHcabrkrTF2LRLkqQWz4a98cyuTtd/jkjXOySG0/XOSdGrS5K2VjbtkiRJoqIK/rs4vH49Ml0/OAsOyTJdl6RosWmXJEnays1cFd4Zfm5Eur5tdbre0XRdkqLKpl2SJGkrVV4Vvuf6q4uhOlwnJgSHZsFBpuuS1CzYtEuSJG2FfloVXrs+r6x2rGN1ur6t6bokNRs27ZIkSS1EwfICrnjtCopKi7hp6E30zevb4HOUV8GLi+C1iHQ9NhTeFX54Vvh9SVLzYdMuSZLUQlzw8gU8/93zBAR8VfAVMy6Z0aDnT69O1wsi0vXOSeF0vUNiIxcrSWoUNu2SJEktRMHyAqqCKgICFqxcUO/nlVXBCwvhjSW16XpcCA5vBwdmhdexS5KaJ7cXkSRJaiFuGXYLmUmZJMQkcM/we+r1nB9Wwk2z4PWIhr1rEvyhMxzUzoZdkpo7k3ZJkqQWYlDnQSy6YhFVQRVxMRv+Na60Cp5fCBPXSNePzIb929qsS1JLYdMuSZLUgsSEYogJbXiy5LSV4bXrC8trx7olw6g8yHftuiS1KDbtkiRJrURpFYxfAG8trR2LD8FR2bCf6boktUg27ZIkSa3Adyvg0QJYFJGu90iGUfmQmxC9uiRJmyfqG9H98ssvnHLKKbRr146UlBR22mknPv3005rHgyDg+uuvp0OHDiQnJzNkyBCmTp1a5xylpaVcdNFFZGdnk5qayhFHHMHPP/+8pT8VSZKkLa6kEh4vgLt/rm3YE2JgRC5c3tGGXZJauqg27UuWLGHvvfcmPj6e//3vf3zzzTfceeedtGnTpuaYO+64g7vuuou///3vfPzxx+Tn53PAAQewbNmymmNGjx7Nc889x7hx43j33XdZvnw5hx12GJWVlVH4rCRJkraMb1fADbPg7aW1Y9ulwLWdw9PhQ06Hl6QWLxQEQbDxw5rG7373O9577z3eeeeddT4eBAEdOnRg9OjRXHnllUA4Vc/Ly+P222/nnHPOoaioiJycHMaOHcuIESMAmDt3Lh07duTll19m+PDhG62juLiYzMxMioqKyMjIaLxPUJIkqQmsqoRnFsC7RbVjiTFwTDYMbmOzLkktQX370Kgm7S+++CIDBgzg+OOPJzc3l5133pn777+/5vGffvqJ+fPnc+CBB9aMJSYmMnjwYN5//30APv30U8rLy+sc06FDB/r06VNzzJpKS0spLi6u8yZJktQSTF0BN8ys27D3qk7Xh5iuS1KrE9WmfcaMGdx777307NmTV199lXPPPZeLL76YRx99FID58+cDkJeXV+d5eXl5NY/Nnz+fhIQE2rZtu95j1nTbbbeRmZlZ89axY8fG/tQkSZIa1crK8G3c/vozLKkIjyXGwMl5MHpbyHbtuiS1SlHdPb6qqooBAwZw6623ArDzzjszdepU7r33XkaOHFlzXGiNPxkHQbDW2Jo2dMxVV13Fb37zm5qPi4uLbdwlSVKz9fVyeKwAllbUju2QAqfmQ7v46NUlSWp6UU3a27dvT+/eveuM7bDDDsyePRuA/Px8gLUS88LCwpr0PT8/n7KyMpYsWbLeY9aUmJhIRkZGnTdJkqTmZkUlPDwP/v5LbcOeFAOn5sEl29qwS9LWIKpN+9577833339fZ2zatGl07twZgK5du5Kfn89rr71W83hZWRmTJk1i4MCBAOy6667Ex8fXOWbevHlMmTKl5hhJkqSW5svlcP1M+CBi650dU+H6LrBPG9euS9LWIqrT4y+99FIGDhzIrbfeygknnMBHH33Ev/71L/71r38B4Wnxo0eP5tZbb6Vnz5707NmTW2+9lZSUFE466SQAMjMzOfPMM7nsssto164dWVlZXH755fTt25f9998/mp+eJEn1s6oAVvwEbXeBWBcmb+1WVMK4QvgoollPjoETcmGvDJt1SdraRLVp32233Xjuuee46qqruPHGG+natSv33HMPJ598cs0xV1xxBatWreL8889nyZIl7LHHHkyYMIH09PSaY+6++27i4uI44YQTWLVqFcOGDWPMmDHExsZG49OSJKn+Fn0Crw+CylXQbk844B2Iieo/z4qiz5fB4wWwrLJ2rG8qnJIHbZwKL0lbpajep7258D7tkqSo+fQ3MO2vEFR3aQd/CW37RbcmbXHLKsLp+ifLasdSYmFEDuxhui5JrVJ9+1D/lC9JUjRl7VrdsMdAfAakdo52RdrCPl0GT66RrvdPC9/KLdPf1CRpq+c/BZIkRVOXk8Lr2Jd+DV1OhoTMaFekLWRZBTxRCJ9FpOupsfCrXNgt3XRdkhRm0y5JUjSFQtDp+PCbtgpBEJ4G/2RheNO51XZOg5PyIMPfziRJEfxnQZIkaQsprghvNPfF8tqxtFg4MRd2NV2XJK3DJt2n/Z133uGUU05hr7324pdffgFg7NixvPvuu41anCRJUmsQBPBhMVw3s27Dvmt6+L7rA9xsTpK0Hg1u2p999lmGDx9OcnIyn3/+OaWlpQAsW7aMW2+9tdELlCRJasmWlsM/5sJD82Bl9XT49Fg4pwP8ugOkO+9RkrQBDW7ab775Zu677z7uv/9+4uNrbxg6cOBAPvvss0YtTpIkqaUKAphcBDfMgq8i0vXdqtP1XdKjVpokqQVp8N92v//+ewYNGrTWeEZGBkuXLm2MmiRJklq0JeXwWAFMWVE7lhEHJ+XCzjbrkqQGaHDT3r59e3788Ue6dOlSZ/zdd9+lW7dujVWXJElSixME8H4xPF0IJVW143tkwIjc8C3dJElqiAY37eeccw6XXHIJDz30EKFQiLlz5zJ58mQuv/xyrr322qaoUZIkqdlbXJ2uT41I1zPj4OQ86J8WvbokSS1bg5v2K664gqKiIoYOHUpJSQmDBg0iMTGRyy+/nAsvvLApapQkSWq2ggDeLYJnFtRN1/fKgBNyIcV0vdkKgoB3Z79LQmwCe2y7R7TLkaR1CgVBEGzKE1euXMk333xDVVUVvXv3Ji2t5f4Jubi4mMzMTIqKisjIyIh2OZIkqYVYVA5j58O3K2vH2sTBKXnQt+X+arTVuPSVS7nnw3sAuHnozVw96OroFiRpq1LfPrTBu8efccYZLFu2jJSUFAYMGMDuu+9OWloaK1as4IwzztisoiVJklqCIIBJS+GGmXUb9r0z4bouNuwtxdivxta8P+bLMdErRJI2oMFN+yOPPMKqVavWGl+1ahWPPvpooxQlSZLUXC0sg7t/hicKoLR6OnzbOLh4WxiZ73T4lmRIlyE17+/XZb/oFSJJG1DvNe3FxcUEQUAQBCxbtoykpKSaxyorK3n55ZfJzc1tkiIlSZKiLQjgraUwfiGURaxd3zcTjsuBJJv1Fmfs0WM5oNsBJMQmcEq/U6JdjiStU72b9jZt2hAKhQiFQmy33XZrPR4KhbjhhhsatThJkqTmoLAMHp0PP0RMNsyKh5F5sENq9OrS5kmOT+acAedEuwxJ2qB6N+0TJ04kCAL2228/nn32WbKysmoeS0hIoHPnznTo0KFJipQkSYqGIIA3l8JzC6A8YuvewW3gmGzTdUlS06t30z548GAAfvrpJzp27EhMTIOXw0uSJLUYBWXwyHyYHpGuZ8fDqXnQy3RdkrSFNPg+7Z07dwbCt3ybPXs2ZWVldR7v169f41QmSZIUBVUBvLEEXlhYN10f2gaOzoFEcwtJ0hbU4KZ9wYIFnH766fzvf/9b5+OVlZWbXZQkSVI0zC+FRwpgRkS6nhMf3hV+u5To1SVJ2no1+G/Fo0ePZsmSJXzwwQckJyfzyiuv8Mgjj9CzZ09efPHFpqhRkiSpSVUF8OpiuGlWbcMeAoa1hWu62LBLkqKnwUn7m2++yQsvvMBuu+1GTEwMnTt35oADDiAjI4PbbruNQw89tCnqlCRJahJzS8Nr12eW1I7lJsCoPOhhsy5JirIGN+0rVqyouR97VlYWCxYsYLvttqNv37589tlnjV6gJElSU1idrr+0CCqq166HgP3bwhHZkODadUlSM9Dgpn377bfn+++/p0uXLuy0007885//pEuXLtx33320b9++KWqUJElqVL9Up+uzItL1vAQ4LR+6JUevLkmS1tTgpn306NHMmzcPgOuuu47hw4fz+OOPk5CQwJgxYxq7PkmSpEZTGcAri+G/i8LvQzhdPzALDm8H8abrkqRmJhQEQbDxw9Zv5cqVfPfdd3Tq1Ins7OzGqmuLKi4uJjMzk6KiIjIyMqJdjiRJagI/l8CY+TCntHasfQKMyoeupuuSpC2svn1og5P2NaWkpLDLLrts7mkkSZKaREUV/G8xvLw4vI4dICYEw9vCoabrkqRmrsFNexAEPPPMM0ycOJHCwkKqqqrqPD5+/PhGK06SJGlzzC4Jr13/OSJd75AYXrveOSl6dUmSVF8NbtovueQS/vWvfzF06FDy8vIIhUJNUZckSdImq6iC/y4Or1+PTNcPzoJDsiDOdF2S1EI0uGl/7LHHGD9+PIccckhT1CNJklqI0opSQqEQCbEJ0S6ljlnVa9fnRqTr21an6x1N1yVJLUyD/86cmZlJt27dmqIWSZLUQjzx9RNk3JZB5h8zee7b56JdDgDlVfDcAvjj7NqGPSYU3hX+qk427JKklqnBTfv111/PDTfcwKpVq5qiHkmS1AJc8doVlFWVUVJRwlVvXBXtcvhpFdwyq+50+I6JcHUnOCzb6fCSpJarwdPjjz/+eJ588klyc3Pp0qUL8fHxdR7/7LPPGq04SZLUPHVI78D85fMB2DZj26jVUV4FLy6C1xbD6nvYxobgsHYwPCv8viRJLVmDm/bTTjuNTz/9lFNOOcWN6CRJ2ko9ffzTXDPxGuJi4rh56M1RqWH6qvDO8AVltWOdk8L3Xd8mMSolSZLU6EJBEAQbP6xWamoqr776Kvvss09T1bTF1fem9pIkKfrKquCFhfDGktp0Pa567fqBWeF17JIkNXf17UMbnLR37NjRxlaSJEXFDyvh0QIojEjXuySFd4Zvb7ouSWqFGrwty5133skVV1zBzJkzm6AcSZKktZVWwVOFcOec2oY9LgTH5sCVnWzYJUmtV4OT9lNOOYWVK1fSvXt3UlJS1tqIbvHixY1WnCRJ0rSV4bXrC8trx7olw6g8yLdZlyS1cg1u2u+5554mKEOSJKmu0ioYvwDeWlo7Fh+Co7Jhv7auXZckbR0a3LSPGjWqKeqQJEmq8d2K8Nr1RRHpeo9kGJkPeQnRq0uSpC2tXk17cXFxzeZzxcXFGzzWTeokSQ2yfCZUlkBmr80/1/d/gx/+Ae32gN3vg9ik+j0vqIIVsyC5ff2foyZRUgnPLoS3l9aOxYfgmBwY2ga806wkaWtTr6a9bdu2zJs3j9zcXNq0abPOe7MHQUAoFKKysrLRi5QktVLTH4YPzwQC2PFq6L8Z9/su+g4+vTj8fvH30HYn6DV648+rKoc39ocFb0NSPgz/AFI7b3od2mTfVqfriyPS9Z7V6XruFkzXF6xYwNFPHc3XhV9z+V6Xc83ga7bcxSVJWkO9mvY333yTrKwsACZOnNikBUmStiLT/kbNnba//8vmNe1VEfcAIwRVpfV73sIPwg07QEkh/PQY9Ll60+tQg62qhGcXwDtFtWOJMXBMNgxus+XT9b98+Bc++PkDKoNKrn3rWk7qexLds7pv2SIkSapWr6Z98ODBNe937dqVjh07rpW2B0HAnDlzGrc6SVLr1nYXWPJFuCtr03/zztWmL+z4B/jh/yBrN+h5Xv2el9oJQvFAFQSVkLHd5tWhBpm6AsbOhyUVtWPbp8DIPMiO0tr15Lhkguo/JoUIkRjnFvWSpOgJBUEQNOQJsbGxNVPlIy1atIjc3NwWOT2+uLiYzMxMioqKXJMvSVtSxSqY9neoXAnbXQiJ7aJTR8FEmPlEeC189zNdOL0FrKyEfy+A99dI14/LgX0zo/ufYEXZCs7773l8Of9LLt3rUk7b6bToFSNJarXq24c2ePf41WvX17R8+XKSkty8R5LUAHHJ0Pu30a4C8oaG37RFfL0cHiuApRHp+g4pcGo+tIuPXl2rpSak8ujRj0a7DEmSgAY07b/5zW8ACIVCXHPNNaSkpNQ8VllZyYcffshOO+3U6AVKkqTWYWUlPFUIH0TciCYpBo7Pgb2jnK5LktRc1btp//zzz4Fw0v7111+TkFC70CwhIYH+/ftz+eWXN36FkiSpxfuyOl0vjkjXd0yFU/Igqxmk65IkNVf1btpX7xp/+umn85e//MW135IkaaNWVKfrH0ak68kxcEIu7JVhui5J0sY0eE37ww8/XOfj4uJi3nzzTXr16kWvXr0arTBJktSyfb4Mniism673rU7X25iuS5JULw1u2k844QQGDRrEhRdeyKpVqxgwYAAzZ84kCALGjRvHscce2xR1SpKkFmJZBYwrhE+W1Y6lxMKIHNjDdF2SpAaJaegT3n77bfbdd18AnnvuOYIgYOnSpfz1r3/l5ptvbvQCJUlSy/HpMrhhZt2GvX8aXNcZ9nSzOUmSGqzBTXtRURFZWVkAvPLKKxx77LGkpKRw6KGH8sMPPzR6gZIkqflbVgH/nAv/mgvLKsNjqbFwZns4r8P6p8PfNfkuOt3diSPHHUlxafG6D5IkaSvW4OnxHTt2ZPLkyWRlZfHKK68wbtw4AJYsWeJ92iVJ2soEQThVf7IwvOncajunwUl5kLGB3zR+XPwjl024DIBflv3C3z78G1cPurqJK5YkqWVpcNM+evRoTj75ZNLS0ujcuTNDhgwBwtPm+/bt29j1SZKkZqq4Ap4ogM+X146lxsJJubBrulPhJUlqDKEgCIKGPunTTz9l9uzZHHDAAaSlpQHw3//+lzZt2rD33ns3epFNrbi4mMzMTIqKiryVnSRJGxEE8NGy8K3cItP1XdPhxFxIb0AkcNfku7jng3vYuf3OjD16LBmJ/jssSdo61LcP3aSmvbWxaZckqX6WlsPjhfBVRLqeHgsn5oWbdkmSVD/17UPrvRFd7969Wbx4cc3Hv/71r1mwYEHNx4WFhaSkpGxiuZIkqTkLAvigCG6YVbdh3y0drutiwy5JUlOpd9P+3XffUVFRUfPxuHHjWLas9n4uQRBQUlLSuNVJkqSoW1oOf/8FHp4PK6unw2fEwbkd4KwODZsOL0mSGmaT/5ld16z6kDvOSJIiLXgfZjwEbfrBdhdCqMF3GlUUBQFMLoanC2FVVe34HhkwIje86ZwkSWpa/m1cktQ0SgrhjWEQlENQCbEp0OOsaFelelpSDmMLYOqK2rGMODglD/qnRa+u+vhx8Y+c+9K5rCxfyT0H3cPu2+we7ZIkSdpk9W7aQ6HQWkm6ybokab1WzYOq6mVToVhY/mN061G9BAG8WwTPLICSiHR9zww4oYWk6+e+dC5vzXyLgIAR/x7BT6N/inZJkiRtsno37UEQMGzYMOLiwk9ZtWoVhx9+OAkJCQB11rtLkkSbvtDhMJj7EiS0hW5nRLsibcSichg7H75dWTvWpjpd79vM0/VIK8tXEhBQFVSxqmJVtMuRJGmz1Ltpv+666+p8fOSRR651zLHHHrv5FUmSWodQDAx+EVbOgcQciEuOdkVajyCAd6rT9dKIdH3vTDguB1JaQLoe6Z6D7mHEMyNYWb6S+w+/P9rlSJK0WbxPO96nXZLU/JVVlhEfE9/oS9MWlsGjBfB9RLreNg5OzYcdUxv1UpIkKUKj36ddkiRteUEQcNH/LiLp5iR6/q0ns4tmN9J54a0lcOOsug37vpnh+67bsEuS1DzYtEuS1Iz9uPhH/v7R3wkImLl0Jn/78G+bfc4FZXDXz/BkYe10+Kx4GL0tnJIPyS1sOrwkSa2Zt3yTJKkZy0zKJC4mjsqqSqqCKnJTczf5XEEAby6F5xZAecTiuEFt4NhsSLJZlySp2bFplySpGctNzeX5Ec/z94//Tt/cvlyy5yWbdJ7CMnhkPvwYsZl6u3gYmQe9nAovSVKz5UZ0uBGdJLUWt75zK//38f+xxzZ78OjRj5KW0ILuU9ZEqgJ4cwk8v7Buuj60DRydA4kulJMkKSrq24fWK2n/61//Wu8LX3zxxfU+VpKkxjK1cCpXv3k1AC98/wL3fXIflw+8PMpVRdf8UnikAGZEpOvZ8TAqH7ZLiV5dkiSp/urVtN999931OlkoFLJplyRFReSt0IIgIMSGb422eNVinp76NF3adOGgHgc1dXlbVFUAry+BFxZCRXW6HgL2awtHZpuuS5LUktSraf/pp5+aug5JkjZL75ze3L7/7TXT488dcO56j62sqmTvh/bmu4XfAfDA4Q9w5i5nbqlSm9S8UhgzH2aW1I7lJsCoPOhhui5JUouzyWvay8rK+Omnn+jevTtxcS17PzvXtEvS1mX+8vm0v7M9ADGhGEbsOIInjn0iylVtnqoAXl0MLy2qm64Pq07XE0zXJUlqVurbhzb4n/CVK1dy5plnkpKSwo477sjs2bOB8Fr2P/7xj5tesSRJW0heah4Dtx0IhKfSH7vDsVGuaPPMLYU/zg5vNre6Yc9LgN92guNzbdglSWrJGvzP+FVXXcWXX37JW2+9RVJSUs34/vvvz1NPPdWoxUmS1BRCoRCvj3ydF3/1Ip+d8xnH9m6ZTXtlAC8vgptnwazq6fAh4MAsuKYzdE+OanmSJKkRNHhe+/PPP89TTz3FnnvuWWfTn969ezN9+vRGLU6SpKaSHJ/M4dsfHu0yNtnPJeG163NKa8faJ4R3hu9qsy5JUqvR4KZ9wYIF5ObmrjW+YsWKOk28JElqfBVV8Mpi+O/i8Dp2CKfrB2XBoe0g3qnwkiS1Kg3+p3233Xbjv//9b83Hqxv1+++/n7322qvxKpMkSXXMKYHbZsN/FtU27B0S4arOcFSODbskSa1Rg5P22267jYMOOohvvvmGiooK/vKXvzB16lQmT57MpEmTmqJGSZK2ahVV4WT9lYh0PSZUna5nQZzNuiRJrVaD/5kfOHAg7733HitXrqR79+5MmDCBvLw8Jk+ezK677toUNUqStNWaVQK3zA5vOLe6Yd82Ea7qFL6Vmw27JEmt2ybfp7018T7tkqTmpqIqfM/1V5fUTdcPyYKDTdclSWrx6tuH1mt6fHFxcb0vbNMrSdLmmbkqvDP8vLLasY6J4Z3hOyat/3mSJKn1qVfT3qZNm3rvDF9ZWblZBUmS1Nq8+P2LXPy/i2mT1IYnj32SHXJ2WOdx5VXhTeYmLIbV0+BiQ3BYOxieFX5fkiRtXerVtE+cOLHm/ZkzZ/K73/2O0047rWa3+MmTJ/PII49w2223NU2VkiS1UEEQcOpzp1JcWsyc4jlcNuEyXj755bWOm1GdrhdEpOudk8Lp+jaJW7BgSZLUrNSraR88eHDN+zfeeCN33XUXJ554Ys3YEUccQd++ffnXv/7FqFGjGr9KSZJasLhQHKHq/8XF1P2nt6wKXlgIbyypTdfjItL1GNN1SZK2ag3exmby5MkMGDBgrfEBAwbw0UcfNUpRkiS1FqFQiHHHjWOHnB3Yc9s9uXv43TWP/bgSbpoFr0c07F2S4OrOcHA7G3ZJkrQJ92nv2LEj9913H3feeWed8X/+85907Nix0QqTJKm1OKD7AUw9f2rNx6XV6fqba6TrR2TDAW1t1iVJUq0GN+133303xx57LK+++ip77rknAB988AHTp0/n2WefbfQCJUlqTaathEfnw4Ly2rFuyTAqD/Jduy5JktawSfdp//nnn/nHP/7Bd999RxAE9O7dm3PPPbfFJu3ep12S1NRKq+C5BTBxae1YfAiOyob9TNclSdrq1LcP3aSmvbWxaZckNaXvVsDYAlgYka53Tw7vDJ+XEL26JElS9NS3D23w9HiApUuX8uCDD/Ltt98SCoXo3bs3Z5xxBpmZmZtcsCRJrU1JJYxfCJOW1o7Fh+DoHBjapn7peuGKQh76/CFyU3MZ1X8UsTGxTVWuJElqhhrctH/yyScMHz6c5ORkdt99d4Ig4K677uKWW25hwoQJ7LLLLk1RpyRJLcq31en6ooh0vWcyjMyH3Hqm60EQMOzRYXyz4BuqgirmFM3huiHXNU3BkiSpWWpw037ppZdyxBFHcP/99xMXF356RUUFZ511FqNHj+btt99u9CIlSWopSirhmQXwTlHtWEIMHJMNQ9pAqAFr18sqy5hSOKXm4w9++aDxCpUkSS3CJiXtkQ07QFxcHFdcccU6798uSdLWYuoKGDsfllTUjm2fAiPzIHsT1q4nxiVyYp8TeXLKk4QIcfpOpzdesZIkqUVocNOekZHB7Nmz6dWrV53xOXPmkJ6e3miFSZLUUqysTtffi0jXE2PguBzYN7Nh6fqaHjvmMS7e42KyU7LpkdVj84uVJEktSoOb9hEjRnDmmWfy5z//mYEDBxIKhXj33Xf57W9/y4knntgUNUqS1Gx9vRweK4ClEen6Dilwaj60i9/888eEYthz2z03/0SSJKlFanDT/uc//5lQKMTIkSOpqAj/hhIfH895553HH//4x0YvUJKk5mhlJTxdCJOLa8eSqtP1fTYzXZckSVptk+/TvnLlSqZPn04QBPTo0YOUlJTGrm2L8T7tkqSG+HI5PF4ARRHp+o6pcEoeZNUjXZ9aOJWXpr3E3p32Zp9O+zRdoZIkqdlq0vu0A6SkpNC3b99NfbokqRWprKrkrP+cxbgp4xjUaRDjR4wnNSE12mU1uhWV8FQhfLhGun5CLgzMqF+6PqdoDrvfvzurKlYB8O4Z7zKw48AmqliSJLV09W7azzjjjHod99BDD21yMZKklumtmW8x5osxAEyYMYHHvnqMcwacE92iGtnny+CJQiiOSNf7VKfrbRuwdv2rgq9YWbGy5uMPfv7Apl2SJK1XvZv2MWPG0LlzZ3beeWc2cUa9JKmVSk9M3+DHLdnyChhXCB8vqx1LiYURObBHPdP1SHt32puOGR2ZUzyHtIQ0DtvusMYtWJIktSr1btrPPfdcxo0bx4wZMzjjjDM45ZRTyMrKasraJEktxO7b7M7dw+/msa8eY7+u+zFixxHRLqlexn45lhvfvpGeWT159OhHyU7JrvP4Z8vgiQJYVlk71i8NTs6FNpu4M3ybpDZ8fd7XfPjLh/TL60d+Wv5mfAaSJKm1a9BGdKWlpYwfP56HHnqI999/n0MPPZQzzzyTAw88kFAL3ibXjegkaeuzZNUScv6UQ2VQSWwolot2v4i7D7obgGUV8GQhfLpGuv6rXNg93Z3hJUnS5qtvHxrTkJMmJiZy4okn8tprr/HNN9+w4447cv7559O5c2eWL1++2UVLkrSlBNX/W62iqoIggE+K4fqZdRv2ndLghi6bNh1ekiRpczSoaY8UCoUIhUIEQUBVVVVj1iRJaqWCIOCHRT+waOWiaJdCVnIW9x56L+3T2rN3p725eO8/8M+5cP88WF49HT41Fs5qD+d2gIxNvt+KJEnSptvk6fHvvvsuhx12GKeffjoHHXQQMTGb3P9HndPjJalpLC1ZyjFPHcMncz/hvAHnsWDlAh7+4mESYxN5+eSX2a/rftEukSCAj5aFb+W2ImLt+i7pcGKuzbokSWoajX6f9vPPP59x48bRqVMnTj/9dMaNG0e7du0apVhJUut03yf3MWnWJKqCKu54/46a8bLKMu795N6oN+1FFfB4AXwZscIrPRZOzINdW88G+JIkqQWrd9N+33330alTJ7p27cqkSZOYNGnSOo8bP358oxUnSWrZkuOS69wmNDc1l0UrF1EVVNE7u3fU6goC+LAYnloAKyPS9QHp4c3m0k3XJUlSM1HvX0tGjhzZoneIlySt7akpT/HajNc4cvsjOXz7wxv9/OcOOJepC6by4c8fct5u57F/t/35x8f/YJv0bbh4j4sb/Xr1sbQcHiuAr1fUjqXHwsl5sLPpuiRJamYatKa9tXJNu6St0aSZkxjyyBBiQjEEQcBn53zGTvk7rff40opSbnv3Nn5a+hMX734xu3bYdYvV2hiCACYXw9OFsCpi/9TdM8Lpemps9GqTJElbnya55ZskqfX4YfEPAFQFVQQETF88fYPH3/bubdw46UYe/+px9h+7PyUVJVuizEaxpBz+9gs8Mr+2Yc+Ig/O3gTPbt66GvXBFIbvdvxvJtyRz1etXRbscSZK0mWzaJWkrdXSvo+mR1QOAfnn9GN5j+AaP/2npT8SEYqgMKllaspRlpcs2eHxzEATwztLwfdenRkyH3zMDru8C/dOiVFgT+tuHf+PzeZ9TUlHCH9/7I98v/D7aJUmSpM3QbJr22267jVAoxOjRo2vGgiDg+uuvp0OHDiQnJzNkyBCmTp1a53mlpaVcdNFFZGdnk5qayhFHHMHPP/+8hauXpJanXUo7vjn/G6ZfPJ1Pf/0paQkb7mAv3v1i0hPDi74v2O0CclJztkSZm2xROfzl5/D69ZLqdL1NHFy4DZzeytL1SOmJ6VQF4U84JhRDSnxKlCuSJEmbo1nsj/vxxx/zr3/9i379+tUZv+OOO7jrrrsYM2YM2223HTfffDMHHHAA33//Penp4V8cR48ezX/+85+aW9BddtllHHbYYXz66afExrbS38gkqZHEx8bTrW23eh27a4ddmXfZPJaVLmvWDXsQwDtF8MwCKI1Yuz4wE47PgZRW/k/DxXtczIwlM/h8/udcvPvFdMzsGO2SJEnSZoj6RnTLly9nl1124R//+Ac333wzO+20E/fccw9BENChQwdGjx7NlVdeCYRT9by8PG6//XbOOeccioqKyMnJYezYsYwYMQKAuXPn0rFjR15++WWGD9/wVM/V3IhOklqHhWUwtgC+W1k71jYOTs2HHVOjV5ckSdKaWsxGdBdccAGHHnoo+++/f53xn376ifnz53PggQfWjCUmJjJ48GDef/99AD799FPKy8vrHNOhQwf69OlTc8y6lJaWUlxcXOdNktRyBQG8tQRunFW3Yd8nE67rYsMuSZJarqhOjx83bhyfffYZH3/88VqPzZ8/H4C8vLw643l5ecyaNavmmISEBNq2bbvWMaufvy633XYbN9xww+aWL0lqBhaUwaMFMC2iWc+Kh1PzoLfNuraUylJYMRvSukJMs1h9KElqJaL2r8qcOXO45JJLmDBhAklJSes9LhQK1fk4CIK1xta0sWOuuuoqfvOb39R8XFxcTMeOrvmTpJYkCODNpfD8QiiLWLs+qA0cmw1JrXztupqRkgXw6h6w4ifI7AMHTob4VnhrAklSVERtevynn35KYWEhu+66K3FxccTFxTFp0iT++te/EhcXV5Owr5mYFxYW1jyWn59PWVkZS5YsWe8x65KYmEhGRkadN0mbYcUKeOcdWLQo2pVoK1FYBn+eA08X1jbs7eLh0m3h5Dwbdm1hPz8XbtgBiqbA/AnRrUeS1KpErWkfNmwYX3/9NV988UXN24ABAzj55JP54osv6NatG/n5+bz22ms1zykrK2PSpEkMHDgQgF133ZX4+Pg6x8ybN48pU6bUHCOpiRUXQ79+MGgQ9OgBM2ZEuyK1YlUBvL4YbpwJP66qHR/SJrx2vZfT4RUN6duH/z8UC4QgrUdUy5EktS5Rmx6fnp5Onz596oylpqbSrl27mvHRo0dz66230rNnT3r27Mmtt95KSkoKJ510EgCZmZmceeaZXHbZZbRr146srCwuv/xy+vbtu9bGdpKayDvv1DbqS5fCCy/ApZdGtSS1TgVlMGY+zIho1rPjYVQ+bOetyBVNeYNhn6dh/uuwzZHQtt/GnyNJUj01651SrrjiClatWsX555/PkiVL2GOPPZgwYULNPdoB7r77buLi4jjhhBNYtWoVw4YNY8yYMd6jXdpSdtwREhOhvByqqmDAgGhXpFamKoDXl8ALC6Gi+ialIWBoWzgqGxKjfh8UCeh0fPhNkqRGFvX7tDcH3qdd2kyffRZO2PfdF5zloo34bN5nfLPgGw7peQhZyVkbPHZeaThdn1lSO5abACPzoKfpuiRJasHq24c266RdUguxyy7hN2kjJkyfwEGPHURAQNc2Xfnmgm9Iilv7DiJVAby6GF5aVDddH9YWjsyGBNN1SZK0lbBplyRtMS//8DKhUIggCPhp6U9MWzSNfnl11//OrU7XZ0Wk63kJ4bXr3ZO3cMGSJElRZlYhSdpiDupxEKtXZXVp04WeWT1rHqsM4OVFcPOs2oY9BByYBdd0tmGX6giqwm+SpFbPpF2StMUc1OMgPjr7I6YWTuWw7Q4jOT7cif9cEk7X55TWHtu+Ol3varMu1fXLy/DeCAgCGDgWOh4d7YokSU3IjehwIzpJipaKKnhlMfx3cXgdO4TT9eFZcFg7iHc+mLS2l3pB8TQggJROcNSsaFckSdoE9e1D/XVIau2WLg3v6N62LVx7bbSrkWrMKYHbZsN/FtU27B0S4Xed4OgcG3ZpvRJzIRQDoVhIyol2NZKkJub0eKm1+8c/YOLE8D3Ub7oJRowI31tdipKKKnh5MfwvIl2PCcFBWXBoFsTZrEsbttcj8Plvw2vad7o92tVIkpqYTbvU2iUmhtc9rpaQEL1a1CIsLVnK7e/eTmllKVfsfQX5afmNdu5Z1WvX50asXd82Mbx2vdPad36TtC5pXWHfZ6JdhSRpC7Fpl1q788+Hr7+Gjz6Ciy6Cnj03/hxt1c7+z9mM/3Y8IUJ88PMHvH/m+5t9zoqq8D3XX11SN10/JAsONl2XJElaL5t2qbVLToYxY6JdhVqQbxd8S1X1raSmLZq22eebuSqcrs8rgxlLZrBgxQIG5nXkqh4d6Gi6LkmStEFmG5KkOn6/7++JCYX/efjDoD9s8nnKq2D8Avjj7HDDPnPpTF6f/gpffXszY17YnviK+Y1VsiRJUqtl0i5JquOkvidxYPcDqaiq2OT17DNWwSPzYX5Z7Vj5qumE5txGUPozq4Dpi6c36np5SZKk1simXZK0luyU7E16XnkVvLAQXl8Cq7c/jAuF77neKWsbBn5QTDGwc/7ODOgwoNHqlbYqCz+AD88O3/Jtz4cga5doVyRJakI27ZKkOpaXLefO9++kpKKES/e6lNzU3Ho9b3p1ul4Qka53SQrvDN8hEaAXMy+ZyfQl0+mX14+EWO9kIG2SyafBsh/C7394Fhz8WVTLkSQ1LZt2SVId5/znHMZNHUeIEG/Pfpv3znhvg8eXVcHzC+HNNdL1I7LhgLbhXeJXa5vclgHJJuzS5om4jWfkLT0lSa2STbskqY6vCr+q2T1+auHUDR77w8pwur6gvHasWzKMyoP8xKasUtqK7flQ7fT4Pe6PdjWSpCbm7vGSpDp+O/C3NbvHX7n3les8prQKxhXAn+fUNuzxITguB37bsWkb9he/f5HO93Rmp/t24tsF3zbdhaTmKmdvOOwbOPRraOfMFUlq7UJB4Lyq4uJiMjMzKSoqIiMjI9rlSFLUzV02l/LKcjq36bzWY9+vhEfnw8KIdL17cnjtel4TL1MPgoA2t7ehuLSYmFAMw7sP5+WTX27ai0qSJDWB+vahTo+XJK2lQ3qHtcZKKmH8Qpi0tHYsPgRH58DQNnXXrjeluFAcoer/xcVsuX/GZi2dxY2TbiQpLonrh1xPTmrOFru2JEnaetm0S5I26tsVMLYAFkWk6z2TYWQ+5G7BTeBDoRDjjhvH6FdH0zapLXcPv3uLXfuYp4/hy/lfAjCneA4vnvjiFru2JEnaetm0S5LWq6QSnlkA7xTVjiXEwDHZMKQNhLZQuh7pgO4HMPX8DW+Q1xRmF82mMqgEwqm7JEnSluBGdJKkdZq6Aq6fWbdh3y4FrusMQ9tGp2GPplv2u4WYUAwJsQncMPSGaJcjSZK2Em5EhxvRSVKkVZXw7wXwXkSznhgDx+bAoMytr1mPtKx0GTGhGFITUqNdiiRJauHciE6S1GBTlofXri+tqB3rlRJeu94uPnp1NRfpienRLkGSJG1lbNolaStUXFpMRVUFWclZAKyshKcLYXJx7TFJMeH7ru+zlafrkiRJ0WTTLkkN9PqM15ldNJtjdziWzKTMaJfTYM99+xwjnhlBRVUFdw2/i/36jOaxAiiKSNd7p8KpeZBlui5JkhRVbkQnSQ3w0OcPccDYAzjzxTPZ9+F9qQqqol1Sg938zs2UV5UTxCTz+6k/8n+/1DbsSTHhqfDn5ZeTGiqNbqGSJEnz58Nhh8Euu8Arr0S7mqiwaZekBpgwfQIhwnPFvy78moUrF0a5oobr0bYHMWm7EOpyIynthtSM90mF67tAUeHLtL2jDRm3ZfDol49Grc7G8sqPr/Dn9//M7KLZ0S5FkiQ11FVXhZv1L76A446D8vJoV7TF2bRLUgMc1esoAsI33dhzmz3JScmJckUNs7wC9t7jYXbc6e/0yt+N4d2HkxwDp+XDhdtA23j4/Ru/Z1X5Ksqqyvjta7+Ndsmb5empT3Pw4wdzxWtXsNv9u7GibEW0S5IkSQ1RUhL+/yCAsjKoanmzHDeXa9olqQF+1edXdG/bnTnFcziox0GEWtAObZ8tgycKYFllCnttuxcA/dLg5FxoE7F2vX16e6YUTgEgPy0/GqU2mndnv0tsKJbKoJLCFYX8tPQn+uT2iXZZkiSpvm68EaZMCU+T//OfITEx2hVtcd6nHe/TvlX58UeYNAkGDYKePaNdjbRFLKuAJwvh02W1Yymx8Ktc2D197Z3h5y2bx+/f/D2lFaXcOPRGemT12LIFN6J3Zr3DsEeHUV5Vzk75O/HRWR8RH+vuepIkKfrq24fatGPTvtWYMQP69oWVKyE5Gb76Cnq03GZE2pggCDfqTxbC8sra8Z3S4KQ8yGzkuVbzls3j47kfs8c2e5CXlte4J98MM5bM4MfFP7Jvp31Jjk+OdjmSJElA/ftQp8dr6/Hee+GGHWDVKnjnna2jaV+6FI4/Hj7/HC6+GK69NtoVaQsorghPhf98ee1YaiycmAsD1pGub67ZRbPpd28/ikqLyErK4uvzv6ZDeofGvcgm6ta2G93adot2GZIkSZvEjei09Rg0CNLSwu+npsLgwdGtZ0v5+9/hzTdh0SK47jr47rtoV6QmFATwUTFcP7Nuw75Lenhn+N0yGr9hh/C964tKiwBYXLKYiT9N3Kzz3fn+nXS8uyNHjTuKZaXLNv4ESZKkVsqmXVuPzp3Dm1g89lj4/7ttJclbQkK4k1st3vW8rVVRBdw7Fx6cByuqp8OnxcKvO8A5HSCjCedW7bntnsTHhF9bCbEJ7L7N7pt8rmmLpnH5a5fzc/HP/Gfaf/j7R3+v1/Oe+PoJdr5vZ05+9mQbfUmS1Go4PV5bl86dw29bkwsvDK/f/+QTuOQS6N492hWpkQUBfFgMTy2AlRFr1wekhzebS98CP+l75/Tm47M/ZuLMiezfbX96ttuyGz0Wrijk1OdOpSqo4qvCr+ie1Z0bh964RWuQJElqCjbtUmuXkhKeXaBWaWk5PFYAX0fcfjw9NrzR3C7pW7aW/vn96Z/ff7PPs1277fjzAX/mLx/+hV3a78KFu1+40eeUVZZRFYTv2xoixKryVZtdhyRJUnPg7vG4e7yklicIYHIxPF0Iq6pqx3fPgBE5kLYV/kn2j+/+kdvevY1e2b144VcvtPh7zEuSpNbNW741gE27pJZkSTmMLYCpEel6Rhyckgf906JXlyRJkurPW75JUisTBPBeEfx7AZREpOt7ZsAJueFburU0q8pX8ZcP/8KKshVctMdF5KbmRrskSZKkZsWmXZKayLLSZUxbNI3eOb1Jjk/erHMtLodH58O3K2vH2sTByXnQrwWn6xf97yIe/uJhQoSYMGMCH571YbRLkiRJalZs2iWpCcxdNpdd/7Ur85fPp0dWDz45+xMykzIbfJ4ggHeK4JkFUBqRrg/MhONzIKUFpuuRvpj/Rc0GclMKp0S5miYSVMGSLyAxB1I7RrsaSZLUwnifdklqAi989wLzl88H4MfFP/LGT280+BwLy+Cen+HxgtqGvU0cXLQNjMpvvIa9sqqSxasWN87JGuiSPS4hJhT+p+jSPS+NSg1N7v2T4ZVd4cWu8MtL0a5GkiS1MCbtktQE+uX1AyA2FO6se+f0rvdzgwAmLYXxC+um6/tkwnE5kNyI6frPxT+zz0P7MKtoFsfucCxPH/90TRO9JZza/1SGdBlCSUXJFr+3+xZRvgxmjQu/H1TB9Adhm8OiW5MkSWpRbNolqQns3WlvXj7pZd786U2O2P4IemX3qtfzFpTBowUwLWLtets4GJkPvVMbv84HPnuAOcVzAHj222f5bN5nDOgwoPEvtAEdM1vxlPG4VEjrBitmhpv2rF2jXZEkSWphbNolqYnsvs3upCWksUv7XTZ6bBDAxKXw3EIoi0jXB7WBY7MhqYnWrnfM6EhVUEWIELExseSl5jXNhbZWoRjY/2348X5I2Qa6nRHtiiRJUgtj0y5JTWD64ukMuH8AS0uW0r1tdz4/53PSE9PXeWxhWXhn+B9W1Y61i4eRedCrCdL1SKfvfDqLVi3ik7mfcPpOp7fu1DtaUraBftdHuwpJktRC2bRLUhN4/rvnKSopAmD6kum8O/tdDu55cJ1jqgJ4cwk8vxDKg9rxIW3g6CZM1yPFhGK4Yu8rmv5CkiRJ2iQ27ZLUBAZ0GEBAQEwohoTYBHbM3bHO4wVlMGY+zIhI17Pjw7vCb5eyhYuVJElSs2XTLklNYHCXwUw4ZQLvzn6Xo3odRafMTkA4XX99Cby4Rrq+X1s4KhsSqzduf+CzB/j9G7+nY2ZHxp8wns5tOkfhs2hhKlZAwURI7wkZ20e7GkmSpEYRCoIg2PhhrVtxcTGZmZkUFRWRkZER7XKk5m/5TIhLg6Tspr9WxQqY/QwkZkOHQyAUavprNpF5pfDIfPippHYsNyG8dr1nRLq+vGw5bf7YhsqgkthQLKP6j+LBIx/c8gW3JFXl8MoAWPoVhGJh6KuQPyzaVUmSJK1XfftQk3ZJDfP5FfDtnyAUD4PGN/09p986DArfCr+/0x3Q+7dNdqn//fA/viz4khN2PIFubbs12nmrApiwGP6zCCqq/0waAoa1hSOzIWGN26LHhGKIjYmlsrISgITYhEarpdVa9mO4YV9tznibdkmS1CrEbPwQSapWVQnf3Rl+P6iA7+5p4utV1DbsAPNeabJLPfftcxzyxCH8/o3fs9u/dqvZRG5zzS2FP84O38ptdcOelwC/7QTH567dsAOkxKcw7thx9Mntw8E9D+aGoTc0Si2tWmoXSN4m/H5QCXlDolmNJElSozFpl1R/MbGQ1h2Wz4CgCjJ33PhzNut6cdDhUJj73/DHHY9psktN/nkysaFYKoNKFpcsZvqS6fW6v/r6VAbw6mJ4aVH4fQin6wdkwRHtIH4jfzI9eoejOXqHo+t1rTFfjOG1Ga9x1PZHcfyOx29yzS1aXDIM/wjmPAOZvSF//2hXJEmS1Chc045r2qUGWTE7nLAntoMdLoPYpKa9XmUZzH2ZKUUFTCGTw7Y7jLSEtEa/zEe/fMS+D+9LWWUZfXP78smvP9nkaek/l4R3hp9TWjuWnxDeGb5bciMVXO31Ga9zwNgDiAnFUBVU8cnZn7Brh10b9yKSJElqdK5pl9Q0UjvBrndtuevFJvDE0pWcPP5cAHZpvwsfn/0xMaHGXd2z+za788NFP/DDoh8Y2HHgJjXsFVXwymJ4eXHddH14FhxWj3R9U8xcOhOAqqAKgFlFs2zaJUmSWhGbdknN3kvTXiKGGKqo4rN5n1G4opD8tPxGv06nzE41t2arr4qqCu775D6mLV9Fwja/ZhmZNY91SIRRedClkdP1SMfucCx3f3A33yz4ht232Z2DehzUdBeTJEnSFmfTLqnZO7jHwTw55UkA+uf1Jzc1N8oV1br2rRu57ZsvCWUdTPqS/zGizwhiQyEOyoJDsyBuE9P1ZaXLiAnFkJqQusHj2ia35atzv6JwRSF5aXmNPgNhQ6Yvns53C79jcJfBTbJkQZIkSTbtklqAU/ufSuc2nZm1dBZH9jpyizamGzKrBJ5Zvh1kbUMAFJcWkR9fwZkd4um8GUv9H/jsAc556RziQnE8edyTHLPDhjfgi42JpX16+02/4CaYPGcyg8cMpryqnF7Zvfj8nM9Jimvi/Q0kSZK2Qs3jN19J2ohBnQdxav9TyUiM/maRFVXw/ILwrdy65e9DKBQCqtg/s5Rru2xeww7w+zd+T1VQRVlVGddNvK5Ram5sz333HJVB+D7y3y38jqmFU6NckSRJUutk0y41Vy+9BAccAJdeCqWlGz9eW8TMVXDzLPjfYqgKoHNmFy7b5VdMGDSUCYdctMnT4SN1zuxMbCiW2FAsXdp22fwTNoFBnQfVbH6Xk5JDz3Y9o1yRJElS6+Qt3/CWb2qGFiyADh2gshJCIbjlFvjd76JdVYv26o+v8u9v/s3gzoM5tf+pDX5+eRX8ZxFMWAyrf2jGhuCQLDi4Xfj9xjK7aDY3TrqRhNgEbhhyAzmpOY138kb01sy3+HL+lxyzwzF0zOwY7XIkSZJaFG/5JrVky5ZBRUX4/ZgYWLgwuvVEQRAE/PeH/zJz6Ux+1edXZKdkb/K5vl/4PYc8cQgAD37+IO1S2nFIz0Pq/fwZq+CR+TC/rHasU1J4Z/htm2AZd6fMTjxwxAONf+JGNqTLEIZ0GRLtMiRJklo1p8dLzVG3buFp8TEx0LUrXHxxtCva4u7/7H4Of/JwLvrfRez90N5UVlVu8rl+WvoTVUFVzXTuaYum1et55VXwTCHcMbu2YY8LwVHZ8LtOTdOwS5IkSZFs2qXm6q67wmvZp02DTg27d3jUBVXwwz/hi6tg+YxNOsVbM9+q2SV+2qJpLFi5YJPLGdJlCLt12A0Ip9i/6vOrjT5n+iq4aRa8tqR2OnyXJLi6c+NPh5ckSZLWx+nxUnMW10K/Rb+9E764AkKxMOMROGoWxMQ36BTH9z6ecVPGAbBvp33JS83b5HKS4pKYfOZkZhfNZpuMbUiITVjvsWVV8PxCeDOiWY8LwRHZcEBbiIlCs16wvIDfv/F7SipLuGHIDfTI6rHli1gtCKB0ESRmQTO59Z4kSVJr1kI7AknN2tIvgRgIKqFkHpQuhuSGNd1H73A0X533FXOK5rBf1/2qb6u26WJjYunatusGj/lhZXjt+oLy2rGuSTAqH9onbtblN8tZL57F/378HwBTCqfw5blfRqeQylJ462AomAgZveCAdyGxXXRq2dLKl0FQAQlto12JJEnayhiTSGp83c+EmOq/CXY8FpJyN+k0fXL7cHDPg0mMa9qOubQKxhXAn+fUNuzxITg2B67oFN2GHeDn4p+pCqqoDCqZu2xu9AopmBh+Ayj+DmY+Gb1atqSfX4Bns+GZdvDdX6JdjSRJ2srYtEtqfHlD4cjZcPAXsM/T4dvWNVPfr4QbZ8LEpbVj3ZPhmi5wYFZ4OvzClQtZXrY8ShXCLcNuITk+mfiYeO7Y/46o1UHKtkCo+g1IbWF7LWyqKTdBVRkQwFfXRrsaSZK0lXF6vKSmkZzX4CnxW1JJJYxfCJOW1o7Fh+DoHBjapnbt+k2TbuLat64lKS6JF3/1Igd0P2CL13pIz0NYcuUSqoIqkuL+v737jo6q3Po4/j0z6Z10Qg299yYdBCwoYAErgui1IcLFhuVVVBQb6rViuzb0WkGxCyhNRHondAiEFNJDElJmzvvHwCSRloQkk4Tfx5XlzJnnOWcfOGGtPfspLlyyPqid40uY2C8hfADUu9x1sVQlv6aQtuH468aujERERETOQ4ZpmubZm9Vupd3UXqTCmSbMmQObN8PYsdC+vasjqlEy8zK5ad5NbEzcyNReU5nUc1Kp+sVkw8eJkFJs7npzb7gpEsKLrVFnN+14zvCk0F6IgcHg6MEsvGlhBd+FVHv5abD5SSjMhrYPK3EXERGRClHaPFSVdhFX+uQTGDcOrFaYPRsOHIA6WuiqtP6z8j98v/N77Kade365h8tbXk7joManbX/MBl8fgWUZRcc8LHBlKAwMOnkUv4FBg4AGxGbEYmLSNLhppdyHVHMedaDry66OQkRERM5TStpFXGnjRkfCbrNBVhYcPKikvZiEowm8uOJFvN28ub/P/QR4lvwG0m7az/i+uG3Z8HECpBUWHWvhA+MiIPQ0O8AZhsGvN/7K838+T4hPCI/2f7Tc91Kr5adD0hIIag9+TVwdjYiIiEitoqRdxJVuugnefhuys6F/f2jb1tURVSujPh/FmsNrMDHZk7aHz676rMTnk3tNZtXhVWxI2MC9F9xLkzonJ4y5NvjqCPxZrLrueby6PiDo7GvkNQ9pzrsj3q2Au6mlCrLgp46QEwsWDxj2FwR3cXVUIiIiIrWGknYRV+rYEWJjHT/t2jmq7uIUkxyDzbQBsPXI1pM+D/IK4sfrfzxt/y1H4ZNESC9WXW/l45i7HuJe4eGen1LXOhJ2AHshxP2gpF1ERESkAmnLNxFXCw6GTp3ArZp8h5YRAzteh7RNro6Eh/s9DIDFsPBgnwdL3S/HBh/Gw2txRQm7lwVujIAp9ZWwV6jAdo453wCYEN7fpeGIiIiI1DZaPR6tHi+1QNJSWH8/eARDj3fAt0H5znN0L/zYDmy5YHGHi9dDkGuH7MdlxuFudSfcN7xU7TcdhTmJkFGsut7GF8ZGQLCS9cpxdB/EfQ/B3SHsAldHIyIiIlIjaPV4kfOFacKyqyAvBQwLrPs39Pu6fOdKXuVI2AHsBZD8p8uT9noB9UrVLtsGXyTB35lFx7wsMCYcegecfe66nAO/aGh5j6ujEBEREamVlLSL1Aa2XMB0/BRml/884f0d1fr8VHDzg8ghFRVhpdqQBZ8mQWax6no7X8dw+DqqrouIiIhIDaakXaSmMwzo+T6sudsxt7jTc+U/l08UDN8KySsgpAf41K+4OMtpb9peXvrrJUJ9QnmgzwP4uPs4PztaCJ8nweqsovbex6vrF6i6LiIiIiK1gJJ2kdqg0TWOn4rgHQkNrqyYc50j0zQZ8vEQYjNiMTFJyUnhtUtfA2BdFnyWCFm2ovYd/OCGcAhSdf3c5aWCaQOvMFdHIiIiInJe0+rxIlJp0nLT+GD9Byw7sKxc/W2mjQMZB7CZNkzTZEfKDrIK4Z3D8PbhooTdxwoT6sJdUeeesG87so1b59/K4388zrHCY+d2sppq36fwTRjMjXDsJCAiIiIiLqNKu0htlLkT4uZDSE8I7+eSEApsBfR6vxc7U3YC8MXVXzCm7ZgyncPN4sa0PtN4ZvkzuFnduazrdKbvh6PFqusd/eCGCAisgH/NbHYbgz4aREpOCiYmuYW5PD/0+XKdq8BWwMSfJvL7vt8Z13Ecj/Z/FKOmjNffOgOwO15veQpa3u3ScERERETOZ6q0i9Q2uYnwSzfHFnALB0Di4kq/5Pr49bR4rQV1Z9Xlu5jvADiUeciZsFsMC7/u/rVc5376wqfZfk8cz45NY6u1tzNh97XCrXXhzihHwl5oL+TGuTcSMDOA67+5ngJbQZmvlVuYS1J2EjbTBibsSdtTrpgBPtn0Ce+ue5c9aXt4bPFj/B33d7nPVeUCWoJhdfz4N3N1NCIiIiLnNSXtIrVNxhYoLLYy25E/K/2S//713+xJ20PC0QQmzJ8AQIPABrQPbw+A3bRzecvLy3xe04TVmfBOShQ7jhUtQNfZD6Y3hu7FFpubv2M+n27+lKz8LP635X98t+O7Ml/Pz8OPqb2mAuDt7s2/e/27zOc4odBeeMb31VqvD6DVv6H5xPJvHygiIiIiFULD40Vqm5Ae4NsYsveD1Qvqj6z0S3q5eWEc/8/LzQtwDG3/c8Kf/LTrJ5oFN6NrVNcynTOjED5NhI1Hi475WaGPZyxLN7/Me7ENuKfnPbhZHP+Mebt5l+j/z/elNeuiWTzQ5wH8PPzw9fAt1zkAbup4Ewv2LGDx/sXc1PEm+jToU+5zVTmPOtD5BVdHISIiIiKAYZqm6eogXC0zM5PAwEAyMjIICAhwdTgi564gE46sgKB2VbJt2960vfxr/r/IzM/klYteoU/D8ieopgl/Z8IXRyCn2Nz1bv5wVUgBbV9vyJHsI9hNO08MfIL/G/B/x/uZ/N8f/8e8mHmMajmKGYNn1Jw55CIiIiJy3iltHqqkHSXtItVFegF8mgSbilXX/a1wfQR08YfU3FRCng8BHPPkR7cZzedXf+6iaEVEREREyq+0eajmtIuIy5kmrMiAJw6UTNh7BDjmrnfxd7wP9g5mXMdxAHhYPbiz251VH6yIiIiISBVSpR1V2qWWKsx1LEoX0Arc/U/ZxDRN8mx5znnorpBWAHMSYUt20bEAN7ghHDqdImzTNNmdupsQnxCCvYOrLlARERERkQpU2jxUC9GJ1Aap62HzdPAIhs7Pg8XDse3b0d3gFQEXrwWfeiW6pOSkMPjjwWxK3MRVra/ii6u/wGqxVlnIpgkrMuHLJDhmLzreKwDGhDu2dDsVwzBoHtK8aoIUEREREXExJe0iNZ1pwpLLIDfBsf+ZPR8aXu1I2AGOJcKh76DFXSW6fbzxYzYnbgbgm+3fsDx2OQMaD6iSkFML4JNE2Fasuh7kBjdEQAe/U/dJzknm25hvaRXair4N+1ZJnCIiIiIirqakXaQ2yEsF7GBa4FgSBLYBww1Mu+N4UIeTukT4RWDimB1jYBDmG1bpYZomLMuAb46UrK73DoTRYeBzmup6XmEe3d/tzv70/QDMHTOXK1pfUenxioiIiIi4mhaik5rhf/+DHj3g9tshN9fV0VScPe/DT51g5a1gO1a+cxgGdH0ZDHfwCIIOT0BAS7jwD2h9Hwz8GcJPrkxf2+5aZgyawSXNLmHOlXNoE9bmnG7lbFIK4JVDjr3XTyTsQW4wqR6Mizx9wg6wL32fM2G3GlYW7F1QqbGKiIiIiFQXWogOLURX7cXFQcOGYLc7EtRnnoFp01wd1bk7uhfmNz3+xnDMRW99X/nPZy8Ew+L4qUZME5akw9xkyCtWXe9zvLruXYpp9AW2AjrO7sj25O0YGPx0w09c3OziSotZRERERKSyaSE6qT1ychwJO4DFAllZro2nopSorBtQmHNu57OU/9c5OSeZNYfX0LVu1zIPk084msBzy5/DzeLGQ/0eKrGie3I+fJQIO4vdWh03GBsJbX1Lfw13qzsrb13Jr7t/pUVICzpGdixTjCIiIiIiNZWSdqn+mjeHhx+Gl16Ctm3hnntcHVHFCGwDbR+GHa9Cnc7Q4m6XhHE46zAd3upASm4KwV7BbLxzI/UD6pe6/+ivRvPXwb8A2Jm6k++u/Q7ThMXpjup6frHqer9AuDoMvMqxSH2AZwCj244ue0cRERERkRqseo2jFTmdp592zGVfswYiIlwdTcXp+DSMyYKhS8HTNXuOL9q7iJTcFABSj6WyYE/Z5ovvTNmJzbRhM23EJMeQlA+zDsLnSUUJe4g7TKkPN0aWL2EXERERETlfKWmX2m3HDujWDZo2hR9/rLrrHkty/NQA3et1x93iDoC7xZ0e9XqUqf9j/R/DwMAwrIzq9TpP7oddxdYKHBgEjzWC1mUYDi8iIiIiIg5aiA4tRFerDR8Ov/4KNhsEBkJammMxu8q0+z1YdZvjdY/Z0Oy2k9uYZunj2PshrL4bPAKh/3cQ0q3CQj1hffx6FuxdwIXRF9I1qmuZ+29JP8JXKT4kFBZl5qHucFMktPSpyEhFRERERGqH0uahqrRL7WY5/ogbRtHr0rLb4OBciP3asTJ7aW2dAZiOny0zTv584yPwuQf80AayD575XKYJq+8CWzbkJjj6lkNuQS6Tf57MRXMu4pfdv5z0eee6nXmgzwNlTtjtJvyWCrOTwkok7IOC4LHGSthFRERERM6VFqKT2u2llyA52VFhf+WVslXZ106GXW84Xje5FXq9W7p+Aa0g51DRawBbniP5L8yBrc84jmXthJiXoetLZz6fm7+jv2GAR53Sx1/MCyte4PXVr2OaJov3Lybh3gTqeJfvXCfE58HHibD3+FD47IJs1hz4mZDMH7htwCQ8LWWv2IuIiIiISElK2qV2a94c/vqrfH3jfih6ffj70vfr/Slse9bxuvWDjv//eR0cmne8gQWwO6roZ0vCDQMGzIeND4NHCHR9pfRxFJOck4yBgR07+bZ8sguyy520201YkAbzk6Hw+OQaA9ix+012bX6MnfY8RsUv4uDUs4wiEBERERGRs1LSLnI6Da6EHS8XvS4tzxDo/ELJY/HFhqT7NnT8BLSB1vee/XyhPeHCRaW//ilM6TWFH3b+wIGMA9x3wX1l2tKtuMN58FEC7C+2xXy4B4yPhOuXfo3d7vggLiuOzLxMAjy1RoSIiIiIyLlQ0i5yOl1ehMghgB2iLj23c9W/Ag585njd9FZoV7656eXVpE4T9tyzB5tpw81S9l97mwm/psKPKSWr60ODYUQIuFvgggYXsOrwKgBMTJYeWMplLS6rwLs42Zdbv2Rd/Dqua3cdHSM7Vuq1RE5r61aw26F9e1dHIiIiIrWQVo9Hq8dLFbAXwuGfwc0XIgZV/gr2FejQMfgoEWKLVdcjPWBcJDTxLjq27MAy+n/YHwMDd6s7MRNjiK4TXWlxfb3ta0Z/NRqLYcHLzYv9k/cT5htWadercLZ8xwgMj2AI7+vqaKS8XnwR7r/f8fqJJ+Cxx1wbj4iIiNQYpc1DVWkXqQoWN6h/uaujKBObCT+nwE+pjtfgqK4PC4bLj1fXi+vXqB8Lxy5k6YGljGw1slITdnBsU2cxLNhNOzkFOexL31ezkvbloyFuvuN111eh5STXxiPl8+abJV8raRcREZEKpi3fROQkB4/BzAPwfUpRwl7XA6Y1hCvDTk7YT7iwyYU8MegJutTtUukxXt/+enzdHdvMdY/qTqfITpV+zQpj2iGu2OKGB792XSxybnr1coycMQzo2dPV0YiIiEgtpEq7iDgV2uHnVEd13X48WbcYcFEduCwE3E6TrL+5+k1eWfkKnSM78/7I9/Hz8Kv0WNuGt2Xf5H3sS99Hx4iOuFvdK/2aFcawOKZJJP7ueF/3YtfGI+X3/vvQvbtjTvvtt7s6GhEREamFNKcdzWkXAcec9Q8TIC6v6FiUp2Nl+EZep++3L20fTV5tAoDFsPDUoKd4uN/DlRxtLVCYA7FfOea017usRq1zICIiIiLnTnPaRaRUCu3wYyr88o/q+qXBcEnw6avrJ9hM2z/OV1hJkdYybj7QZJyroxARERGRak5z2kVKw7TD3o9gy9OQG+/qaMpl8f7FvLP2HZJzkp3H9ufC07HwU0pRwl7fEx5uCJeHnj1hB2gW3IyZF84kzCeMC6Mv5J6e91TSHYiIiIiInH9cmrTPnDmT7t274+/vT3h4OKNGjWLHjh0l2pimyfTp04mKisLb25uBAweydevWEm3y8vKYNGkSoaGh+Pr6MmLECA4dOlSVtyK13fYXYOV42PQYLOjvSOJrkC+3fsmgjwZx+w+30/O9nmQX5DP3CDwbC4ePD4e3GI5V4R9qCA3OMBz+VKb1nUbS/Un8NvY3gryCKjx+EREREZHzlUuT9iVLljBx4kRWrlzJggULKCwsZNiwYWRnZzvbPP/887z00ku8/vrrrF69msjISIYOHUpWVpazzZQpU5g3bx6ff/45y5cv5+jRo1x22WXYbLZTXVZqizVr4D//gZ07K/9aKatwbHhmh6O7oSDrbD3OSW5BLvN3zGdjwsYy9bObdjYmbORw1uESxxfuXYjFcPy67801mbbrKL+mwokFLRp6wSMN4bKzVNc3J25m8EeDGfLxEGKSY8oUm4iIiIiIlF21WojuyJEjhIeHs2TJEvr3749pmkRFRTFlyhQefPBBwFFVj4iI4LnnnuP2228nIyODsLAwPvnkE6655hoADh8+TIMGDfjpp5+46KKLznpdLURXA61Z49hqyWYDX1+IiYH69Svveofmw9IrADvUvwL6z620S9lNO73f783fcX9jYPDNmG+4ovUVpep7wzc38NmWz3CzuPH9dd9zcTPHquQ/7vyRyz6/AkIuJzjqGq5sfTUWw4LVcKwKf1EwWEuxDlrH2R3ZkrQFA4OuUV35+9a/z+VWRURERETOW6XNQ6vVnPaMjAwAgoODAdi3bx8JCQkMGzbM2cbT05MBAwawYsUKANauXUtBQUGJNlFRUbRr187Z5p/y8vLIzMws8SM1zPLljoQdIDsb1q2r3OvVHwEjdsOwv6DvV5V6qfiseP6OcyTDhmEwN+b0XxCsjltNmzfa0OK1Fvy862c+2/IZADa7jXfXvets16rBcG678iBDu73IyFZXYDEsNPKCRxvBpSGlS9gBjuYfxTRN7Kad7Pzss3cQEREREZFzUm2SdtM0mTp1Kn379qVdu3YAJCQkABAREVGibUREhPOzhIQEPDw8qFOnzmnb/NPMmTMJDAx0/jRo0KCib0cq2yWXgI+P43VEBPTuXfnX9IuG0F5gsVbqZSL8ImgR0gJwVN0vjL7wtG1v/+F2dqTsYHfqbu7+6W4aBTbCalgxMekc2Zl8O3yVBC/EAu4RRAdF421154pQmNbQsaVbWbw1/C3CfMOI8Ivg9UtfP4e7FBERERGR0qg2W77dfffdbNq0ieXLl5/0mfGP/YtN0zzp2D+dqc1DDz3E1KlTne8zMzOVuFc3NhtMnw7LlsG4cXDzzWAvgH0fg+0YNB3vGBK/bh307QshIa6OuFxM0+TXPb+SlZfFyFYj8bB64GZxY8WEFXy17Sua1GnCsKbDTtvfevwLBMMwcLe688fYP3hn7TvUD6jPwNb/4qkDkJRf1D7aC8ZFQt0yJusnDGs6jMT7EsvXWUREREREyqxaJO2TJk1i/vz5LF26lPrF5iVHRkYCjmp63bp1nceTkpKc1ffIyEjy8/NJS0srUW1PSkqi92mqr56ennh6ljNrkarx6acwY