diff --git a/week5/community-contributions/day5_gmailRAG.ipynb b/week5/community-contributions/day5_gmailRAG.ipynb
new file mode 100644
index 0000000..27a52aa
--- /dev/null
+++ b/week5/community-contributions/day5_gmailRAG.ipynb
@@ -0,0 +1,472 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "dfe37963-1af6-44fc-a841-8e462443f5e6",
+ "metadata": {},
+ "source": [
+ "## gmail RAG assistant"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "ba2779af-84ef-4227-9e9e-6eaf0df87e77",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# imports\n",
+ "\n",
+ "import os\n",
+ "import glob\n",
+ "from dotenv import load_dotenv\n",
+ "import gradio as gr\n",
+ "# NEW IMPORTS FOR GMAIL\n",
+ "from google.auth.transport.requests import Request\n",
+ "from google.oauth2.credentials import Credentials\n",
+ "from google_auth_oauthlib.flow import InstalledAppFlow\n",
+ "from googleapiclient.discovery import build\n",
+ "from datetime import datetime\n",
+ "import base64\n",
+ "from email.mime.text import MIMEText\n",
+ "import re"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "802137aa-8a74-45e0-a487-d1974927d7ca",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# imports for langchain, plotly and Chroma\n",
+ "\n",
+ "from langchain.document_loaders import DirectoryLoader, TextLoader\n",
+ "from langchain.text_splitter import CharacterTextSplitter\n",
+ "from langchain.schema import Document\n",
+ "from langchain_openai import OpenAIEmbeddings, ChatOpenAI\n",
+ "from langchain_chroma import Chroma\n",
+ "import matplotlib.pyplot as plt\n",
+ "from sklearn.manifold import TSNE\n",
+ "import numpy as np\n",
+ "import plotly.graph_objects as go\n",
+ "from langchain.memory import ConversationBufferMemory\n",
+ "from langchain.chains import ConversationalRetrievalChain\n",
+ "from langchain.embeddings import HuggingFaceEmbeddings"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "58c85082-e417-4708-9efe-81a5d55d1424",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# price is a factor for our company, so we're going to use a low cost model\n",
+ "\n",
+ "MODEL = \"gpt-4o-mini\"\n",
+ "db_name = \"vector_db\""
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "ee78efcb-60fe-449e-a944-40bab26261af",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Load environment variables in a file called .env\n",
+ "\n",
+ "load_dotenv(override=True)\n",
+ "os.environ['OPENAI_API_KEY'] = os.getenv('OPENAI_API_KEY', 'your-key-if-not-using-env')\n",
+ "# NEW: Gmail API credentials\n",
+ "SCOPES = ['https://www.googleapis.com/auth/gmail.readonly']\n",
+ "CREDENTIALS_FILE = 'credentials.json' # Download from Google Cloud Console\n",
+ "TOKEN_FILE = 'token.json'"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "730711a9-6ffe-4eee-8f48-d6cfb7314905",
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [],
+ "source": [
+ "# Read in emails using LangChain's loaders\n",
+ "# IMPORTANT: set the email received date range hard-coded below\n",
+ "\n",
+ "def authenticate_gmail():\n",
+ " \"\"\"Authenticate and return Gmail service object\"\"\"\n",
+ " creds = None\n",
+ " if os.path.exists(TOKEN_FILE):\n",
+ " creds = Credentials.from_authorized_user_file(TOKEN_FILE, SCOPES)\n",
+ " \n",
+ " if not creds or not creds.valid:\n",
+ " if creds and creds.expired and creds.refresh_token:\n",
+ " creds.refresh(Request())\n",
+ " else:\n",
+ " flow = InstalledAppFlow.from_client_secrets_file(CREDENTIALS_FILE, SCOPES)\n",
+ " creds = flow.run_local_server(port=0)\n",
+ " \n",
+ " with open(TOKEN_FILE, 'w') as token:\n",
+ " token.write(creds.to_json())\n",
+ " \n",
+ " return build('gmail', 'v1', credentials=creds)\n",
+ "\n",
+ "def get_email_content(service, message_id):\n",
+ " \"\"\"Extract email content from message\"\"\"\n",
