Merge pull request #850 from hopeogbons/week4_exercise_hopeogbons

(Oct 2025 Bootcamp Weeek4 EXERCISE): Add Multi-Language Code Complexity Annotator with Gradio...
This commit is contained in:
Ed Donner
2025-10-27 08:34:48 -04:00
committed by GitHub
3 changed files with 2156 additions and 0 deletions

View File

@@ -0,0 +1,255 @@
# 🔶 Multi-Language Code Complexity Annotator
An automated tool that analyzes source code and annotates it with Big-O complexity estimates, complete with syntax highlighting and optional AI-powered code reviews.
## 🎯 What It Does
Understanding time complexity (Big-O notation) is crucial for writing efficient algorithms, identifying bottlenecks, making informed optimization decisions, and passing technical interviews.
Analyzing complexity manually is tedious and error-prone. This tool **automates** the entire process—detecting loops, recursion, and functions, then annotating code with Big-O estimates and explanations.
### Core Features
- 📊 **Automatic Detection** - Identifies loops, recursion, and functions across 13+ programming languages
- 🧮 **Complexity Estimation** - Calculates Big-O complexity (O(1), O(n), O(n²), O(log n), etc.)
- 💬 **Inline Annotations** - Inserts explanatory comments directly into your code
- 🎨 **Syntax Highlighting** - Generates beautiful HTML previews with orange-colored complexity comments
- 🤖 **AI Code Review** - Optional LLaMA-powered analysis for optimization suggestions
- 💾 **Export Options** - Download annotated source code and Markdown previews
## 🌐 Supported Languages
Python • JavaScript • TypeScript • Java • C • C++ • C# • Go • PHP • Swift • Ruby • Kotlin • Rust
## 🛠️ Tech Stack
- **HuggingFace Transformers** - LLM model loading and inference
- **LLaMA 3.2** - AI-powered code review
- **Gradio** - Interactive web interface
- **Pygments** - Syntax highlighting
- **PyTorch** - Deep learning framework
- **Regex Analysis** - Heuristic complexity detection
## 📋 Prerequisites
- Python 3.12+
- `uv` package manager (or `pip`)
- 4GB+ RAM (for basic use without AI)
- 14GB+ RAM (for AI code review with LLaMA models)
- Optional: NVIDIA GPU with CUDA (for model quantization)
## 🚀 Installation
### 1. Clone the Repository
```bash
cd week4
```
### 2. Install Dependencies
```bash
uv pip install -U pip
uv pip install transformers accelerate gradio torch --extra-index-url https://download.pytorch.org/whl/cpu
uv pip install bitsandbytes pygments python-dotenv
```
> **Note:** This installs the CPU-only version of PyTorch. For GPU support, remove the `--extra-index-url` flag.
### 3. Set Up HuggingFace Token (Optional - for AI Features)
Create a `.env` file in the `week4` directory:
```env
HF_TOKEN=hf_your_token_here
```
Get your token at: https://huggingface.co/settings/tokens
> **Required for:** LLaMA models (requires accepting Meta's license agreement)
## 💡 Usage
### Option 1: Jupyter Notebook
Open and run `week4 EXERCISE_hopeogbons.ipynb`:
```bash
jupyter notebook "week4 EXERCISE_hopeogbons.ipynb"
```
Run all cells in order. The Gradio interface will launch at `http://127.0.0.1:7861`
### Option 2: Web Interface
Once the Gradio app is running:
#### **Without AI Review (No Model Needed)**
1. Upload a code file (.py, .js, .java, etc.)
2. Uncheck "Generate AI Code Review"
3. Click "🚀 Process & Annotate"
4. View syntax-highlighted code with Big-O annotations
5. Download the annotated source + Markdown
#### **With AI Review (Requires Model)**
1. Click "🔄 Load Model" (wait 2-5 minutes for first download)
2. Upload your code file
3. Check "Generate AI Code Review"
4. Adjust temperature/tokens if needed
5. Click "🚀 Process & Annotate"
6. Read AI-generated optimization suggestions
## 📊 How It Works
### Complexity Detection Algorithm
The tool uses **heuristic pattern matching** to estimate Big-O complexity:
1. **Detect Blocks** - Regex patterns find functions, loops, and recursion
2. **Analyze Loops** - Count nesting depth:
- 1 loop = O(n)
- 2 nested loops = O(n²)
- 3 nested loops = O(n³)
3. **Analyze Recursion** - Pattern detection:
- Divide-and-conquer (binary search) = O(log n)