4bj9ZIl0KMH5LwJu94EDDj8Ewz8EVz8ZUuhvZAnlzzJ2vi13NblNka2Glmm/jOWzuCxxY8BcGWrK/nmmm8ACPEJ4Y5ud5y1/3uXv8ct82+h0F7I25e9TcPAhvzfwBnMOwKvHCpaaM7NgJGhMKSOY5X44nan7mZ57HIGNBpAdJ3oMsUvIiIiIiKVy6VJu2maTJo0iXnz5rF48WKio0smDNHR0URGRrJgwQI6d+4MQH5+PkuWLOG5554DoGvXrri7u7NgwQLGjBkDQHx8PFu2bOH555+v2huSipOSAoYBJ9ZJTE2FjMXHPzThyMkjMlzh3bXv8tTSpwD4dfev7J28l4aBDUvd/7sd3zlf/7jrxzJfv2NkR9bctsb5fmcOfJQAyQVFbZp6O6rrER4n99+VsouOszuSW5iLr7svW+7aQuOgxmWOQ0REREREKodL57RPnDiROXPm8Nlnn+Hv709CQgIJCQnk5uYCjiG/U6ZM4ZlnnmHevHls2bKF8ePH4+Pjw/XXXw9AYGAgt9xyC/feey+LFi1i/fr13HjjjbRv354hQ4a48vakLHJz4ccfYds2x/vx46F7d0fifuON0KcPNJ1Q1D56nEvC/KeEownOrdRspo3U3NQy9R/UeJDz9cBGA8sdR54d/pcIsw4WJezuBowOg/sanDphB1h6YCm5hY7ft+yCbP6M/bPcMYiIiIiISMVzaaX9rbfeAmDgwIEljn/wwQeMHz8egAceeIDc3Fzuuusu0tLS6NmzJ7/99hv+/v7O9i+//DJubm6MGTOG3NxcLrzwQj788EOs1spdMEwqiN0OAwbA6tVgscD8+TB8OPz9t+Mzy/HvllrfCxEDHXPaQ6tg4blSuL3b7fxvy//YlbqLcR3H0TGiY5n6rzm8xpn0p+ellyuGmGz4OBFSilXXmx2vroefJlk/YUDjAfi4+ZBTmIOfhx99G/YtVwwiIiIiIlI5qtU+7a6ifdpd7MABaNzY8dpigZtugg8+cGlIZWGaJrmFufyy+xfyCvO4qs1VeFjPki0f1+K1FuxK3QVAg4AGxP47ttTXPWaDb5JhaXrRMQ8LXBEKg4IcgxRKY0/qHv48+Cf9G/XX0HgRERERkSpS2jy0WixEJ+e5qCiIjoZ9+xyV9UGDzt6nGjEMg//7/f94aeVLAFy38zo+u+qzs/YrtBfSMaIje9L2YDEsPD+09GswbMuGjxMgrbDoWAsfuCkCwkr3fYFT0+CmNA1uWrZOVenQ97BuKniFQe854NfE1RGJiIiIiFQZJe3ieu7usHIlfPklNGsGF1/s6ojKrPgicj/v/rlUfd5e8zZfb//a8cakVEPTc23w1RH4M6PomKcFrgyFAUGlr67XGKYdVlwHhdmQvQ/WPwD9vnZ1VCIiIiIiVcalC9GJOIWHw91318iEHWB0m9HO11e1vuqs7RfvX8y8mHnO+ex27GddxG7LUXhif8mEvZUPPNYIBtYpW8L+4ooX6Ti7I/f+ei82u630HV1Ns3lERERE5DyjSrtIBXhy0JMMaDyAvMI8Lm525i8eFu5dyNBPhgJgOf692fhO42kf3v6U7XOOV9dX/KO6fnUY9Asse3V95aGV3L/gfgA2JW6ia1RXrm9/fdlOUlUMC/T+DNb9GzzDoLO2cRQRERGR84uSdjl/5KeBmx9Y3Cv81IZhMKRJ6bYYXB67HIthwW7asWNnxqAZvLf+PTq/3ZlPr/yUtuFtnW03HYVPEyG92Nz11j4wNhJCynkb2fnZZ3xf7dQf4fgRERERETkPaXi8nB9W3QVfB8O8KEjf6tJQRrUahfvxLw4aBzVm1l+z2J++n81Jm5ny6xQAsm3wQTy8EVeUsHtZYGwETK5f/oQdYFD0IG7tfCs+7j5c2vxSbuxw4znekYiIiIiIVBZV2qX2y4mD3W85Xuenwc5XocfbLgun0F7onEeeU5CDxbBgHP/P3eLOxqMwJxEyi1XX2/o6EvY6FTBIwGJYeHfEu7w74t1zP5mIiIiIiFQqJe1Ss+WlQNz34N8Swi44dRv3QLD6gi3XsRq5T8OqjfEfft39KzbTkbQnZSfx/JDn+WjjR/h6RdCnxwe8GVfU1tsCY8LhgoBauDK8iIiIiIiclWGaWo65tJvaSzVjy4Mf28DRvY73/eZBg1GnbntkBex8DfybQ9tHwVrGzcwr0MpDK+nz3z7YTTsh3iHsuHsHsbYQPk2ErGILubf3hRsjIKjip+CLiIiIiIiLlTYPVaVdaq7s/UUJu2GB+F9Pn7SH9Xb8VAO96vdi7W1rWXN4DX2jL2Fueghrsoo+97HCNWHQU9V1EREREZHznpJ2qbl8ox3D4rN2OPbvrndZpV5ub9pePtzwIU3rNOWmjjdhnENG3SmyEzbfTrybCEeLVdc7+sENERCo30wREREREUFJu9RkVg+46G84/DMEtIDgLpV2qbzCPHq/35sjOUewm3aO5h9lYo+J5TpXZiH8LwnWFauu+1rh2nDo7n+eV9dNEw7Ng+yD0PgG8Aot+uzoPtg3BwJbQYOrz/M/qPNEXBzMmAFubvDYYxAW5uqIRERERKqcknap2TwCofG1Jx2OzYjlicVP4GZx44lBTxDpF1nuS3yz7Rt+3v0zidmJgGP19bXxa8t8HtOENVmOhD27WHW9sx9cHwEB+m2Ena/D2nsAA3bPhuFbHVMfCnPh116QlwzYoef70HSCq6OVynb11bB6teP13r3w44+ujUdERETEBZQmSK005qsxrDm8BoADGQf45cZfynWen3f9zNVfXY3VsGJgYGLiZnFjXMdxAHy+5XOWHVjG6LajGdh44GnPk1kInybChqNFx/yscF04dD3fq+vFJS0FDMCEzBjITwfPYMiNg7wkRxvDCimrlLSfD/bvB9vxb7j27HFpKCIiIiKuYnF1ACKVITYjFptpw2ba2J++v9zn2Zy0GQMDm2nDxOT1S19n3+R9DGg8gJ92/cR131zH22vfZugnQ9mTenJSYZrwdyY8vr9kwt7NH6Y3hm5abK6kRsVGTUQOAY86jtd+TSCsn+O1YXEMnZfa78knwWJxDI+fPt3V0YiIiIi4hJJ2qZVmXjgTq2HFzXDjkX6PlPs8Y9qOIcQnBICOER2Z0GkCUf5RAGw7ss2Z0BfaC9mbtrdE3/QCePMw/Dceco4XC/2tcHsU/CsK/DXO5WQNr4JLN8Og32DAj0XfaBgWGLwQhiyDy/dA+PEEPi8V/rgUvmsMu952WdhSSf71L0hNhZQUuPbkaTAiIiIi5wPt0472aa9NFu1dxMHMg/h7+HP1V1cD0DasLetvX4+7tXwbnmflZbEvfR+tQ1uXOMehzEN0f7c7CUcT6FK3C8tvXo63uzemCSsz4csjRck6OBaZuzYc/JSsV5wND8H2F8C0AQZcEQfedV0dlYiIiIjIWWmfdjnvvLfuPf71/b8ACPEOwYIFO3a2HtnKvvR9tAhpUa7z+nv60yGiw0nH6wfUZ889eziQfoDmIc1xs7iRVgBzEmFLdlG7ADe4IRw6+Zfr8nJG5mlei4iIiIjUDkrapdb4dc+vzsXiUnJTnMcbBzWmUWCjEm3js+L5Zvs3tAlrw+DoweW+po+7D63DWmOa8GcGfJkEx+xFn/cMgGvCHVu6SSVofT+kbYCMbdD2IVXZRURERKTWUdIutcbIliP5etvXAFxQ/wJmXjiTHSk7uKLVFXi6eTrb5Rbk0v3d7sRlxQHw9eivuarNVWc8t2maZOVn4e/hj/GPleNSC+CTRNhWrLoe6AY3RkAHvwq6OTk1zxAYVL6dAUREREREagIl7VJr3NjhRpoFN+NQ5iEubX4pPu4+DGg84KR2+9L3ORN2CxZmLp9JHe86p6245xTkcPGci1kWu4xe9Xqx4KYF+Hn4YZqwPAO+PlKyut47EEaHgY+q6yIiIiIico60erzUKr3q9+LqNlfj4+5z2jbNg5vTLrwdAHbsrItfx5CPh7Dy0MpTtv9h5w8si10GwMq4lXwb8y0pBfDKIcf89RMJe5AbTKoH4yKVsIuIiIiISMVQ0i7nHXerO3/d8hcP9HkAAPP4f+vj15+y/Ykt3k444t6GJ/ZDTE7RsT6Bjn3X22k4vIiIiIiIVCBt+Ya2fKsN9qfvZ/aa2dQPqM8d3e7AzXL2mR9puWl0frszBzIOEOYTxrrb11E/oP4p276/7n2+3rUY3wZ3EhLS23m8jhuMjYS2vhV2KyIiIiIich7Qlm9Sa2xO3MzEnyYC8Malb9A8pDmr41bTLLgZdf3rYrPb6P9Bfw5nHcZm2kjLTeP/BvzfWc9bx7sOW+7awqbETbQJa0OQV9Ap25kmNIm+hWb+t5BfbO56v0C4Ogy8NBReREREREQqiZJ2qbZM0+TttW/z6O+PkpqbimEYjJ03FoCNiRvxdvPmzwl/El0nmoOZBwEwMNiUtKnU1/Dz8KN3g96n/TwpHz5OgF25RcdC3GFsBLRWdV1ERERERCqZ5rRL1Yj7CTY8DMmrSt3l440fc+ePd5KSm4KJid20k3YsjY2JGwHIs+XxxdYvCPIK4sYONwLgZnHjX13+dc7h2k1YlAZP7nck7KZpxzTtDAyCxxopYRcRERERkaqhpF0qX8LvsGQ4bHsOFvaDo/tL1W1nyk4sRtEjGu4bzmuXvEagZyAWw4LdtNOzXk8APh71MVvu3ELsv2MZ1nTYOYWbmA8vHoQvk6DAdMyX/3DNLOb81BWftO8qfTh8Sk4K2fnZZ28oIiIiIiK1npJ2qXxpJ1Zlt4M9HzK3l6rb+E7jCfYOBmBok6EcnnqYES1H8Petf/P4gMeZf+18rmh9BQCGYdA2vC2RfpHlDtNuwoJUeGo/7Dk+HN7EZO22FyjY+yi5WRu497d7y33+0nhqyVOEvhBK2AthLNy78NxPGPsNrLoD4n4893OJiIiIiEiV0+rxaPX4Snd0H/zSDfJTwb8lXLwG3Eu3N1puQS7xR+OJDorGMIxKCzE+Dz5OhL3F5q6HuUPszqf45O/HALBgoUf9Hvx1y1+VEoPNbsNzhic204aBwYVNLmTB2AXlP2HScsfIBsMKph0uWQd1OlVYvCIiIiIiUn5aPV6qD79oGLEHMndAUAdw8y51V293b5rUaVJpodlNWJAG85Oh8PjXVwYwuA6MCLHjO2e6s22ITwifXvlppcViMSzUD6jPocxDmJg0rdP03E6YtcPxf9N2/P0uJe0iIiIiIjWMhsdXV6mpcPPNMHw4rF5duj4rVsDnn8PRo5UbW3l4BEFozzIl7JXtcB48FwtzjxQl7OEecH9DGBMOXlYLrUNbYzWsGBiM7TC2Ur9AMAyD38b+xvhO47m/9/28OOzFczthvZHgG+14HdgG6l507kGKiIiIiEiV0vB4qunw+AkT4KOPHK9DQiAxEc40PHzOHBjr2A6Nrl1h1Sqw6DuZU7Gb8Gsq/JBSsro+pA6MDAX3Yn9s8VnxvLH6DUK8Q5jYYyIeVg+XxFxutjzIPuAY7WBxd3U0IiIiIiJynIbH13RHjjj+b7dDejrYbOB2hr+uH35wJPWmCWvXQnIyhIdXSag1yaFj8FEixB4rOhbpAeMiocnxQQArDq7gs82f0aNeD8Z2GMuMwTNcE2xFsHpCQAtXR3H+OXYMtm2DFi3Ar3TrN4iIiIiInIqS9urq8cfh778dCfusWWdO2AEuuQS++MLxulMnCA2t7AhrFJsJv6TCjymO1+Corg8LhstDiqrrhzIPMeijQdjsNt5Y/QY+7j5c3eZql8UtNVBmJnTvDjt3QkSE40u0evVcHZWIiIiI1FBK2qurbt0cQ+LPVmE/Ydw4iI6G2FgYOVJD44s5eAw+SoCDeUXH6nrA+Eho/I8p9vvT95NvywccC8NtP1K67elEnP74w5Gwg+N3+NtvYeJEl4YkIiIiIjWXkvbqzDBKl7Cf0L9/5cVSzWQcy8DN4oavh+9p2xTa4edU+CnVMY8dwGLARXXgshBwO8X3Gj3q9aB3/d6sOLSCYO9gbuhwQyXdgdRarVo5fm9N0/GlW/v2ro5IRERERGowJe1SafJt+cRmxNI4qDFulvI9amm5adz83c3EJMfwSL9HuLT5pQz6aBCbkzZjNax8M+YbRrYaeVK/2OPV9UPFqutRno7qeiOv01/Pw+rB0puXsit1Fw0CGpzxS4EKkX0AUtZAeD/w0hoEtULLlrBoEcyfDwMHnldfpomIiIhIxdPq8VTT1eNruOScZHq+15O9aXtpH96eFbeswM+j7AtyPbDgAV766yVspg2LYeHWzrfyzrp3nJ93jOjIhjs2ON8X2uHHVMf89eLV9UuC4dLgU1fXXSYjBn7pCrYc8AyD4VvBK8zVUYmIiIiISBUobR5anVIYqe4yd8CSkbDsaji6/4xN522fx960vQBsTtrMr7t/LdclC2wFztemaZJnyyvxecPAhs7X+3Ph6Vj4KaUoYa/vCQ83hBGh1SxhB4j/1ZGwA+QdgeQVro1HRERERESqHQ2Pl9Jbfi2kb3LMtc9LhiGLWXZgGRl5GVzc7OISQ+BbhDi2GbMYFkzTpFlws5NOV2gvZFXcKuoH1C+RfBc3re801sSvYWfKTh7t9yhXtr6SjYkbiUmOoVe9Xnw46kMK7I49139NhRPDRiwGDA+Gi6tbdb248H5guIFZCG6+ENzV1RGJiIiIiEg1o+HxaHh8qX3bEHIOAgYEtmZWnQnct+A+AMa0GcMXo78o0fzLrV+ycO9CRrQcwWUtLivxmWmaDPtkGAv3LcTN4sbPN/zMkCZDyhzSvlzH3PX4/KJjDY7PXa9/hrnr1UbaBjjyJ9S9CPxP/mJDRERERERqp9LmoUraUdJeagfnwoqbwGKFPl/Q86fHWRW3CgB3izv5/5d/ym5puWm8ufpNvNy8uKv7XXi7e3Mo8xANXm4AOKrxYzuM5cNRH5Y6lAI7zE+BBcWq61bDsSr8RcGO1yIiIiIiItVVafNQDY+X0mtwJYwZBRhgGFzSbKUzab+wyYWn7XbVl1ex5MASTNNky5EtfDDyA8J9w4nyjyLhaAJ2006Pej1KHcae49X1xGLfETTyclTXozzLeW9VxW6DDdMgaTE0GQ8ttH+3iIiIiIicnpJ2cchPg5W3QlYMtH0UGl936nZG0QTxxwc8TseIjizat4iMvAy+3PolY9qOOanLuvh12E07AKvjVgOOrdX+uuUvPt74MU3rNOXadteePUQ7fJcMi9KKqutuBlweAsOCHfPYq739cyDmRcfr1DUQ2huCO7s2JhERERERqbaUtIvD1mcg7jswbfDXWMcca8/gM3YxDIN6AfV4Y/UbWAwLczbNoZ5/Pfo07FOi3aQek5ixbIbz9QkNAxvyaP9HSxXerhz4OBGSilXXGx+vru9N/JP718ylf6P+p9yzvVopyAIMnF87FGa5MhoREREREanmlLSLQ/Gt1Ey7I3kvhT2pewCclfQ9aXtOStqfGvwU17a7Fk83z1OuIn8meXb4Nhn++Ed1fWQoDKkDe9N2M+ijQdhNOy+tfImFYxeecai+yzUZB4fmOhafazwWwvq6OiIREREREanGlLSLQ5tpkLIaju6Gdv8HXmGl6ja8xXDahrVl65GttAptxYiWI07Zrm142zKHtDPHMXc9uWirdpp4w7gIiDw+d31nyk4K7EUNNidtrt5Ju7s/XPi7q6MQEREREZEaQkm7OPhEwUV/lblbgGcAG+7YQFxmHPUC6pXYq7288uww9wgsTi865m7AqFAYXKfk3PX+jfrTJqwN245sI8wnjKtaX3XO1xcREREREakulLTXJLHfwNanwa8Z9HwbPOo4jh/dCxnbILw/uFf8lnU/7fyJWX/NIv5oPKPbjGb6wOkYRlHm7GZxo1FQowq5Vky2Y+56SrHqejNvGBcJ4R4nt/fz8GPdbevYdmQbzYKb4e/pXyFxiIiIiIiIVAdK2muK/Az48zowCyB9E/g2hC4vOoa0L+gD9gJHMn/pRnDzqbDL/rL7F4b/b7jz/ZNLn6RbVDcub3l5hV0D4JgNvkmGpelFx9wNuDIMBgWBcYaV4T3dPOlcVyuwi4iIiIhI7aOkvbpJWg4ZW6D+KPCOLDpuFjp+TrDlOP5/6FvH3t/gmI+ethHCLqiwcFbFrcLAwHQuAwdZ+ade8dxu2lkdt5ow3zCa1GlS6mtsP15dTy1WXW/hAzdFQNgpqusiIiIiIiLnC8vZm0iVifsBFvaD1XfCL12hMLvoM88Q6PISuAdCUEdo85DjeFh/wLFyOx7BENiqQkO6qvVVeLt5A2BgcFmLy047b/yGb26g1/u9aP5ac+Zun3vWc+fa4JMEeOVQUcLuaYHrwmFqfSXsIiIiIiIihmma5tmb1W6ZmZkEBgaSkZFBQEDFzwkvtbX/hp2vFW23dskGqNPx7P0Sl0Daekd13q+x41hBJli9weJ+zmElZSexI3kH3aK64e3ufco2OQU5+D7j63x/WfPL+P767097zq3ZjoQ9rdjggZbHq+uhStZFRERERKSWK20equHx1Un9EY6kHcC/BQSUsmoeMcDxc8K6+yBmlqM6P3hR6RL/Mwj3DSfcN/yMbbzdvGkZ0pJdqbuwm3Z61Ovh/Mxu2snOz8bf058cG3x1BFZkFPX1tMDVYdAv8Mxz10VERERERM43qrRTjSrt4FgFPjMGIoeUbyX4vBT4JtTx2rBC4xvggo8qNsbTOJB+gI83fky9gHqM6zgOq8VKfFY8Az4cwK7UXQxrP5WOHV8ko7AoM2/tA2MjIeTcBwSIiIiIiIjUGKq011SBbRw/5eXmC27+jvnwpgk+DSoutmK2HdnGgfQDDIoehJebF2+ufpN7fr4Hb3dv5l87H6vFCsD7699nd0Y8RIznt2MtsKYeIv1YOnU8vJnWsil9Aw1V10VERERERE5DSXtNk7Ubjvzp2KM9csjJ27tZvWDwAoh5Cfyioe0jFR7C9zu+Z9Tno7Bjp3f93iybsIz7F9yPzbSRnZ/N44sfZ1D0IABsPu0wGz0G1kAw4M/Y5WSmrYTEjxlmTqdfr8kVHp+IiIiIiEhtoaS9Jkn4HX4finO1+MB2cPFa8kyTR39/lK1HtjKpxyQuaX4J9P2i0sL4attXYAAmrDi0gsNZh4nwjeBAxgEMDOr51yPbBp8nQZz/SLo33EBSdhKt6jTi15UTIPMvDAyWxi5lspJ2ERERERGR01LSXpPEfgXF9ksnYwtkbuOVrb8y669ZACzcu5DD9x4m1Ce00sIY0GgAn2z6BIAmdZoQ6RfJ99d9z5NLniTQK5Brez3H4/sgy+bYJq5zZGfa+8INESbX7vHnt0zHea5rd12prrchYQOTfpqEm9WNNy99k9ZhrSvr1kRERERERKoVJe01SXg/2D276L1nGPg1JSk7CYthwWbaKLAXkHEso1KT9lu63EKkXyR70vZwbbtrcbO40Ta8Le9d8QWfJ8EXqUVtfaxwTRj0DADDMPjhuh9YvH8xUf5RtA1vW6rr3fDNDcSkxGBgMGH+BP665a9KujMREREREZHqRUl7TdL4enAPgkPfgVcENLsF3P2Z1HMS82LmsS99H5N6TKJJnSaVHsrwFsNLvF+bBf9LdFTXT+joBzdEQGCxp8zd6s7QpkPLdK2cwhxM08TEJLcg91zCFhERERERqVG05RvVbMu3cjJNk3xbPp5unqdtk1uQy6bETbQKbUWgV2CFXDerED5LgnVZRcd8rXBtOHT3r5h913/b8xvjvx2Pm8WNz676jL4N+577SUVERERERFyotHmoknaqKGk37VCYA+5+FXbKTYmbsNltdK7b+axtM/My6fpOV3an7ibUJ5S1t62lYWDDcl/bNGFNFvwvCbKLVdc7+8H1ERCgMRwiIiIiIiKnVdo81FKFMZ2/cuPhh1bwlT8sv8aRwJ+j5/98no6zO9LlnS5MXzz9rO2X7F/C7tTdACTnJPNtzLflvnZmIcw+DO/FFyXsflb4V124PUoJu4iIiIiISEVR0l4Vdr8HWXscr2O/hNS153zK2WuKFqR7a81bZ23fOqw17hZ3LIbjr7xTZCd2pezi510/k1OQU6prmib8nQmP74cNR4uOd/WH6Y2hW0DFDIev1vLTwV7g6ihEREREROQ8oZpoVfCJwrG3uuH48Qw751P2btCb/en7Abig/gVnbd8suBlLb17KdzHfMaDxAOymnTZvtqHQXkinyE6sunUV7lb3U/bNK8zjv5vnsrqwOW7+XTCOJ/7+VsdQ+C7+53w7NcPqu2HXG+AZChf+AUHtXB2RiIiIiIjUckraq0L0eMhNgJTV0PRm8Gt8zqd8b8R79KzXk0J7Ibd1va1UfXrV70Wv+r0AuPunuzmxnMGGhA3sTt19yv3PTROG/zCDRUeDwZJJ2/Bj9GnQl+7+jsXm/M6XJyjnsCNhB8hPgx2vQs93XBuTiIiIiIjUeudLyuVaFiu0e6RCT+nl5sWknpPK3O/Z5c/y2qrXiPKLwmY6JqTX9atLo6BGJ7VNK4A5ibA8rylY8gCIS4vhjp596Xy+VNdPcA8AN18ozHWsSeDTwNURiYiIiIjIeUBJe1XLTYQ97zqGyDe9BSxV91cQkxzDQ4seAiA+K55+DfsxrOkwbu50Mz7uPs52pgkrMuHLJDhmh6bBTdl2ZBtk/c0dLZqcfwk7OFb9H/Qb7HwN/JpBmwdcHZGIiIiIiJwHlLRXJdOE3wdDRgxgh5yD0HHGKZqZ/LbnNxKOJnBVm6vw86iYbeIMilaJMzFZFruMw1mHub/3/c7jqcer61uzi/pdGt2Xu+tbae3dkgGNBlRILKdiN+3sStlFvYB6FXbPFSqst+NHRERERESkimj1+KpkL4CMbTgWpQNS15yy2eurXufiTy9m/HfjGfbJMOfc89MxTZP/rv8v9/92v6MifhotQ1vy4tAX8fcoKpXvSdvDnrQ9mCYsS4cn9pdM2C8IgCeiDe5s3ZuBjQdiVNLy8Da7jWGfDKPVG61o+HJDYpJjKuU6IiIiIiIiNYmS9qpk9YDoccffWBzD40/hlz2/OF//degvcgtzz3jad9a+wy3zb+HllS/T5799OJp/9LRt7+19L08NfqooJMMKbiH855Cjwn7s+PcJQW5wdz0YXxd8rKW7vXOxOWkzi/YtAiAzL5MPN3xY+RcVERERERGp5pS0V7Ve/4WL18CI3dBw9CmbXNHqCufrwY0Hk5qbSsLRhNOeclPiJqyGFZtpI/1YOvFZ8WcMISe/aF92W0AfHt6Tx/ZiW7X3CYTHG0P7KhyhXs+/Hj5uPs77aB168kr2IiIiIiIi5xvNaa9qhgWCu56xya1dbqVNWBsSjiawK3UXDV5ugMWw8N7l73Fz55tPaj++03g+3PghOQU5DGs6jKbBTc94/kHRg7C4h2OPuAFPvw4EeDv2ja/jBmMjoa1v+W+vvMJ8w1g8fjEfbfyIjhEduanjTVUfhIiIiIiISDVjmGebMH0eyMzMJDAwkIyMDAICAlwdTgnhL4RzJOcIAC1DWhJz96nneqfkpBCXFUfbsLZYLacfz26asDgd3j5whMPZyTQIaICfhx/9AuHqMPCqgqHwIiIiIiIi57vS5qGqtJ+LfZ/AtmchsB30fNexl3cFME3TueBb67DWpMamYmLSLrzdafuE+IQQ4hNyxvMm5cPHCbArFwK9wwj0DiPYHW6KgNYuqK6LiIiIiIjImSlpL6/cRPhrPGCHzBjwbwEdnzpbrzOKy4zjojkXEZMcw5ReU3hx2It8PfprXlzxIh5WD+7rfV+5zmua8Hs6zDsCBcXGVQwIgitDVV1n23OwdSYEtIb+34J3hKsjEhERERERAZS0l59ZiHPrNgyw55X5FPFZ8fy460c6RXaiW1Q3Xlv1GjHJMdhMG7P+msUd3e6gWXAznhv6XLnDTMyHjxJgTy4U2PKxmXbqe3sxNgJaqboO2QdhwzTH69TVEDMLOj/v2phERERERESOU9JeXj71oPMLxyu0raD12avgBbYC4rLiaBDQgKP5R+n8dmcSsxMxMPh93O/U8aqD3XR8EWA1rPh5+JGVl8XsNbPxsHpwe7fb8XLzKlV4dhMWpcF3yY7q+oGMAyzYswB72iJmduxBqyb/PqfbB9iYsBGAjpEdz/lcLmPxwLGJgt0xJMHq7eqIREREREREnJS0n4vW95UqWQdIzkmm13u92JO2hy51u/DC0BdIzE4EwDAMFu5dyKP9H+VQ1iE2JW5ics/JRPpFMvyz4fyy+xdM02Rt/Fo+vuLjs14rIQ8+SoS9xbZ333zod+wHn4fcXTy1ZD7T+pxb0v700qd59I9HAXhq0FM82v/Rczqfy3hHwAUfwfYXILBtqf8+RUREREREqoKS9iry9bav2ZO2B4B18etIOppEg4AGHMw8iIHBpc0vxcvNi9cuea1Ev1WHVjmr7ysPrTzjNewmLEiD+clQeHzuugEMrgOZLOHLY3swDCvRQdHnfD9vr33b+Xr2mtk1N2kHiL7R8SMiIiIiIlLNKGmvIs2CmwFgMSyYpkmb8Dasv309C/YuoENEB9qEtTllvzu738lTSx0L3N3V/S4OZx3m70N/06t+L+r613W2O5znmLu+/1hR33APGBcBzXzgokv/Qz2/UI7mH2Va32nnfD8X1L+AQ9sOOV43uOCczyciIiIiIiIn0z7tnNs+7am5qXwb8y3Ng5vTr1G/M7b9dNOnLNq3iCtaXcHlLS8v9TU2JmzE3eqOn4cfHd7qQEZeBkFeQWy6YxP1Ahrwayr8kFKyuj6kDowIBQ+L49j+9P1sStxE/0b9CfIKKtM97kvbx/Ql03G3uDNj8Awi/SLJLcjlnbXvAPCvrv/Cx92nTOcUERERERE5n5U2D1XSTvmT9nxbPm3fbMvu1N0AfHn1l4xuO/q07U/8URuGQb4tn78P/U10nWjqB9Qv1fU+3PAhN393s/P9yyO+JCd4NAeKVdcjPGB8JDQptp7a+vj1XPD+BeTZ8mgU2IjNd27G39O/1PfZ7Z1ubEjYAMDQpkP5+YafS91XRERERERETlbaPNRShTHVOgczDjoTdoth4bc9v5227fc7vifouSCCnw/mp10/MejDQfT/sD9NX23Kb7t/Y/BHg/F+2pu7fryL032P0qt+LzysjtXO3UJHsso61JmwG8BFwfB/jUom7AA/7PyBfFs+4FhFfm382jLdZ1xmHDbThs20cSjjUJn6ioiIiIiISPkpaT8HjYIa0S68HeCooo9oOeK0be/55R4y8zLJOJbB+G/Hs+LQCgAKbYU8ufRJFu9fzLHCY7y15q3TLji3L20fI9rfRa/e33FFn//i7xkEQF0PeLAhXBkG7qf4Gy0+bD/IK8gZc2k9O+RZ3C3ueLl5cVvX23hj1RtsO7KtTOcQERERERGRstNCdOfAzeLGigkr+Hn3zzQLbkaXul1O2zbYO5jYjFgw4UjOEedxO3ZahrTkz4N/Oo/5evie1H9p7Aou/fVNCB6OkXOYBuEGFgMuqgPDQ06drJ8wsPFAlk9Yzuq41YxoOYJQn9Ay3ee4TuMY03YMu1J30ePdHuTZ8vC0erL5zs00D2lepnOJiIiIiIhI6SlpP0f+nv6MaTvmrO0+u/Iz7v3tXuym3bHvOo4h8FbDyksXvYS/pz/LYpdxS+db6BDRoUTf2GPw4iE3CL4McFT1jfx4prWsQyOv0sXZu0FvejfoXbabK8bb3Zt18evIs+UBkGfLI2b3FzRf+SXYcqDHbIgcUu7zi4iIiIiIyMm0EB3ntnp8eQz4cABLDyx1vo+bGkeUf9RJ7Qrt8GMq/JIKR/Ozmbt9LjkFR4nM38CWa54nxDuw0mMt7kD6ATrM7kBmXiaBnoEkdGyBV9pawATvunBFXJXGIyIiIiIiUlNpIboq9Gfsn9w6/1beWPVGiUXkcgpyeGDBA9ww9wbWx693Hv/Pxf/B282xWlykbyTuFveTznngGDwdCz+lgN0EH3dfpnYZw499+7L3hleqPGEHxxz+bXdt4+vRX7Nt4ja8im/zZlTSo2TaIX0LHDty9rYiIiIiIiK1jCrtnFulPfFoIo1eaUShvRCbaeOeHvfw8sUvYzEs3Pfbfby88mUA6njVIf7eeNyt7hzKPESDlxsAjuHx915wL88NfQ6AArtjz/Xf0hzJeoEtn5jkbbR3O8is7kPxcy/lePiqkLEN/hoPtlzo/gaE96/Y85smLLsKDs0DixcMXgDhfSv2GiIiIiIiIi5Q2jxUc9pLafuR7Vz91dUcyT7Cfy7+D9e1vw6Aw1mHnfO8AV5d9Sp27Lx2yWvEZsRimiYmJim5KRwrPIa71R03ixsWw4LdtGNiHt/GDfblwkcJEJ9fdN0/d3/Bzq0PszI/jmNJY/lo1EdVet9nFNgGLl5VeefPPexI2AHMAtjznpJ2ERERERE5r2h4fCk9vOhhYpJjOJJzhAnzJ2Cz2wDoENGBS5pdUqLtvO2ORLNBQAPngnPuFnfsph2ACN8Inr3wWZoHN+eKVlcwudd9fHMEnostStitBowMheSYeyH/ECYmfx38q4rutprwDAXPMDCsYNogqMPZ+4iIiIiIiNQiStpLycvdC+P4f6Zpsjt1NwBWi5Ufr/+RG9rf4Gx7ecvLAci35WM5/kdcYC9wbvV2y/xbeGDhA8RlxTGm20O8mhjIb6lwYp5CIy94pBFcGgJ3dbvded47u91ZBXdajVg9Yeif0GoqdJ8Nraa4OiIREREREZEqpTntlG4uwaHMQ1z5xZWsPrwaAH8Pf3ZN2sXWI1t59e9XaRbcjO5R3XG3ujOy5UisFiubEzfT/8P+pB9L5+o2V/Pl1V+SkptC2AthYLhjhF5B0ya3MTj6QgDcDLg8BIYFg8VwXNc0TTYkbMDd6k678HZV8uchIiIiIiIilUtz2itY/YD6jGo1ijWH12BikpWfxd+H/uaab67hWOExDAxu73Y7bw1/y9mnfUR74qbGkZyTTIOABhiGQYBnAHWCepAeNALTPQwfdx9WHFxBmCWbd3r0ppmfb4nrGoZB57qdq/p2RUREREREpBrQ8Phi/oz9k4MZB0/7+YiWI/Byc6ze3iiwEVbDyrHCYwCYmMxeM5tlB5Y52+9P38+ADwbQ872efLzxY/LsMC/FgyEDf6Z11AB61O9BXMYBtm1/isXLL2HGwomVe4MiIiIiIiJSo6jSXsyln14KXjC111RmXTQLgOz8bA5nHaZpcFPahbdjx9072JK0hR71etDurZLD1Q0MFu1bRL9G/QB4fPHjrE9Yj820ccvC59jqdz0ZNnfqeAXTt2FfmnjDE39fiT1nHwDbjmyr2hsWERERERGRak2V9lN4aeVLpB9LZ3fqbhq90ogWr7eg/kv1+XnXzzQIbMAlzS/BzeJGwtGEEv0shqXESvIeFg9MwwPCrsWsN5XUQsdEdXcDRofB/Q3g0V63AuBmcePBPg9W3U2KiIiIiIhItaeF6ChaAIBpgJejYn5rl1v5fd/v7E3b69y2zWJY2D5xOy1CWhCTHMPwT4ezN30v4OhzffvrmXPlHOd5lx05wri/FpFms9AjqjuNg6Jp5g03RUKER9H1D2cdxtPqSYhPSFXetoiIiIiIiLiIFqI7R++ue/ekY3bTzr60fTQPbs5Fcy7iUOYh52eGYdCkThMAjtngm2RYmh7G0JbXAo7q+pVhMCgIDKPkeaP8oyrtPkRERERERKTmUtL+D+4WdwrthSWOeVm8OGY/Rveo7gxoPAATk8NZh7GbdgwMAr0CGd1mNA/2eZDt2fBxIqQWFPVvfry6Hu6BiIiIiIiISKkpaS+ma1RXejfrzWurXitxfNZFs7ik+SU0DGyI1WIF4KlBT/HwoofxdvfmmzHfcEHDwXxzBJZlFPXztMCVoTAg6OTquoiIiIiIiMjZaE47JecS+Pv78+TSJ5m+eLrz82U3L6Nvw74n9Us/lo6n1ZO9+d58kgBpxQr0LX3gpggIVXVdRERERERE/kFz2svJMAweH/A4nSM78/2O77mo2UWnTNgBPNyD+PIIrPhHdf3qMOgXqOq6iIiIiIiInBtV2in9NxzFbT4KcxIhvVh1vbUPjI2EEPdKClRERERERERqBVXaK0mODb5IgpWZRce8LI591/uoui4iIiIiIiIVSEl7GWw8Xl3PLFZdb+sLN0ZAsKrrIiIiIiIiUsGUtJdC9vHq+t/FquveFhgTDhcEqLouIiIiIiIilUNJ+1msz4LPkkpW19sfr64HqbouIiIiIiIilUhJ+2lkFcLnSbAmq+iYjxWuCYOeqq6LiIiIiIhIFVDSfgprs+B/iZBlKzrW0Q+uD1d1XURERERERKqOxdUBVJQ333yT6OhovLy86Nq1K8uWLSvzObIK4e3D8M7hooTd1wq31IU7o5Swi4iIiIiISNWqFUn7F198wZQpU3jkkUdYv349/fr145JLLiE2NrZM53nmAKwrNhy+sx9Mbww9NBxeREREREREXMAwTdN0dRDnqmfPnnTp0oW33nrLeax169aMGjWKmTNnnrX/iU3tx6/JwMMvAF+rYyh8V38l6yIiIiIiIlLxTuShGRkZBAQEnLZdjZ/Tnp+fz9q1a5k2bVqJ48OGDWPFihWn7JOXl0deXp7zfUZGhuNcRzPp6Aejg8EfyMo6ZXcRERERERGRc5KZ6dhT/Gx19BqftCcnJ2Oz2YiIiChxPCIigoSEhFP2mTlzJk888cRJxz8b2IDPgH9XRqAiIiIiIiIi/5CVlUVgYOBpP6/xSfsJxj/GsZumedKxEx566CGmTp3qfJ+enk6jRo2IjY094x+WSE2WmZlJgwYNOHjw4BmH34jUdHrW5Xyg51zOB3rOpbYzTZOsrCyioqLO2K7GJ+2hoaFYrdaTqupJSUknVd9P8PT0xNPT86TjgYGB+gdBar2AgAA953Je0LMu5wM953I+0HMutVlpisY1fvV4Dw8PunbtyoIFC0ocX7BgAb1793ZRVCIiIiIiIiLnrsZX2gGmTp3K2LFj6datGxdccAHvvPMOsbGx3HHHHa4OTURERERERKTcakXSfs0115CSksKTTz5JfHw87dq146effqJRo0al6u/p6cnjjz9+yiHzIrWFnnM5X+hZl/OBnnM5H+g5F3GoFfu0i4iIiIiIiNRGNX5Ou4iIiIiIiEhtpaRdREREREREpJpS0i4iIiIiIiJSTSlpFxEREREREammzvuk/c033yQ6OhovLy+6du3KsmXLXB2SSKnNnDmT7t274+/vT3h4OKNGjWLHjh0l2pimyfTp04mKisLb25uBAweydevWEm3y8vKYNGkSoaGh+Pr6MmLECA4dOlSVtyJSajNnzsQwDKZMmeI8pudcaou4uDhuvPFGQkJC8PHxoVOnTqxdu9b5uZ51qekKCwt59NFHiY6OxtvbmyZNmvDkk09it9udbfSci5R0XiftX3zxBVOmTOGRRx5h/fr19OvXj0suuYTY2FhXhyZSKkuWLGHixImsXLmSBQsWUFhYyLBhw8jOzna2ef7553nppZd4/fXXWb16NZGRkQwdOpSsrCxnmylTpjBv3jw+//xzli9fztGjR7nsssuw2WyuuC2R01q9ejXvvPMOHTp0KHFcz7nUBmlpafTp0wd3d3d+/vlntm3bxqxZswgKCnK20bMuNd1zzz3H7Nmzef3119m+fTvPP/88L7zwAq+99pqzjZ5zkX8wz2M9evQw77jjjhLHWrVqZU6bNs1FEYmcm6SkJBMwlyxZYpqmadrtdjMyMtJ89tlnnW2OHTtmBgYGmrNnzzZN0zTT09NNd3d38/PPP3e2iYuLMy0Wi/nLL79U7Q2InEFWVpbZvHlzc8GCBeaAAQPMyZMnm6ap51xqjwcffNDs27fvaT/Xsy61wfDhw80JEyaUOHbllVeaN954o2maes5FTuW8rbTn5+ezdu1ahg0bVuL4sGHDWLFihYuiEjk3GRkZAAQHBwOwb98+EhISSjznnp6eDBgwwPmcr127loKCghJtoqKiaNeunX4XpFqZOHEiw4cPZ8iQISWO6zmX2mL+/Pl069aN0aNHEx4eTufOnXn33Xedn+tZl9qgb9++LFq0iJ07dwKwceNGli9fzqWXXgroORc5FTdXB+AqycnJ2Gw2IiIiShyPiIggISHBRVGJlJ9pmkydOpW+ffvSrl07AOezfKrn/MCBA842Hh4e1KlT56Q2+l2Q6uLzzz9n3bp1rF69+qTP9JxLbbF3717eeustpk6dysMPP8yqVau455578PT05KabbtKzLrXCgw8+SEZGBq1atcJqtWKz2Xj66ae57rrrAP2bLnIq523SfoJhGCXem6Z50jGRmuDuu+9m06ZNLF++/KTPyvOc63dBqouDBw8yefJkfvvtN7y8vE7bTs+51HR2u51u3brxzDPPANC5c2e2bt3KW2+9xU033eRsp2ddarIvvviCOXPm8Nlnn9G2bVs2bNjAlClTiIqKYty4cc52es5Fipy3w+NDQ0OxWq0nfRuXlJR00jd7ItXdpEmTmD9/Pn/88Qf169d3Ho+MjAQ443MeGRlJfn4+aWlpp20j4kpr164lKSmJrl274ubmhpubG0uWLOHVV1/Fzc3N+ZzqOZearm7durRp06bEsdatWzsXyNW/6VIb3H///UybNo1rr72W9u3bM3bsWP79738zc+ZMQM+5yKmct0m7h4cHXbt2ZcGCBSWOL1iwgN69e7soKpGyMU2Tu+++m7lz5/L7778THR1d4vPo6GgiIyNLPOf5+fksWbLE+Zx37doVd3f3Em3i4+PZsmWLfhekWrjwwgvZvHkzGzZscP5069aNG264gQ0bNtCkSRM951Ir9OnT56RtO3fu3EmjRo0A/ZsutUNOTg4WS8kUxGq1Ord803MucgouWgCvWvj8889Nd3d38/333ze3bdtmTpkyxfT19TX379/v6tBESuXOO+80AwMDzcWLF5vx8fHOn5ycHGebZ5991gwMDDTnzp1rbt682bzuuuvMunXrmpmZmc42d9xxh1m/fn1z4cKF5rp168zBgwebHTt2NAsLC11xWyJnVXz1eNPUcy61w6pVq0w3Nzfz6aefNnft2mV++umnpo+PjzlnzhxnGz3rUtONGzfOrFevnvnDDz+Y+/btM+fOnWuGhoaaDzzwgLONnnORks7rpN00TfONN94wGzVqZHp4eJhdunRxbpUlUhMAp/z54IMPnG3sdrv5+OOPm5GRkaanp6fZv39/c/PmzSXOk5uba959991mcHCw6e3tbV522WVmbGxsFd+NSOn9M2nXcy61xffff2+2a9fO9PT0NFu1amW+8847JT7Xsy41XWZmpjl58mSzYcOGppeXl9mkSRPzkUceMfPy8pxt9JyLlGSYpmm6stIvIiIiIiIiIqd23s5pFxEREREREanulLSLiIiIiIiIVFNK2kVERERERESqKSXtIiIiIiIiItWUknYRERERERGRakpJu4iIiIiIiEg1paRdREREREREpJpS0i4iIiIiIiJSTSlpFxERkQoxffp0OnXq5OowABg/fjyjRo1ydRgiIiLnTEm7iIhINZOQkMDkyZNp1qwZXl5eRERE0LdvX2bPnk1OTo6rwyuX6dOnYxjGGX/2799f5vPu378fwzDYsGFDhccsIiJSHbi5OgAREREpsnfvXvr06UNQUBDPPPMM7du3p7CwkJ07d/Lf//6XqKgoRowYccq+BQUFuLu7V3HEpXPfffdxxx13ON93796d2267jX/961/OY2FhYc7X+fn5eHh4VGmMIiIi1ZEq7SIiItXIXXfdhZubG2vWrGHMmDG0bt2a9u3bc9VVV/Hjjz9y+eWXO9sahsHs2bMZOXIkvr6+zJgxA4C33nqLpk2b4uHhQcuWLfnkk0+cfU5VmU5PT8cwDBYvXgzA4sWLMQyDRYsW0a1bN3x8fOjduzc7duwoEeuzzz5LREQE/v7+3HLLLRw7duy09+Xn50dkZKTzx2q14u/v73w/bdo0rrrqKmbOnElUVBQtWrRw3uO3335b4lxBQUF8+OGHAERHRwPQuXNnDMNg4MCBJdq++OKL1K1bl5CQECZOnEhBQcFZ/w5ERESqEyXtIiIi1URKSgq//fYbEydOxNfX95RtDMMo8f7xxx9n5MiRbN68mQkTJjBv3jwmT57Mvffey5YtW7j99tu5+eab+eOPP8oczyOPPMKsWbNYs2YNbm5uTJgwwfnZl19+yeOPP87TTz/NmjVrqFu3Lm+++WaZr1HcokWL2L59OwsWLOCHH34oVZ9Vq1YBsHDhQuLj45k7d67zsz/++IM9e/bwxx9/8NFHH/Hhhx86k30REZGaQsPjRUREqondu3djmiYtW7YscTw0NNRZxZ44cSLPPfec87Prr7++RDJ9/fXXM378eO666y4Apk6dysqVK3nxxRcZNGhQmeJ5+umnGTBgAADTpk1j+PDhHDt2DC8vL1555RUmTJjArbfeCsCMGTNYuHDhGavtZ+Pr68t7771XpmHxJ4bUh4SEEBkZWeKzOnXq8Prrr2O1WmnVqhXDhw9n0aJFJYbki4iIVHeqtIuIiFQz/6ymr1q1ig0bNtC2bVvy8vJKfNatW7cS77dv306fPn1KHOvTpw/bt28vcxwdOnRwvq5bty4ASUlJzutccMEFJdr/831ZtW/fvkLnsbdt2xar1ep8X7duXWf8IiIiNYUq7SIiItVEs2bNMAyDmJiYEsebNGkCgLe390l9TjWM/p9Jv2mazmMWi8V57ITTzfMuvqjdif52u/2s91Fep7uX4rHC6eP9p38uymcYRqXGLyIiUhlUaRcREakmQkJCGDp0KK+//jrZ2dnlOkfr1q1Zvnx5iWMrVqygdevWQNFw8vj4eOfn5dkurXXr1qxcubLEsX++rwhhYWElYt21a1eJbe9OVOZtNluFX1tERKQ6UKVdRESkGnnzzTfp06cP3bp1Y/r06XTo0AGLxcLq1auJiYmha9euZ+x///33M2bMGLp06cKFF17I999/z9y5c1m4cCHgqNb36tWLZ599lsaNG5OcnMyjjz5a5jgnT57MuHHj6NatG3379uXTTz9l69atzlEBFWXw4MG8/vrr9OrVC7vdzoMPPliigh4eHo63tze//PIL9evXx8vLi8DAwAqNQURExJVUaRcREalGmjZtyvr16xkyZAgPPfQQHTt2pFu3brz22mvcd999PPXUU2fsP2rUKP7zn//wwgsv0LZtW95++20++OCDEluh/fe//6WgoIBu3boxefJk51ZxZXHNNdfw2GOP8eCDD9K1a1cOHDjAnXfeWebznM2sWbNo0KAB/fv35/rrr+e+++7Dx8fH+bmbmxuvvvoqb7/9NlFRUYwcObLCYxAREXElw/znRDERERERERERqRZUaRcRERERERGpppS0i4iIiIiIiFRTStpFREREREREqikl7SIiIiIiIiLVlJJ2ERERERERkWpKSbuIiIiIiIhINaWkXURERERERKSaUtIuIiIiIiIiUk0paRcRERERERGpppS0i4iIiIiIiFRTStpFREREREREqqn/ByansVB92ukcAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "Tester.test(ensemble_pricer, test)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "cff07ba7-4557-4519-acba-15475118065d", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.11" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/week8/community_contributions/Ensemble_with_xgboost/Build_Scanning_Agent.ipynb b/week8/community_contributions/Ensemble_with_xgboost/Build_Scanning_Agent.ipynb new file mode 100644 index 0000000..846a5e3 --- /dev/null +++ b/week8/community_contributions/Ensemble_with_xgboost/Build_Scanning_Agent.ipynb @@ -0,0 +1,235 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "0df0d850-49eb-4a0b-a27a-146969db710d", + "metadata": {}, + "source": [ + "# ScanningAgent\n", + "\n", + "Looks for promising deals by subscribing to RSS feeds." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d3763a79-8a5a-4300-8de4-93e85475af10", + "metadata": {}, + "outputs": [], + "source": [ + "# imports\n", + "\n", + "import os\n", + "import json\n", + "from dotenv import load_dotenv\n", + "from openai import OpenAI\n", + "from agents.deals import ScrapedDeal, DealSelection" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c6469e32-16c3-4443-9475-ade710ef6933", + "metadata": {}, + "outputs": [], + "source": [ + "# Initialize and constants\n", + "\n", + "load_dotenv(override=True)\n", + "os.environ['OPENAI_API_KEY'] = os.getenv('OPENAI_API_KEY', 'your-key-if-not-using-env')\n", + "MODEL = 'gpt-4o-mini'\n", + "openai = OpenAI()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "afece9db-8cd4-46be-ac57-0b472e84da7d", + "metadata": {}, + "outputs": [], + "source": [ + "deals = ScrapedDeal.fetch(show_progress=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8cd15c4d-eb44-4601-bf0c-f945c1d8e3ec", + "metadata": {}, + "outputs": [], + "source": [ + "len(deals)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4259f30a-6455-49ed-8863-2f9ddd4776cb", + "metadata": {}, + "outputs": [], + "source": [ + "deals[44].describe()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8100e5ac-38f5-40c1-a712-08ae12c85038", + "metadata": {}, + "outputs": [], + "source": [ + "system_prompt = \"\"\"You identify and summarize the 5 most detailed deals from a list, by selecting deals that have the most detailed, high quality description and the most clear price.\n", + "Respond strictly in JSON with no explanation, using this format. You should provide the price as a number derived from the description. If the price of a deal isn't clear, do not include that deal in your response.\n", + "Most important is that you respond with the 5 deals that have the most detailed product description with price. It's not important to mention the terms of the deal; most important is a thorough description of the product.\n", + "Be careful with products that are described as \"$XXX off\" or \"reduced by $XXX\" - this isn't the actual price of the product. Only respond with products when you are highly confident about the price. \n", + "\n", + "{\"deals\": [\n", + " {\n", + " \"product_description\": \"Your clearly expressed summary of the product in 4-5 sentences. Details of the item are much more important than why it's a good deal. Avoid mentioning discounts and coupons; focus on the item itself. There should be a paragpraph of text for each item you choose.\",\n", + " \"price\": 99.99,\n", + " \"url\": \"the url as provided\"\n", + " },\n", + " ...\n", + "]}\"\"\"" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f4bca170-af71-40c9-9597-1d72980c74d8", + "metadata": {}, + "outputs": [], + "source": [ + "user_prompt = \"\"\"Respond with the most promising 5 deals from this list, selecting those which have the most detailed, high quality product description and a clear price.\n", + "Respond strictly in JSON, and only JSON. You should rephrase the description to be a summary of the product itself, not the terms of the deal.\n", + "Remember to respond with a paragraph of text in the product_description field for each of the 5 items that you select.\n", + "Be careful with products that are described as \"$XXX off\" or \"reduced by $XXX\" - this isn't the actual price of the product. Only respond with products when you are highly confident about the price. \n", + "\n", + "Deals:\n", + "\n", + "\"\"\"\n", + "user_prompt += '\\n\\n'.join([deal.describe() for deal in deals])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "020947a6-561b-417b-98a0-a085e31d2ce3", + "metadata": {}, + "outputs": [], + "source": [ + "print(user_prompt[:2000])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "7de46f74-868c-4127-8a68-cf2da7d600bb", + "metadata": {}, + "outputs": [], + "source": [ + "def get_recommendations():\n", + " completion = openai.beta.chat.completions.parse(\n", + " model=\"gpt-4o-mini\",\n", + " messages=[\n", + " {\"role\": \"system\", \"content\": system_prompt},\n", + " {\"role\": \"user\", \"content\": user_prompt}\n", + " ],\n", + " response_format=DealSelection\n", + " )\n", + " result = completion.choices[0].message.parsed\n", + " return result" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4c06270d-8c17-4d5a-9cfe-b6cefe788d5e", + "metadata": {}, + "outputs": [], + "source": [ + "result = get_recommendations()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "84e62845-3338-441a-8161-c70097af4773", + "metadata": {}, + "outputs": [], + "source": [ + "len(result.deals)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e5554a0a-ae40-4684-ad3e-faa3d22e030c", + "metadata": {}, + "outputs": [], + "source": [ + "result.deals[1]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8bdc57fb-7497-47af-a643-6ba5a21cc17e", + "metadata": {}, + "outputs": [], + "source": [ + "from agents.scanner_agent import ScannerAgent" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "132278bc-217a-43a6-b6c4-724140c6a225", + "metadata": {}, + "outputs": [], + "source": [ + "agent = ScannerAgent()\n", + "result = agent.scan()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2e1d013a-c930-4dad-901b-41433379e14b", + "metadata": {}, + "outputs": [], + "source": [ + "result" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5ee2e837-1f1d-42d4-8bc4-51cccc343006", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.11" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/week8/community_contributions/Ensemble_with_xgboost/Create_Vector_Database.ipynb b/week8/community_contributions/Ensemble_with_xgboost/Create_Vector_Database.ipynb new file mode 100644 index 0000000..2dcc68e --- /dev/null +++ b/week8/community_contributions/Ensemble_with_xgboost/Create_Vector_Database.ipynb @@ -0,0 +1,208 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "id": "993a2a24-1a58-42be-8034-6d116fb8d786", + "metadata": {}, + "outputs": [], + "source": [ + "# imports\n", + "\n", + "import os\n", + "import re\n", + "import math\n", + "import json\n", + "from tqdm import tqdm\n", + "import random\n", + "from dotenv import load_dotenv\n", + "from huggingface_hub import login\n", + "import numpy as np\n", + "import pickle\n", + "from sentence_transformers import SentenceTransformer\n", + "from datasets import load_dataset\n", + "import chromadb\n", + "from items import Item\n", + "from sklearn.manifold import TSNE\n", + "import plotly.graph_objects as go" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2359ccc0-dbf2-4b1e-9473-e472b32f548b", + "metadata": {}, + "outputs": [], + "source": [ + "# environment\n", + "\n", + "load_dotenv(override=True)\n", + "os.environ['OPENAI_API_KEY'] = os.getenv('OPENAI_API_KEY', 'your-key-if-not-using-env')\n", + "os.environ['HF_TOKEN'] = os.getenv('HF_TOKEN', 'your-key-if-not-using-env')\n", + "DB = \"products_vectorstore\"" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "645167e6-cf0d-42d2-949f-1089a25a2841", + "metadata": {}, + "outputs": [], + "source": [ + "# Log in to HuggingFace\n", + "\n", + "hf_token = os.environ['HF_TOKEN']\n", + "login(hf_token, add_to_git_credential=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "688bd995-ec3e-43cd-8179-7fe14b275877", + "metadata": {}, + "outputs": [], + "source": [ + "# With train.pkl in this folder\n", + "with open('train.pkl', 'rb') as file:\n", + " train = pickle.load(file)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f4aab95e-d719-4476-b6e7-e248120df25a", + "metadata": {}, + "outputs": [], + "source": [ + "client = chromadb.PersistentClient(path=DB)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5f95dafd-ab80-464e-ba8a-dec7a2424780", + "metadata": {}, + "outputs": [], + "source": [ + "# Check if the collection exists and delete it if it does\n", + "collection_name = \"products\"\n", + "existing_collection_names = [collection.name for collection in client.list_collections()]\n", + "if collection_name in existing_collection_names:\n", + " client.delete_collection(collection_name)\n", + " print(f\"Deleted existing collection: {collection_name}\")\n", + "\n", + "collection = client.create_collection(collection_name)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a87db200-d19d-44bf-acbd-15c45c70f5c9", + "metadata": {}, + "outputs": [], + "source": [ + "model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "9b23a025-4c35-4d3a-96ad-b956cad37b0a", + "metadata": {}, + "outputs": [], + "source": [ + "# Pass in a list of texts, get back a numpy array of vectors\n", + "vector = model.encode([\"Well hi there\"])[0]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8adde63f-e732-4f7c-bba9-f8b2a469f14e", + "metadata": {}, + "outputs": [], + "source": [ + "vector" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "38de1bf8-c9b5-45b4-9f4b-86af93b3f80d", + "metadata": {}, + "outputs": [], + "source": [ + "def description(item):\n", + " text = item.prompt.replace(\"How much does this cost to the nearest dollar?\\n\\n\", \"\")\n", + " return text.split(\"\\n\\nPrice is $\")[0]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8c1205bd-4692-44ef-8ea4-69f255354537", + "metadata": {}, + "outputs": [], + "source": [ + "description(train[0])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8c79e2fe-1f50-4ebf-9a93-34f3088f2996", + "metadata": {}, + "outputs": [], + "source": [ + "for i in tqdm(range(0, len(train), 1000)):\n", + " documents = [description(item) for item in train[i: i+1000]]\n", + " vectors = model.encode(documents).astype(float).tolist()\n", + " metadatas = [{\"category\": item.category, \"price\": item.price} for item in train[i: i+1000]]\n", + " ids = [f\"doc_{j}\" for j in range(i, i+1000)]\n", + " collection.add(\n", + " ids=ids,\n", + " documents=documents,\n", + " embeddings=vectors,\n", + " metadatas=metadatas\n", + " )" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5a9395db-7bc9-47f9-902f-af8d380c9c09", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "745f73d9-f1a6-4e9f-96d9-1c38a1dd7559", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.11" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/week8/community_contributions/Ensemble_with_xgboost/Deploy_Specialist_Agent_to_Modal.ipynb b/week8/community_contributions/Ensemble_with_xgboost/Deploy_Specialist_Agent_to_Modal.ipynb new file mode 100644 index 0000000..8e51070 --- /dev/null +++ b/week8/community_contributions/Ensemble_with_xgboost/Deploy_Specialist_Agent_to_Modal.ipynb @@ -0,0 +1,104 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "id": "bc0e1c1c-be6a-4395-bbbd-eeafc9330d7e", + "metadata": {}, + "outputs": [], + "source": [ + "# import modal\n", + "import modal" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0d240622-8422-4c99-8464-c04d063e4cb6", + "metadata": {}, + "outputs": [], + "source": [ + "# !modal setup" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0050c070-146f-4c26-8045-5ff284761199", + "metadata": {}, + "outputs": [], + "source": [ + "import os" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ebf35de4-ef8f-4e5b-8d4e-9a1771bfbe25", + "metadata": {}, + "outputs": [], + "source": [ + "os.environ['PYTHONIOENCODING'] = 'utf-8'" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "7f90d857-2f12-4521-bb90-28efd917f7d1", + "metadata": {}, + "outputs": [], + "source": [ + "!modal deploy pricer_service" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "1dec70ff-1986-4405-8624-9bbbe0ce1f4a", + "metadata": {}, + "outputs": [], + "source": [ + "pricer = modal.Cls.from_name(\"pricer-service\", \"Pricer\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "17776139-0d9e-4ad0-bcd0-82d3a92ca61f", + "metadata": {}, + "outputs": [], + "source": [ + "pricer().price.remote(\"Quadcast HyperX condenser mic, connects via usb-c to your computer for crystal clear audio\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "deb6cdf6-bcb0-49fb-8671-bb5eb22f02e3", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.11" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/week8/community_contributions/Ensemble_with_xgboost/Visualize_vectors.ipynb b/week8/community_contributions/Ensemble_with_xgboost/Visualize_vectors.ipynb new file mode 100644 index 0000000..7721480 --- /dev/null +++ b/week8/community_contributions/Ensemble_with_xgboost/Visualize_vectors.ipynb @@ -0,0 +1,195 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "id": "993a2a24-1a58-42be-8034-6d116fb8d786", + "metadata": {}, + "outputs": [], + "source": [ + "# imports\n", + "\n", + "import os\n", + "import re\n", + "import math\n", + "import json\n", + "from tqdm import tqdm\n", + "import random\n", + "from dotenv import load_dotenv\n", + "from huggingface_hub import login\n", + "import numpy as np\n", + "import pickle\n", + "from sentence_transformers import SentenceTransformer\n", + "from datasets import load_dataset\n", + "import chromadb\n", + "from items import Item\n", + "from sklearn.manifold import TSNE\n", + "import plotly.graph_objects as go" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "1cc1fe53-612f-4228-aa02-8758f4c2098f", + "metadata": {}, + "outputs": [], + "source": [ + "MAXIMUM_DATAPOINTS = 30_000" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f4aab95e-d719-4476-b6e7-e248120df25a", + "metadata": {}, + "outputs": [], + "source": [ + "DB = \"products_vectorstore\"\n", + "client = chromadb.PersistentClient(path=DB)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5f95dafd-ab80-464e-ba8a-dec7a2424780", + "metadata": {}, + "outputs": [], + "source": [ + "collection = client.get_or_create_collection('products')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "525fc313-8a16-4ac0-8c42-6a6d1ba1c9b8", + "metadata": {}, + "outputs": [], + "source": [ + "CATEGORIES = ['Appliances', 'Automotive', 'Cell_Phones_and_Accessories', 'Electronics','Musical_Instruments', 'Office_Products', 'Tools_and_Home_Improvement', 'Toys_and_Games']\n", + "COLORS = ['red', 'blue', 'brown', 'orange', 'yellow', 'green' , 'purple', 'cyan']" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a4cf1c9a-1ced-48d4-974c-3c850905034e", + "metadata": {}, + "outputs": [], + "source": [ + "# Prework\n", + "result = collection.get(include=['embeddings', 'documents', 'metadatas'], limit=MAXIMUM_DATAPOINTS)\n", + "vectors = np.array(result['embeddings'])\n", + "documents = result['documents']\n", + "categories = [metadata['category'] for metadata in result['metadatas']]\n", + "colors = [COLORS[CATEGORIES.index(c)] for c in categories]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c54df150-c8d8-4bc3-8877-6759691eeb42", + "metadata": {}, + "outputs": [], + "source": [ + "# Let's try a 2D chart\n", + "tsne_2d = TSNE(n_components=2, random_state=42, n_jobs=-1)\n", + "reduced_vectors_2d = tsne_2d.fit_transform(vectors)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c93457ab-d895-4d9c-8e5c-1173e2089cfd", + "metadata": {}, + "outputs": [], + "source": [ + "# Let's try 3D!\n", + "tsne_3d = TSNE(n_components=3, random_state=42, n_jobs=-1)\n", + "reduced_vectors_3d = tsne_3d.fit_transform(vectors)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e8fb2a63-24c5-4dce-9e63-aa208272f82d", + "metadata": {}, + "outputs": [], + "source": [ + "# Create the 2D scatter plot\n", + "fig = go.Figure(data=[go.Scatter(\n", + " x=reduced_vectors_2d[:, 0],\n", + " y=reduced_vectors_2d[:, 1],\n", + " mode='markers',\n", + " marker=dict(size=3, color=colors, opacity=0.7),\n", + ")])\n", + "\n", + "fig.update_layout(\n", + " title='2D Chroma Vectorstore Visualization',\n", + " scene=dict(xaxis_title='x', yaxis_title='y'),\n", + " width=1200,\n", + " height=800,\n", + " margin=dict(r=20, b=10, l=10, t=40)\n", + ")\n", + "\n", + "fig.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5e4ae088-3d29-45d3-87a2-fea805fe2c65", + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "# Create the 3D scatter plot\n", + "fig = go.Figure(data=[go.Scatter3d(\n", + " x=reduced_vectors_3d[:, 0],\n", + " y=reduced_vectors_3d[:, 1],\n", + " z=reduced_vectors_3d[:, 2],\n", + " mode='markers',\n", + " marker=dict(size=3, color=colors, opacity=0.7),\n", + ")])\n", + "\n", + "fig.update_layout(\n", + " title='3D Chroma Vector Store Visualization',\n", + " scene=dict(xaxis_title='x', yaxis_title='y', zaxis_title='z'),\n", + " width=1200,\n", + " height=800,\n", + " margin=dict(r=20, b=10, l=10, t=40)\n", + ")\n", + "\n", + "fig.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0a12d1e8-7da8-401d-8c8d-ba0098096ded", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.11" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/week8/community_contributions/Ensemble_with_xgboost/agents/agent.py b/week8/community_contributions/Ensemble_with_xgboost/agents/agent.py new file mode 100644 index 0000000..fe09e18 --- /dev/null +++ b/week8/community_contributions/Ensemble_with_xgboost/agents/agent.py @@ -0,0 +1,33 @@ +import logging + +class Agent: + """ + An abstract superclass for Agents + Used to log messages in a way that can identify each Agent + """ + + # Foreground colors + RED = '\033[31m' + GREEN = '\033[32m' + YELLOW = '\033[33m' + BLUE = '\033[34m' + MAGENTA = '\033[35m' + CYAN = '\033[36m' + WHITE = '\033[37m' + + # Background color + BG_BLACK = '\033[40m' + + # Reset code to return to default color + RESET = '\033[0m' + + name: str = "" + color: str = '\033[37m' + + def log(self, message): + """ + Log this as an info message, identifying the agent + """ + color_code = self.BG_BLACK + self.color + message = f"[{self.name}] {message}" + logging.info(color_code + message + self.RESET) \ No newline at end of file diff --git a/week8/community_contributions/Ensemble_with_xgboost/agents/deals.py b/week8/community_contributions/Ensemble_with_xgboost/agents/deals.py new file mode 100644 index 0000000..5fb8039 --- /dev/null +++ b/week8/community_contributions/Ensemble_with_xgboost/agents/deals.py @@ -0,0 +1,109 @@ +from pydantic import BaseModel +from typing import List, Dict, Self +from bs4 import BeautifulSoup +import re +import feedparser +from tqdm import tqdm +import requests +import time + +feeds = [ + "https://www.dealnews.com/c142/Electronics/?rss=1", + "https://www.dealnews.com/c39/Computers/?rss=1", + "https://www.dealnews.com/c238/Automotive/?rss=1", + "https://www.dealnews.com/f1912/Smart-Home/?rss=1", + "https://www.dealnews.com/c196/Home-Garden/?rss=1", + ] + +def extract(html_snippet: str) -> str: + """ + Use Beautiful Soup to clean up this HTML snippet and extract useful text + """ + soup = BeautifulSoup(html_snippet, 'html.parser') + snippet_div = soup.find('div', class_='snippet summary') + + if snippet_div: + description = snippet_div.get_text(strip=True) + description = BeautifulSoup(description, 'html.parser').get_text() + description = re.sub('<[^<]+?>', '', description) + result = description.strip() + else: + result = html_snippet + return result.replace('\n', ' ') + +class ScrapedDeal: + """ + A class to represent a Deal retrieved from an RSS feed + """ + category: str + title: str + summary: str + url: str + details: str + features: str + + def __init__(self, entry: Dict[str, str]): + """ + Populate this instance based on the provided dict + """ + self.title = entry['title'] + self.summary = extract(entry['summary']) + self.url = entry['links'][0]['href'] + stuff = requests.get(self.url).content + soup = BeautifulSoup(stuff, 'html.parser') + content = soup.find('div', class_='content-section').get_text() + content = content.replace('\nmore', '').replace('\n', ' ') + if "Features" in content: + self.details, self.features = content.split("Features") + else: + self.details = content + self.features = "" + + def __repr__(self): + """ + Return a string to describe this deal + """ + return f"<{self.title}>" + + def describe(self): + """ + Return a longer string to describe this deal for use in calling a model + """ + return f"Title: {self.title}\nDetails: {self.details.strip()}\nFeatures: {self.features.strip()}\nURL: {self.url}" + + @classmethod + def fetch(cls, show_progress : bool = False) -> List[Self]: + """ + Retrieve all deals from the selected RSS feeds + """ + deals = [] + feed_iter = tqdm(feeds) if show_progress else feeds + for feed_url in feed_iter: + feed = feedparser.parse(feed_url) + for entry in feed.entries[:10]: + deals.append(cls(entry)) + time.sleep(0.5) + return deals + +class Deal(BaseModel): + """ + A class to Represent a Deal with a summary description + """ + product_description: str + price: float + url: str + +class DealSelection(BaseModel): + """ + A class to Represent a list of Deals + """ + deals: List[Deal] + +class Opportunity(BaseModel): + """ + A class to represent a possible opportunity: a Deal where we estimate + it should cost more than it's being offered + """ + deal: Deal + estimate: float + discount: float \ No newline at end of file diff --git a/week8/community_contributions/Ensemble_with_xgboost/agents/ensemble_agent.py b/week8/community_contributions/Ensemble_with_xgboost/agents/ensemble_agent.py new file mode 100644 