+ " try:\n",
+ " message = service.users().messages().get(userId='me', id=message_id, format='full').execute()\n",
+ " \n",
+ " # Extract basic info\n",
+ " headers = message['payload'].get('headers', [])\n",
+ " subject = next((h['value'] for h in headers if h['name'] == 'Subject'), 'No Subject')\n",
+ " sender = next((h['value'] for h in headers if h['name'] == 'From'), 'Unknown Sender')\n",
+ " date = next((h['value'] for h in headers if h['name'] == 'Date'), 'Unknown Date')\n",
+ " \n",
+ " # Extract body\n",
+ " body = \"\"\n",
+ " if 'parts' in message['payload']:\n",
+ " for part in message['payload']['parts']:\n",
+ " if part['mimeType'] == 'text/plain':\n",
+ " data = part['body']['data']\n",
+ " body = base64.urlsafe_b64decode(data).decode('utf-8')\n",
+ " break\n",
+ " else:\n",
+ " if message['payload']['body'].get('data'):\n",
+ " body = base64.urlsafe_b64decode(message['payload']['body']['data']).decode('utf-8')\n",
+ " \n",
+ " # Clean up body text\n",
+ " body = re.sub(r'\\s+', ' ', body).strip()\n",
+ " \n",
+ " return {\n",
+ " 'subject': subject,\n",
+ " 'sender': sender,\n",
+ " 'date': date,\n",
+ " 'body': body,\n",
+ " 'id': message_id\n",
+ " }\n",
+ " except Exception as e:\n",
+ " print(f\"Error processing message {message_id}: {str(e)}\")\n",
+ " return None\n",
+ "\n",
+ "def load_gmail_documents(start_date, end_date, max_emails=100):\n",
+ " \"\"\"Load emails from Gmail between specified dates\"\"\"\n",
+ " service = authenticate_gmail()\n",
+ " \n",
+ " # Format dates for Gmail API (YYYY/MM/DD)\n",
+ " start_date_str = start_date.strftime('%Y/%m/%d')\n",
+ " end_date_str = end_date.strftime('%Y/%m/%d')\n",
+ " \n",
+ " # Build query\n",
+ " query = f'after:{start_date_str} before:{end_date_str}'\n",
+ " \n",
+ " # Get message list\n",
+ " result = service.users().messages().list(userId='me', q=query, maxResults=max_emails).execute()\n",
+ " messages = result.get('messages', [])\n",
+ " \n",
+ " print(f\"Found {len(messages)} emails between {start_date_str} and {end_date_str}\")\n",
+ " \n",
+ " # Convert to LangChain documents\n",
+ " documents = []\n",
+ " for i, message in enumerate(messages):\n",
+ " print(f\"Processing email {i+1}/{len(messages)}\")\n",
+ " email_data = get_email_content(service, message['id'])\n",
+ " \n",
+ " if email_data and email_data['body']:\n",
+ " # Create document content\n",
+ " content = f\"\"\"Subject: {email_data['subject']}\n",
+ "From: {email_data['sender']}\n",
+ "Date: {email_data['date']}\n",
+ "\n",
+ "{email_data['body']}\"\"\"\n",
+ " \n",
+ " # Create LangChain document\n",
+ " doc = Document(\n",
+ " page_content=content,\n",
+ " metadata={\n",
+ " \"doc_type\": \"email\",\n",
+ " \"subject\": email_data['subject'],\n",
+ " \"sender\": email_data['sender'],\n",
+ " \"date\": email_data['date'],\n",
+ " \"message_id\": email_data['id']\n",
+ " }\n",
+ " )\n",
+ " documents.append(doc)\n",
+ " \n",
+ " return documents\n",
+ "\n",
+ "# SET YOUR DATE RANGE HERE\n",
+ "start_date = datetime(2025, 6, 20) # YYYY, MM, DD\n",
+ "end_date = datetime(2025, 6, 26) # YYYY, MM, DD\n",
+ "\n",
+ "# Load Gmail documents \n",
+ "documents = load_gmail_documents(start_date, end_date, max_emails=200)\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "c59de72d-f965-44b3-8487-283e4c623b1d",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=200)\n",
+ "chunks = text_splitter.split_documents(documents)\n",
+ "\n",
+ "print(f\"Total number of chunks: {len(chunks)}\")\n",
+ "print(f\"Document types found: {set(doc.metadata['doc_type'] for doc in documents)}\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "78998399-ac17-4e28-b15f-0b5f51e6ee23",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Put the chunks of data into a Vector Store that associates a Vector Embedding with each chunk\n",