- Single recursive call = O(n)
- Multiple recursive calls = O(2^n)
4. **Aggregate** - Functions inherit worst-case complexity of inner operations
### Example Output
**Input (Python):**
```python
def bubble_sort(arr):
for i in range(len(arr)):
for j in range(len(arr) - i - 1):
if arr[j] > arr[j + 1]:
arr[j], arr[j + 1] = arr[j + 1], arr[j]
```
**Output (Annotated):**
```python
def bubble_sort(arr):
# Big-O: O(n^2)
# Explanation: Nested loops indicate quadratic time.
for i in range(len(arr)):
for j in range(len(arr) - i - 1):
if arr[j] > arr[j + 1]:
arr[j], arr[j + 1] = arr[j + 1], arr[j]
```
## 🧠 AI Model Options
### CPU/Mac (No GPU)
- `meta-llama/Llama-3.2-1B` (Default, ~1GB, requires HF approval)
- `gpt2` (No approval needed, ~500MB)
- `microsoft/DialoGPT-medium` (~1GB)
### GPU Users
- Any model with 8-bit or 4-bit quantization enabled
- `meta-llama/Llama-2-7b-chat-hf` (requires approval)
### Memory Requirements
- **Without quantization:** ~14GB RAM (7B models) or ~26GB (13B models)
- **With 8-bit quantization:** ~50% reduction (GPU required)
- **With 4-bit quantization:** ~75% reduction (GPU required)
## ⚙️ Configuration
### File Limits
- Max file size: **2 MB**
- Supported extensions: `.py`, `.js`, `.ts`, `.java`, `.c`, `.cpp`, `.cs`, `.go`, `.php`, `.swift`, `.rb`, `.kt`, `.rs`
### Model Parameters
- **Temperature** (0.0 - 1.5): Controls randomness
- Lower = more deterministic
- Higher = more creative
- **Max Tokens** (16 - 1024): Maximum length of AI review
## 📁 Project Structure
```
week4/
├── week4 EXERCISE_hopeogbons.ipynb # Main application notebook
├── README.md # This file
└── .env # HuggingFace token (create this)
```
## 🐛 Troubleshooting
### Model Loading Issues
**Error:** "Model not found" or "Access denied"
- **Solution:** Accept Meta's license at https://huggingface.co/meta-llama/Llama-3.2-1B
- Ensure your `.env` file contains a valid HF_TOKEN
### Memory Issues
**Error:** "Out of memory" during model loading
- **Solution:** Use a smaller model like `gpt2` or `microsoft/DialoGPT-medium`
- Try 8-bit or 4-bit quantization (GPU required)
### Quantization Requires GPU
**Error:** "Quantization requires CUDA"
- **Solution:** Disable both 4-bit and 8-bit quantization checkboxes
- Run on CPU with smaller models
### File Upload Issues
**Error:** "Unsupported file extension"
- **Solution:** Ensure your file has one of the supported extensions
- Check that the file size is under 2MB
## 🎓 Use Cases
- **Code Review** - Automated complexity analysis for pull requests
- **Interview Prep** - Understand algorithm efficiency before coding interviews
- **Performance Optimization** - Identify bottlenecks in existing code
- **Education** - Learn Big-O notation through practical examples
- **Documentation** - Auto-generate complexity documentation
## 📝 Notes
- First model load downloads weights (~1-14GB depending on model)
- Subsequent runs load from cache (much faster)
- Complexity estimates are heuristic-based, not formally verified
- For production use, consider manual verification of critical algorithms
## 🤝 Contributing
This is a learning project from the Andela LLM Engineering course (Week 4). Feel free to extend it with:
- Additional language support
- More sophisticated complexity detection
- Integration with CI/CD pipelines
- Support for space complexity analysis
## 📄 License
Educational project - use as reference for learning purposes.
## 🙏 Acknowledgments
- **OpenAI Whisper** for inspiration on model integration
- **HuggingFace** for providing the Transformers library
- **Meta** for LLaMA models
- **Gradio** for the excellent UI framework
- **Andela** for the LLM Engineering curriculum
---
**Built with ❤️ as part of Week 4 LLM Engineering coursework**

View File

@@ -0,0 +1,9 @@
# Python Function
# This function takes a list of items and returns all possible pairs of items
def all_pairs(items):
pairs = []
for i in range(len(items)):
for j in range(i + 1, len(items)):
pairs.append((items[i], items[j]))
return pairs

File diff suppressed because it is too large Load Diff