index 0000000..c46e523 --- /dev/null +++ b/week8/community_contributions/Ensemble_with_xgboost/agents/ensemble_agent.py @@ -0,0 +1,52 @@ +import pandas as pd +from sklearn.linear_model import LinearRegression +import joblib + +from agents.agent import Agent +from agents.specialist_agent import SpecialistAgent +from agents.frontier_agent import FrontierAgent +from agents.random_forest_agent import RandomForestAgent +from agents.gradient_boosting_agent import GradientBoostingAgent + +class EnsembleAgent(Agent): + + name = "Ensemble Agent" + color = Agent.YELLOW + + def __init__(self, collection): + """ + Create an instance of Ensemble, by creating each of the models + And loading the weights of the Ensemble + """ + self.log("Initializing Ensemble Agent") + self.specialist = SpecialistAgent() + self.frontier = FrontierAgent(collection) + self.random_forest = RandomForestAgent() + self.gradient_boosting = GradientBoostingAgent() + self.model = joblib.load('ensemble_model.pkl') + self.log("Ensemble Agent is ready") + + def price(self, description: str) -> float: + """ + Run this ensemble model + Ask each of the models to price the product + Then use the Linear Regression model to return the weighted price + :param description: the description of a product + :return: an estimate of its price + """ + self.log("Running Ensemble Agent - collaborating with specialist, frontier and random forest agents") + specialist = self.specialist.price(description) + frontier = self.frontier.price(description) + random_forest = self.random_forest.price(description) + gradient_boosting = self.gradient_boosting.price(description) + X = pd.DataFrame({ + 'Specialist': [specialist], + 'Frontier': [frontier], + 'RandomForest': [random_forest], + 'GradientBoosting': [gradient_boosting], + 'Min': [min(specialist, frontier, random_forest)], + 'Max': [max(specialist, frontier, random_forest)], + }) + y = max(0, self.model.predict(X)[0]) + self.log(f"Ensemble Agent complete - returning ${y:.2f}") + return y \ No newline at end of file diff --git a/week8/community_contributions/Ensemble_with_xgboost/agents/frontier_agent.py b/week8/community_contributions/Ensemble_with_xgboost/agents/frontier_agent.py new file mode 100644 index 0000000..590c9e8 --- /dev/null +++ b/week8/community_contributions/Ensemble_with_xgboost/agents/frontier_agent.py @@ -0,0 +1,109 @@ +# imports + +import os +import re +import math +import json +from typing import List, Dict +import openai +from openai import OpenAI +from sentence_transformers import SentenceTransformer +from datasets import load_dataset +import chromadb +from items import Item +from testing import Tester +from agents.agent import Agent + + +class FrontierAgent(Agent): + + name = "Frontier Agent" + color = Agent.BLUE + + MODEL = "gpt-4o-mini" + + def __init__(self, collection): + """ + Set up this instance by connecting to OpenAI or DeepSeek, to the Chroma Datastore, + And setting up the vector encoding model + """ + self.log("Initializing Frontier Agent") + openai.api_key = os.getenv("OPENAI_API_KEY") + self.client = OpenAI() + self.MODEL = "gpt-4o-mini" + self.log("Frontier Agent is setting up with OpenAI") + self.collection = collection + self.model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') + self.log("Frontier Agent is ready") + + def make_context(self, similars: List[str], prices: List[float]) -> str: + """ + Create context that can be inserted into the prompt + :param similars: similar products to the one being estimated + :param prices: prices of the similar products + :return: text to insert in the prompt that provides context + """ + message = "To provide some context, here are some other items that might be similar to the item you need to estimate.\n\n" + for similar, price in zip(similars, prices): + message += f"Potentially related product:\n{similar}\nPrice is ${price:.2f}\n\n" + return message + + def messages_for(self, description: str, similars: List[str], prices: List[float]) -> List[Dict[str, str]]: + """ + Create the message list to be included in a call to OpenAI + With the system and user prompt + :param description: a description of the product + :param similars: similar products to this one + :param prices: prices of similar products + :return: the list of messages in the format expected by OpenAI + """ + system_message = "You estimate prices of items. Reply only with the price, no explanation. Price is always below $1000." + user_prompt = self.make_context(similars, prices) + user_prompt += "And now the question for you:\n\n" + user_prompt += "How much does this cost?\n\n" + description + return [ + {"role": "system", "content": system_message}, + {"role": "user", "content": user_prompt}, + {"role": "assistant", "content": "Price is $"} + ] + + def find_similars(self, description: str): + """ + Return a list of items similar to the given one by looking in the Chroma datastore + """ + self.log("Frontier Agent is performing a RAG search of the Chroma datastore to find 5 similar products") + vector = self.model.encode([description]) + results = self.collection.query(query_embeddings=vector.astype(float).tolist(), n_results=5) + documents = results['documents'][0][:] + prices = [m['price'] for m in results['metadatas'][0][:]] + self.log("Frontier Agent has found similar products") + return documents, prices + + def get_price(self, s) -> float: + """ + A utility that plucks a floating point number out of a string + """ + s = s.replace('$','').replace(',','') + match = re.search(r"[-+]?\d*\.\d+|\d+", s) + return float(match.group()) if match else 0.0 + + def price(self, description: str) -> float: + """ + Make a call to OpenAI to estimate the price of the described product, + by looking up 5 similar products and including them in the prompt to give context + :param description: a description of the product + :return: an estimate of the price + """ + documents, prices = self.find_similars(description) + self.log(f"Frontier Agent is about to call {self.MODEL} with context including 5 similar products") + response = self.client.chat.completions.create( + model=self.MODEL, + messages=self.messages_for(description, documents, prices), + seed=42, + max_tokens=5 + ) + reply = response.choices[0].message.content + result = self.get_price(reply) + self.log(f"Frontier Agent completed - predicting ${result:.2f}") + return result + \ No newline at end of file diff --git a/week8/community_contributions/Ensemble_with_xgboost/agents/gradient_boosting_agent.py b/week8/community_contributions/Ensemble_with_xgboost/agents/gradient_boosting_agent.py new file mode 100644 index 0000000..01274fb --- /dev/null +++ b/week8/community_contributions/Ensemble_with_xgboost/agents/gradient_boosting_agent.py @@ -0,0 +1,37 @@ +# imports + +import os +import re +from typing import List +from sentence_transformers import SentenceTransformer +import joblib +from agents.agent import Agent + + + +class GradientBoostingAgent(Agent): + + name = "Gradient Boosting Agent" + color = Agent.MAGENTA + + def __init__(self): + """ + Initialize this object by loading in the saved model weights + and the SentenceTransformer vector encoding model + """ + self.log("Gradient Boosting Agent is initializing") + self.vectorizer = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') + self.model = joblib.load('gradient_boosting_model.pkl') + self.log("Gradient Boosting Agent is ready") + + def price(self, description: str) -> float: + """ + Use a Random Forest model to estimate the price of the described item + :param description: the product to be estimated + :return: the price as a float + """ + self.log("Gradient Boosting Agent is starting a prediction") + vector = self.vectorizer.encode([description]) + result = max(0, self.model.predict(vector)[0]) + self.log(f"Gradient Boosting Agent completed - predicting ${result:.2f}") + return result \ No newline at end of file diff --git a/week8/community_contributions/Ensemble_with_xgboost/agents/messaging_agent.py b/week8/community_contributions/Ensemble_with_xgboost/agents/messaging_agent.py new file mode 100644 index 0000000..7494703 --- /dev/null +++ b/week8/community_contributions/Ensemble_with_xgboost/agents/messaging_agent.py @@ -0,0 +1,79 @@ +import os +# from twilio.rest import Client +from agents.deals import Opportunity +import http.client +import urllib +from agents.agent import Agent + +# Uncomment the Twilio lines if you wish to use Twilio + +DO_TEXT = False +DO_PUSH = True + +class MessagingAgent(Agent): + + name = "Messaging Agent" + color = Agent.WHITE + + def __init__(self): + """ + Set up this object to either do push notifications via Pushover, + or SMS via Twilio, + whichever is specified in the constants + """ + self.log(f"Messaging Agent is initializing") + if DO_TEXT: + account_sid = os.getenv('TWILIO_ACCOUNT_SID', 'your-sid-if-not-using-env') + auth_token = os.getenv('TWILIO_AUTH_TOKEN', 'your-auth-if-not-using-env') + self.me_from = os.getenv('TWILIO_FROM', 'your-phone-number-if-not-using-env') + self.me_to = os.getenv('MY_PHONE_NUMBER', 'your-phone-number-if-not-using-env') + # self.client = Client(account_sid, auth_token) + self.log("Messaging Agent has initialized Twilio") + if DO_PUSH: + self.pushover_user = os.getenv('PUSHOVER_USER', 'your-pushover-user-if-not-using-env') + self.pushover_token = os.getenv('PUSHOVER_TOKEN', 'your-pushover-user-if-not-using-env') + self.log("Messaging Agent has initialized Pushover") + + def message(self, text): + """ + Send an SMS message using the Twilio API + """ + self.log("Messaging Agent is sending a text message") + message = self.client.messages.create( + from_=self.me_from, + body=text, + to=self.me_to + ) + + def push(self, text): + """ + Send a Push Notification using the Pushover API + """ + self.log("Messaging Agent is sending a push notification") + conn = http.client.HTTPSConnection("api.pushover.net:443") + conn.request("POST", "/1/messages.json", + urllib.parse.urlencode({ + "token": self.pushover_token, + "user": self.pushover_user, + "message": text, + "sound": "cashregister" + }), { "Content-type": "application/x-www-form-urlencoded" }) + conn.getresponse() + + def alert(self, opportunity: Opportunity): + """ + Make an alert about the specified Opportunity + """ + text = f"Deal Alert! Price=${opportunity.deal.price:.2f}, " + text += f"Estimate=${opportunity.estimate:.2f}, " + text += f"Discount=${opportunity.discount:.2f} :" + text += opportunity.deal.product_description[:10]+'... ' + text += opportunity.deal.url + if DO_TEXT: + self.message(text) + if DO_PUSH: + self.push(text) + self.log("Messaging Agent has completed") + + + \ No newline at end of file diff --git a/week8/community_contributions/Ensemble_with_xgboost/agents/planning_agent.py b/week8/community_contributions/Ensemble_with_xgboost/agents/planning_agent.py new file mode 100644 index 0000000..547536a --- /dev/null +++ b/week8/community_contributions/Ensemble_with_xgboost/agents/planning_agent.py @@ -0,0 +1,57 @@ +from typing import Optional, List +from agents.agent import Agent +from agents.deals import ScrapedDeal, DealSelection, Deal, Opportunity +from agents.scanner_agent import ScannerAgent +from agents.ensemble_agent import EnsembleAgent +from agents.messaging_agent import MessagingAgent + + +class PlanningAgent(Agent): + + name = "Planning Agent" + color = Agent.GREEN + DEAL_THRESHOLD = 50 + + def __init__(self, collection): + """ + Create instances of the 3 Agents that this planner coordinates across + """ + self.log("Planning Agent is initializing") + self.scanner = ScannerAgent() + self.ensemble = EnsembleAgent(collection) + self.messenger = MessagingAgent() + self.log("Planning Agent is ready") + + def run(self, deal: Deal) -> Opportunity: + """ + Run the workflow for a particular deal + :param deal: the deal, summarized from an RSS scrape + :returns: an opportunity including the discount + """ + self.log("Planning Agent is pricing up a potential deal") + estimate = self.ensemble.price(deal.product_description) + discount = estimate - deal.price + self.log(f"Planning Agent has processed a deal with discount ${discount:.2f}") + return Opportunity(deal=deal, estimate=estimate, discount=discount) + + def plan(self, memory: List[str] = []) -> Optional[Opportunity]: + """ + Run the full workflow: + 1. Use the ScannerAgent to find deals from RSS feeds + 2. Use the EnsembleAgent to estimate them + 3. Use the MessagingAgent to send a notification of deals + :param memory: a list of URLs that have been surfaced in the past + :return: an Opportunity if one was surfaced, otherwise None + """ + self.log("Planning Agent is kicking off a run") + selection = self.scanner.scan(memory=memory) + if selection: + opportunities = [self.run(deal) for deal in selection.deals[:5]] + opportunities.sort(key=lambda opp: opp.discount, reverse=True) + best = opportunities[0] + self.log(f"Planning Agent has identified the best deal has discount ${best.discount:.2f}") + if best.discount > self.DEAL_THRESHOLD: + self.messenger.alert(best) + self.log("Planning Agent has completed a run") + return best if best.discount > self.DEAL_THRESHOLD else None + return None \ No newline at end of file diff --git a/week8/community_contributions/Ensemble_with_xgboost/agents/random_forest_agent.py b/week8/community_contributions/Ensemble_with_xgboost/agents/random_forest_agent.py new file mode 100644 index 0000000..bfe9715 --- /dev/null +++ b/week8/community_contributions/Ensemble_with_xgboost/agents/random_forest_agent.py @@ -0,0 +1,37 @@ +# imports + +import os +import re +from typing import List +from sentence_transformers import SentenceTransformer +import joblib +from agents.agent import Agent + + + +class RandomForestAgent(Agent): + + name = "Random Forest Agent" + color = Agent.MAGENTA + + def __init__(self): + """ + Initialize this object by loading in the saved model weights + and the SentenceTransformer vector encoding model + """ + self.log("Random Forest Agent is initializing") + self.vectorizer = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') + self.model = joblib.load('random_forest_model.pkl') + self.log("Random Forest Agent is ready") + + def price(self, description: str) -> float: + """ + Use a Random Forest model to estimate the price of the described item + :param description: the product to be estimated + :return: the price as a float + """ + self.log("Random Forest Agent is starting a prediction") + vector = self.vectorizer.encode([description]) + result = max(0, self.model.predict(vector)[0]) + self.log(f"Random Forest Agent completed - predicting ${result:.2f}") + return result \ No newline at end of file diff --git a/week8/community_contributions/Ensemble_with_xgboost/agents/scanner_agent.py b/week8/community_contributions/Ensemble_with_xgboost/agents/scanner_agent.py new file mode 100644 index 0000000..8dc6674 --- /dev/null +++ b/week8/community_contributions/Ensemble_with_xgboost/agents/scanner_agent.py @@ -0,0 +1,94 @@ +import os +import json +from typing import Optional, List +from openai import OpenAI +from agents.deals import ScrapedDeal, DealSelection +from agents.agent import Agent + + +class ScannerAgent(Agent): + + MODEL = "gpt-4o-mini" + + SYSTEM_PROMPT = """You identify and summarize the 5 most detailed deals from a list, by selecting deals that have the most detailed, high quality description and the most clear price. + Respond strictly in JSON with no explanation, using this format. You should provide the price as a number derived from the description. If the price of a deal isn't clear, do not include that deal in your response. + Most important is that you respond with the 5 deals that have the most detailed product description with price. It's not important to mention the terms of the deal; most important is a thorough description of the product. + Be careful with products that are described as "$XXX off" or "reduced by $XXX" - this isn't the actual price of the product. Only respond with products when you are highly confident about the price. + + {"deals": [ + { + "product_description": "Your clearly expressed summary of the product in 4-5 sentences. Details of the item are much more important than why it's a good deal. Avoid mentioning discounts and coupons; focus on the item itself. There should be a paragpraph of text for each item you choose.", + "price": 99.99, + "url": "the url as provided" + }, + ... + ]}""" + + USER_PROMPT_PREFIX = """Respond with the most promising 5 deals from this list, selecting those which have the most detailed, high quality product description and a clear price that is greater than 0. + Respond strictly in JSON, and only JSON. You should rephrase the description to be a summary of the product itself, not the terms of the deal. + Remember to respond with a paragraph of text in the product_description field for each of the 5 items that you select. + Be careful with products that are described as "$XXX off" or "reduced by $XXX" - this isn't the actual price of the product. Only respond with products when you are highly confident about the price. + + Deals: + + """ + + USER_PROMPT_SUFFIX = "\n\nStrictly respond in JSON and include exactly 5 deals, no more." + + name = "Scanner Agent" + color = Agent.CYAN + + def __init__(self): + """ + Set up this instance by initializing OpenAI + """ + self.log("Scanner Agent is initializing") + self.openai = OpenAI() + self.log("Scanner Agent is ready") + + def fetch_deals(self, memory) -> List[ScrapedDeal]: + """ + Look up deals published on RSS feeds + Return any new deals that are not already in the memory provided + """ + self.log("Scanner Agent is about to fetch deals from RSS feed") + urls = [opp.deal.url for opp in memory] + scraped = ScrapedDeal.fetch() + result = [scrape for scrape in scraped if scrape.url not in urls] + self.log(f"Scanner Agent received {len(result)} deals not already scraped") + return result + + def make_user_prompt(self, scraped) -> str: + """ + Create a user prompt for OpenAI based on the scraped deals provided + """ + user_prompt = self.USER_PROMPT_PREFIX + user_prompt += '\n\n'.join([scrape.describe() for scrape in scraped]) + user_prompt += self.USER_PROMPT_SUFFIX + return user_prompt + + def scan(self, memory: List[str]=[]) -> Optional[DealSelection]: + """ + Call OpenAI to provide a high potential list of deals with good descriptions and prices + Use StructuredOutputs to ensure it conforms to our specifications + :param memory: a list of URLs representing deals already raised + :return: a selection of good deals, or None if there aren't any + """ + scraped = self.fetch_deals(memory) + if scraped: + user_prompt = self.make_user_prompt(scraped) + self.log("Scanner Agent is calling OpenAI using Structured Output") + result = self.openai.beta.chat.completions.parse( + model=self.MODEL, + messages=[ + {"role": "system", "content": self.SYSTEM_PROMPT}, + {"role": "user", "content": user_prompt} + ], + response_format=DealSelection + ) + result = result.choices[0].message.parsed + result.deals = [deal for deal in result.deals if deal.price>0] + self.log(f"Scanner Agent received {len(result.deals)} selected deals with price>0 from OpenAI") + return result + return None + diff --git a/week8/community_contributions/Ensemble_with_xgboost/agents/specialist_agent.py b/week8/community_contributions/Ensemble_with_xgboost/agents/specialist_agent.py new file mode 100644 index 0000000..1bab0d5 --- /dev/null +++ b/week8/community_contributions/Ensemble_with_xgboost/agents/specialist_agent.py @@ -0,0 +1,29 @@ +import modal +from agents.agent import Agent + + +class SpecialistAgent(Agent): + """ + An Agent that runs our fine-tuned LLM that's running remotely on Modal + """ + + name = "Specialist Agent" + color = Agent.RED + + def __init__(self): + """ + Set up this Agent by creating an instance of the modal class + """ + self.log("Specialist Agent is initializing - connecting to modal") + Pricer = modal.Cls.from_name("pricer-service", "Pricer") + self.pricer = Pricer() + self.log("Specialist Agent is ready") + + def price(self, description: str) -> float: + """ + Make a remote call to return the estimate of the price of this item + """ + self.log("Specialist Agent is calling remote fine-tuned model") + result = self.pricer.price.remote(description) + self.log(f"Specialist Agent completed - predicting ${result:.2f}") + return result diff --git a/week8/community_contributions/Ensemble_with_xgboost/deal_agent_framework.py b/week8/community_contributions/Ensemble_with_xgboost/deal_agent_framework.py new file mode 100644 index 0000000..9692107 --- /dev/null +++ b/week8/community_contributions/Ensemble_with_xgboost/deal_agent_framework.py @@ -0,0 +1,99 @@ +import os +import sys +import logging +import json +from typing import List, Optional +from twilio.rest import Client +from dotenv import load_dotenv +import chromadb +from agents.planning_agent import PlanningAgent +from agents.deals import Opportunity +from sklearn.manifold import TSNE +import numpy as np + + +# Colors for logging +BG_BLUE = '\033[44m' +WHITE = '\033[37m' +RESET = '\033[0m' + +# Colors for plot +CATEGORIES = ['Appliances', 'Automotive', 'Cell_Phones_and_Accessories', 'Electronics','Musical_Instruments', 'Office_Products', 'Tools_and_Home_Improvement', 'Toys_and_Games'] +COLORS = ['red', 'blue', 'brown', 'orange', 'yellow', 'green' , 'purple', 'cyan'] + +def init_logging(): + root = logging.getLogger() + root.setLevel(logging.INFO) + + handler = logging.StreamHandler(sys.stdout) + handler.setLevel(logging.INFO) + formatter = logging.Formatter( + "[%(asctime)s] [Agents] [%(levelname)s] %(message)s", + datefmt="%Y-%m-%d %H:%M:%S %z", + ) + handler.setFormatter(formatter) + root.addHandler(handler) + +class DealAgentFramework: + + DB = "products_vectorstore" + MEMORY_FILENAME = "memory.json" + + def __init__(self): + init_logging() + load_dotenv() + client = chromadb.PersistentClient(path=self.DB) + self.memory = self.read_memory() + self.collection = client.get_or_create_collection('products') + self.planner = None + + def init_agents_as_needed(self): + if not self.planner: + self.log("Initializing Agent Framework") + self.planner = PlanningAgent(self.collection) + self.log("Agent Framework is ready") + + def read_memory(self) -> List[Opportunity]: + if os.path.exists(self.MEMORY_FILENAME): + with open(self.MEMORY_FILENAME, "r") as file: + data = json.load(file) + opportunities = [Opportunity(**item) for item in data] + return opportunities + return [] + + def write_memory(self) -> None: + data = [opportunity.dict() for opportunity in self.memory] + with open(self.MEMORY_FILENAME, "w") as file: + json.dump(data, file, indent=2) + + def log(self, message: str): + text = BG_BLUE + WHITE + "[Agent Framework] " + message + RESET + logging.info(text) + + def run(self) -> List[Opportunity]: + self.init_agents_as_needed() + logging.info("Kicking off Planning Agent") + result = self.planner.plan(memory=self.memory) + logging.info(f"Planning Agent has completed and returned: {result}") + if result: + self.memory.append(result) + self.write_memory() + return self.memory + + @classmethod + def get_plot_data(cls, max_datapoints=10000): + client = chromadb.PersistentClient(path=cls.DB) + collection = client.get_or_create_collection('products') + result = collection.get(include=['embeddings', 'documents', 'metadatas'], limit=max_datapoints) + vectors = np.array(result['embeddings']) + documents = result['documents'] + categories = [metadata['category'] for metadata in result['metadatas']] + colors = [COLORS[CATEGORIES.index(c)] for c in categories] + tsne = TSNE(n_components=3, random_state=42, n_jobs=-1) + reduced_vectors = tsne.fit_transform(vectors) + return documents, reduced_vectors, colors + + +if __name__=="__main__": + DealAgentFramework().run() + \ No newline at end of file diff --git a/week8/community_contributions/Ensemble_with_xgboost/items.py b/week8/community_contributions/Ensemble_with_xgboost/items.py new file mode 100644 index 0000000..1acaf5d --- /dev/null +++ b/week8/community_contributions/Ensemble_with_xgboost/items.py @@ -0,0 +1,101 @@ +from typing import Optional +from transformers import AutoTokenizer +import re + +BASE_MODEL = "meta-llama/Meta-Llama-3.1-8B" +MIN_TOKENS = 150 +MAX_TOKENS = 160 +MIN_CHARS = 300 +CEILING_CHARS = MAX_TOKENS * 7 + +class Item: + """ + An Item is a cleaned, curated datapoint of a Product with a Price + """ + + tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, trust_remote_code=True) + PREFIX = "Price is $" + QUESTION = "How much does this cost to the nearest dollar?" + REMOVALS = ['"Batteries Included?": "No"', '"Batteries Included?": "Yes"', '"Batteries Required?": "No"', '"Batteries Required?": "Yes"', "By Manufacturer", "Item", "Date First", "Package", ":", "Number of", "Best Sellers", "Number", "Product "] + + title: str + price: float + category: str + token_count: int = 0 + details: Optional[str] + prompt: Optional[str] = None + include = False + + def __init__(self, data, price): + self.title = data['title'] + self.price = price + self.parse(data) + + def scrub_details(self): + """ + Clean up the details string by removing common text that doesn't add value + """ + details = self.details + for remove in self.REMOVALS: + details = details.replace(remove, "") + return details + + def scrub(self, stuff): + """ + Clean up the provided text by removing unnecessary characters and whitespace + Also remove words that are 7+ chars and contain numbers, as these are likely irrelevant product numbers + """ + stuff = re.sub(r'[:\[\]"{}【】\s]+', ' ', stuff).strip() + stuff = stuff.replace(" ,", ",").replace(",,,",",").replace(",,",",") + words = stuff.split(' ') + select = [word for word in words if len(word)<7 or not any(char.isdigit() for char in word)] + return " ".join(select) + + def parse(self, data): + """ + Parse this datapoint and if it fits within the allowed Token range, + then set include to True + """ + contents = '\n'.join(data['description']) + if contents: + contents += '\n' + features = '\n'.join(data['features']) + if features: + contents += features + '\n' + self.details = data['details'] + if self.details: + contents += self.scrub_details() + '\n' + if len(contents) > MIN_CHARS: + contents = contents[:CEILING_CHARS] + text = f"{self.scrub(self.title)}\n{self.scrub(contents)}" + tokens = self.tokenizer.encode(text, add_special_tokens=False) + if len(tokens) > MIN_TOKENS: + tokens = tokens[:MAX_TOKENS] + text = self.tokenizer.decode(tokens) + self.make_prompt(text) + self.include = True + + def make_prompt(self, text): + """ + Set the prompt instance variable to be a prompt appropriate for training + """ + self.prompt = f"{self.QUESTION}\n\n{text}\n\n" + self.prompt += f"{self.PREFIX}{str(round(self.price))}.00" + self.token_count = len(self.tokenizer.encode(self.prompt, add_special_tokens=False)) + + def test_prompt(self): + """ + Return a prompt suitable for testing, with the actual price removed + """ + return self.prompt.split(self.PREFIX)[0] + self.PREFIX + + def __repr__(self): + """ + Return a String version of this Item + """ + return f"<{self.title} = ${self.price}>" + + + + + \ No newline at end of file diff --git a/week8/community_contributions/Ensemble_with_xgboost/log_utils.py b/week8/community_contributions/Ensemble_with_xgboost/log_utils.py new file mode 100644 index 0000000..8bc33fb --- /dev/null +++ b/week8/community_contributions/Ensemble_with_xgboost/log_utils.py @@ -0,0 +1,35 @@ +# Foreground colors +RED = '\033[31m' +GREEN = '\033[32m' +YELLOW = '\033[33m' +BLUE = '\033[34m' +MAGENTA = '\033[35m' +CYAN = '\033[36m' +WHITE = '\033[37m' + +# Background color +BG_BLACK = '\033[40m' +BG_BLUE = '\033[44m' + +# Reset code to return to default color +RESET = '\033[0m' + +mapper = { + BG_BLACK+RED: "#dd0000", + BG_BLACK+GREEN: "#00dd00", + BG_BLACK+YELLOW: "#dddd00", + BG_BLACK+BLUE: "#0000ee", + BG_BLACK+MAGENTA: "#aa00dd", + BG_BLACK+CYAN: "#00dddd", + BG_BLACK+WHITE: "#87CEEB", + BG_BLUE+WHITE: "#ff7800" +} + + +def reformat(message): + for key, value in mapper.items(): + message = message.replace(key, f'') + message = message.replace(RESET, '') + return message + + \ No newline at end of file diff --git a/week8/community_contributions/Ensemble_with_xgboost/price_is_right.py b/week8/community_contributions/Ensemble_with_xgboost/price_is_right.py new file mode 100644 index 0000000..bc9b537 --- /dev/null +++ b/week8/community_contributions/Ensemble_with_xgboost/price_is_right.py @@ -0,0 +1,62 @@ +import gradio as gr +from deal_agent_framework import DealAgentFramework +from agents.deals import Opportunity, Deal + +class App: + + def __init__(self): + self.agent_framework = None + + def run(self): + with gr.Blocks(title="Deal Intel", fill_width=True) as ui: + + def table_for(opps): + return [[opp.deal.product_description, f"${opp.deal.price:.2f}", f"${opp.estimate:.2f}", f"${opp.discount:.2f}", opp.deal.url] for opp in opps] + + def start(): + self.agent_framework = DealAgentFramework() + self.agent_framework.init_agents_as_needed() + opportunities = self.agent_framework.memory + table = table_for(opportunities) + return table + + def go(): + self.agent_framework.run() + new_opportunities = self.agent_framework.memory + table = table_for(new_opportunities) + return table + + def do_select(selected_index: gr.SelectData): + opportunities = self.agent_framework.memory + row = selected_index.index[0] + opportunity = opportunities[row] + self.agent_framework.planner.messenger.alert(opportunity) + + with gr.Row(): + gr.Markdown('
"Deal Intel" - Deal Hunting Agentic AI
') + with gr.Row(): + gr.Markdown('
Autonomous agent framework that finds online deals, collaborating with a proprietary fine-tuned LLM deployed on Modal, and a RAG pipeline with a frontier model and Chroma.
') + with gr.Row(): + gr.Markdown('
Deals surfaced so far:
') + with gr.Row(): + opportunities_dataframe = gr.Dataframe( + headers=["Description", "Price", "Estimate", "Discount", "URL"], + wrap=True, + column_widths=[4, 1, 1, 1, 2], + row_count=10, + col_count=5, + max_height=400, + ) + + ui.load(start, inputs=[], outputs=[opportunities_dataframe]) + + timer = gr.Timer(value=60) + timer.tick(go, inputs=[], outputs=[opportunities_dataframe]) + + opportunities_dataframe.select(do_select) + + ui.launch(share=False, inbrowser=True) + +if __name__=="__main__": + App().run() + \ No newline at end of file diff --git a/week8/community_contributions/Ensemble_with_xgboost/price_is_right_final.py b/week8/community_contributions/Ensemble_with_xgboost/price_is_right_final.py new file mode 100644 index 0000000..fb242f1 --- /dev/null +++ b/week8/community_contributions/Ensemble_with_xgboost/price_is_right_final.py @@ -0,0 +1,166 @@ +import logging +import queue +import threading +import time +import gradio as gr +from deal_agent_framework import DealAgentFramework +from agents.deals import Opportunity, Deal +from log_utils import reformat +import plotly.graph_objects as go + + +class QueueHandler(logging.Handler): + def __init__(self, log_queue): + super().__init__() + self.log_queue = log_queue + + def emit(self, record): + self.log_queue.put(self.format(record)) + +def html_for(log_data): + output = '
'.join(log_data[-18:]) + return f""" +
+ {output} +
+ """ + +def setup_logging(log_queue): + handler = QueueHandler(log_queue) + formatter = logging.Formatter( + "[%(asctime)s] %(message)s", + datefmt="%Y-%m-%d %H:%M:%S %z", + ) + handler.setFormatter(formatter) + logger = logging.getLogger() + logger.addHandler(handler) + logger.setLevel(logging.INFO) + + +class App: + + def __init__(self): + self.agent_framework = None + + def get_agent_framework(self): + if not self.agent_framework: + self.agent_framework = DealAgentFramework() + self.agent_framework.init_agents_as_needed() + return self.agent_framework + + def run(self): + with gr.Blocks(title="Deal Intel", fill_width=True) as ui: + + log_data = gr.State([]) + + def table_for(opps): + return [[opp.deal.product_description, f"${opp.deal.price:.2f}", f"${opp.estimate:.2f}", f"${opp.discount:.2f}", opp.deal.url] for opp in opps] + + def update_output(log_data, log_queue, result_queue): + initial_result = table_for(self.get_agent_framework().memory) + final_result = None + while True: + try: + message = log_queue.get_nowait() + log_data.append(reformat(message)) + yield log_data, html_for(log_data), final_result or initial_result + except queue.Empty: + try: + final_result = result_queue.get_nowait() + yield log_data, html_for(log_data), final_result or initial_result + except queue.Empty: + if final_result is not None: + break + time.sleep(0.1) + + def get_initial_plot(): + fig = go.Figure() + fig.update_layout( + title='Loading vector DB...', + height=400, + ) + return fig + + def get_plot(): + documents, vectors, colors = DealAgentFramework.get_plot_data(max_datapoints=1000) + # Create the 3D scatter plot + fig = go.Figure(data=[go.Scatter3d( + x=vectors[:, 0], + y=vectors[:, 1], + z=vectors[:, 2], + mode='markers', + marker=dict(size=2, color=colors, opacity=0.7), + )]) + + fig.update_layout( + scene=dict(xaxis_title='x', + yaxis_title='y', + zaxis_title='z', + aspectmode='manual', + aspectratio=dict(x=2.2, y=2.2, z=1), # Make x-axis twice as long + camera=dict( + eye=dict(x=1.6, y=1.6, z=0.8) # Adjust camera position + )), + height=400, + margin=dict(r=5, b=1, l=5, t=2) + ) + + return fig + + def do_run(): + new_opportunities = self.get_agent_framework().run() + table = table_for(new_opportunities) + return table + + def run_with_logging(initial_log_data): + log_queue = queue.Queue() + result_queue = queue.Queue() + setup_logging(log_queue) + + def worker(): + result = do_run() + result_queue.put(result) + + thread = threading.Thread(target=worker) + thread.start() + + for log_data, output, final_result in update_output(initial_log_data, log_queue, result_queue): + yield log_data, output, final_result + + def do_select(selected_index: gr.SelectData): + opportunities = self.get_agent_framework().memory + row = selected_index.index[0] + opportunity = opportunities[row] + self.get_agent_framework().planner.messenger.alert(opportunity) + + with gr.Row(): + gr.Markdown('
Deal Intel - Autonomous Agent Framework that hunts for deals
') + with gr.Row(): + gr.Markdown('
A proprietary fine-tuned LLM deployed on Modal and a RAG pipeline with a frontier model collaborate to send push notifications with great online deals.
') + with gr.Row(): + opportunities_dataframe = gr.Dataframe( + headers=["Deals found so far", "Price", "Estimate", "Discount", "URL"], + wrap=True, + column_widths=[6, 1, 1, 1, 3], + row_count=10, + col_count=5, + max_height=400, + ) + with gr.Row(): + with gr.Column(scale=1): + logs = gr.HTML() + with gr.Column(scale=1): + plot = gr.Plot(value=get_plot(), show_label=False) + + ui.load(run_with_logging, inputs=[log_data], outputs=[log_data, logs, opportunities_dataframe]) + + timer = gr.Timer(value=300, active=True) + timer.tick(run_with_logging, inputs=[log_data], outputs=[log_data, logs, opportunities_dataframe]) + + opportunities_dataframe.select(do_select) + + ui.launch(share=False, inbrowser=True) + +if __name__=="__main__": + App().run() + \ No newline at end of file diff --git a/week8/community_contributions/Ensemble_with_xgboost/pricer_ephemeral.py b/week8/community_contributions/Ensemble_with_xgboost/pricer_ephemeral.py new file mode 100644 index 0000000..6fd56ab --- /dev/null +++ b/week8/community_contributions/Ensemble_with_xgboost/pricer_ephemeral.py @@ -0,0 +1,66 @@ +import modal +from modal import App, Image + +# Setup + +app = modal.App("pricer") +image = Image.debian_slim().pip_install("torch", "transformers", "bitsandbytes", "accelerate", "peft") +secrets = [modal.Secret.from_name("hf-secret")] + +# Constants + +GPU = "T4" +BASE_MODEL = "meta-llama/Meta-Llama-3.1-8B" +PROJECT_NAME = "pricer" +HF_USER = "ed-donner" # your HF name here! Or use mine if you just want to reproduce my results. +RUN_NAME = "2024-09-13_13.04.39" +PROJECT_RUN_NAME = f"{PROJECT_NAME}-{RUN_NAME}" +REVISION = "e8d637df551603dc86cd7a1598a8f44af4d7ae36" +FINETUNED_MODEL = f"{HF_USER}/{PROJECT_RUN_NAME}" + + +@app.function(image=image, secrets=secrets, gpu=GPU, timeout=1800) +def price(description: str) -> float: + import os + import re + import torch + from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, set_seed + from peft import PeftModel + + QUESTION = "How much does this cost to the nearest dollar?" + PREFIX = "Price is $" + + prompt = f"{QUESTION}\n{description}\n{PREFIX}" + + # Quant Config + quant_config = BitsAndBytesConfig( + load_in_4bit=True, + bnb_4bit_use_double_quant=True, + bnb_4bit_compute_dtype=torch.bfloat16, + bnb_4bit_quant_type="nf4" + ) + + # Load model and tokenizer + + tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL) + tokenizer.pad_token = tokenizer.eos_token + tokenizer.padding_side = "right" + + base_model = AutoModelForCausalLM.from_pretrained( + BASE_MODEL, + quantization_config=quant_config, + device_map="auto" + ) + + fine_tuned_model = PeftModel.from_pretrained(base_model, FINETUNED_MODEL, revision=REVISION) + + set_seed(42) + inputs = tokenizer.encode(prompt, return_tensors="pt").to("cuda") + attention_mask = torch.ones(inputs.shape, device="cuda") + outputs = fine_tuned_model.generate(inputs, attention_mask=attention_mask, max_new_tokens=5, num_return_sequences=1) + result = tokenizer.decode(outputs[0]) + + contents = result.split("Price is $")[1] + contents = contents.replace(',','') + match = re.search(r"[-+]?\d*\.\d+|\d+", contents) + return float(match.group()) if match else 0 diff --git a/week8/community_contributions/Ensemble_with_xgboost/pricer_service.py b/week8/community_contributions/Ensemble_with_xgboost/pricer_service.py new file mode 100644 index 0000000..16d276b --- /dev/null +++ b/week8/community_contributions/Ensemble_with_xgboost/pricer_service.py @@ -0,0 +1,89 @@ +import modal +from modal import App, Volume, Image + +# Setup - define our infrastructure with code! + +app = modal.App("pricer-service") +image = Image.debian_slim().pip_install("huggingface", "torch", "transformers", "bitsandbytes", "accelerate", "peft") +secrets = [modal.Secret.from_name("hf-secret")] + +# Constants + +GPU = "T4" +BASE_MODEL = "meta-llama/Meta-Llama-3.1-8B" +PROJECT_NAME = "pricer" +HF_USER = "ed-donner" # your HF name here! Or use mine if you just want to reproduce my results. +RUN_NAME = "2024-09-13_13.04.39" +PROJECT_RUN_NAME = f"{PROJECT_NAME}-{RUN_NAME}" +REVISION = "e8d637df551603dc86cd7a1598a8f44af4d7ae36" +FINETUNED_MODEL = f"{HF_USER}/{PROJECT_RUN_NAME}" +MODEL_DIR = "hf-cache/" +BASE_DIR = MODEL_DIR + BASE_MODEL +FINETUNED_DIR = MODEL_DIR + FINETUNED_MODEL + +QUESTION = "How much does this cost to the nearest dollar?" +PREFIX = "Price is $" + +@app.cls(image=image, secrets=secrets, gpu=GPU, timeout=1800) +class Pricer: + @modal.build() + def download_model_to_folder(self): + from huggingface_hub import snapshot_download + import os + os.makedirs(MODEL_DIR, exist_ok=True) + snapshot_download(BASE_MODEL, local_dir=BASE_DIR) + snapshot_download(FINETUNED_MODEL, revision=REVISION, local_dir=FINETUNED_DIR) + + @modal.enter() + def setup(self): + import os + import torch + from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, set_seed + from peft import PeftModel + + # Quant Config + quant_config = BitsAndBytesConfig( + load_in_4bit=True, + bnb_4bit_use_double_quant=True, + bnb_4bit_compute_dtype=torch.bfloat16, + bnb_4bit_quant_type="nf4" + ) + + # Load model and tokenizer + + self.tokenizer = AutoTokenizer.from_pretrained(BASE_DIR) + self.tokenizer.pad_token = self.tokenizer.eos_token + self.tokenizer.padding_side = "right" + + self.base_model = AutoModelForCausalLM.from_pretrained( + BASE_DIR, + quantization_config=quant_config, + device_map="auto" + ) + + self.fine_tuned_model = PeftModel.from_pretrained(self.base_model, FINETUNED_DIR, revision=REVISION) + + @modal.method() + def price(self, description: str) -> float: + import os + import re + import torch + from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, set_seed + from peft import PeftModel + + set_seed(42) + prompt = f"{QUESTION}\n\n{description}\n\n{PREFIX}" + inputs = self.tokenizer.encode(prompt, return_tensors="pt").to("cuda") + attention_mask = torch.ones(inputs.shape, device="cuda") + outputs = self.fine_tuned_model.generate(inputs, attention_mask=attention_mask, max_new_tokens=5, num_return_sequences=1) + result = self.tokenizer.decode(outputs[0]) + + contents = result.split("Price is $")[1] + contents = contents.replace(',','') + match = re.search(r"[-+]?\d*\.\d+|\d+", contents) + return float(match.group()) if match else 0 + + @modal.method() + def wake_up(self) -> str: + return "ok" + diff --git a/week8/community_contributions/Ensemble_with_xgboost/testing.py b/week8/community_contributions/Ensemble_with_xgboost/testing.py new file mode 100644 index 0000000..cd43924 --- /dev/null +++ b/week8/community_contributions/Ensemble_with_xgboost/testing.py @@ -0,0 +1,75 @@ +import math +import matplotlib.pyplot as plt + +GREEN = "\033[92m" +YELLOW = "\033[93m" +RED = "\033[91m" +RESET = "\033[0m" +COLOR_MAP = {"red":RED, "orange": YELLOW, "green": GREEN} + +class Tester: + + def __init__(self, predictor, data, title=None, size=250): + self.predictor = predictor + self.data = data + self.title = title or predictor.__name__.replace("_", " ").title() + self.size = size + self.guesses = [] + self.truths = [] + self.errors = [] + self.sles = [] + self.colors = [] + + def color_for(self, error, truth): + if error<40 or error/truth < 0.2: + return "green" + elif error<80 or error/truth < 0.4: + return "orange" + else: + return "red" + + def run_datapoint(self, i): + datapoint = self.data[i] + guess = self.predictor(datapoint) + truth = datapoint.price + error = abs(guess - truth) + log_error = math.log(truth+1) - math.log(guess+1) + sle = log_error ** 2 + color = self.color_for(error, truth) + title = datapoint.title if len(datapoint.title) <= 40 else datapoint.title[:40]+"..." + self.guesses.append(guess) + self.truths.append(truth) + self.errors.append(error) + self.sles.append(sle) + self.colors.append(color) + print(f"{COLOR_MAP[color]}{i+1}: Guess: ${guess:,.2f} Truth: ${truth:,.2f} Error: ${error:,.2f} SLE: {sle:,.2f} Item: {title}{RESET}") + + def chart(self, title): + max_error = max(self.errors) + plt.figure(figsize=(12, 8)) + max_val = max(max(self.truths), max(self.guesses)) + plt.plot([0, max_val], [0, max_val], color='deepskyblue', lw=2, alpha=0.6) + plt.scatter(self.truths, self.guesses, s=3, c=self.colors) + plt.xlabel('Ground Truth') + plt.ylabel('Model Estimate') + plt.xlim(0, max_val) + plt.ylim(0, max_val) + plt.title(title) + plt.show() + + def report(self): + average_error = sum(self.errors) / self.size + rmsle = math.sqrt(sum(self.sles) / self.size) + hits = sum(1 for color in self.colors if color=="green") + title = f"{self.title} Error=${average_error:,.2f} RMSLE={rmsle:,.2f} Hits={hits/self.size*100:.1f}%" + self.chart(title) + + def run(self): + self.error = 0 + for i in range(self.size): + self.run_datapoint(i) + self.report() + + @classmethod + def test(cls, function, data): + cls(function, data).run() \ No newline at end of file