+ "# Chroma is a popular open source Vector Database based on SQLLite\n",
+ "\n",
+ "embeddings = OpenAIEmbeddings()\n",
+ "\n",
+ "# If you would rather use the free Vector Embeddings from HuggingFace sentence-transformers\n",
+ "# Then replace embeddings = OpenAIEmbeddings()\n",
+ "# with:\n",
+ "# from langchain.embeddings import HuggingFaceEmbeddings\n",
+ "# embeddings = HuggingFaceEmbeddings(model_name=\"sentence-transformers/all-MiniLM-L6-v2\")\n",
+ "\n",
+ "# Delete if already exists\n",
+ "\n",
+ "if os.path.exists(db_name):\n",
+ " Chroma(persist_directory=db_name, embedding_function=embeddings).delete_collection()\n",
+ "\n",
+ "# Create vectorstore\n",
+ "\n",
+ "vectorstore = Chroma.from_documents(documents=chunks, embedding=embeddings, persist_directory=db_name)\n",
+ "print(f\"Vectorstore created with {vectorstore._collection.count()} documents\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "ff2e7687-60d4-4920-a1d7-a34b9f70a250",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Let's investigate the vectors\n",
+ "\n",
+ "collection = vectorstore._collection\n",
+ "count = collection.count()\n",
+ "\n",
+ "sample_embedding = collection.get(limit=1, include=[\"embeddings\"])[\"embeddings\"][0]\n",
+ "dimensions = len(sample_embedding)\n",
+ "print(f\"There are {count:,} vectors with {dimensions:,} dimensions in the vector store\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "b0d45462-a818-441c-b010-b85b32bcf618",
+ "metadata": {},
+ "source": [
+ "## Visualizing the Vector Store\n",
+ "\n",
+ "Let's take a minute to look at the documents and their embedding vectors to see what's going on."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "b98adf5e-d464-4bd2-9bdf-bc5b6770263b",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Prework (with thanks to Jon R for identifying and fixing a bug in this!)\n",
+ "\n",
+ "result = collection.get(include=['embeddings', 'documents', 'metadatas'])\n",
+ "vectors = np.array(result['embeddings'])\n",
+ "documents = result['documents']\n",
+ "metadatas = result['metadatas']\n",
+ "\n",
+ "# Alternatively, color by sender:\n",
+ "senders = [metadata.get('sender', 'unknown') for metadata in metadatas]\n",
+ "unique_senders = list(set(senders))\n",
+ "sender_colors = ['blue', 'green', 'red', 'orange', 'purple', 'brown', 'pink', 'gray']\n",
+ "colors = [sender_colors[unique_senders.index(sender) % len(sender_colors)] for sender in senders]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "427149d5-e5d8-4abd-bb6f-7ef0333cca21",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# We humans find it easier to visalize things in 2D!\n",
+ "# Reduce the dimensionality of the vectors to 2D using t-SNE\n",
+ "# (t-distributed stochastic neighbor embedding)\n",
+ "\n",
+ "tsne = TSNE(n_components=2, random_state=42)\n",
+ "reduced_vectors = tsne.fit_transform(vectors)\n",
+ "\n",
+ "# Create the 2D scatter plot\n",
+ "fig = go.Figure(data=[go.Scatter(\n",
+ " x=reduced_vectors[:, 0],\n",
+ " y=reduced_vectors[:, 1],\n",
+ " mode='markers',\n",
+ " marker=dict(size=5, color=colors, opacity=0.8),\n",
+ " text=[f\"Type: {t}
Text: {d[:100]}...\" for t, d in zip(senders, documents)],\n",
+ " hoverinfo='text'\n",
+ ")])\n",
+ "\n",
+ "fig.update_layout(\n",
+ " title='2D Chroma Vector Store Visualization',\n",
+ " scene=dict(xaxis_title='x',yaxis_title='y'),\n",
+ " width=800,\n",
+ " height=600,\n",
+ " margin=dict(r=20, b=10, l=10, t=40)\n",
+ ")\n",
+ "\n",
+ "fig.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "e1418e88-acd5-460a-bf2b-4e6efc88e3dd",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Let's try 3D!\n",
+ "\n",
+ "tsne = TSNE(n_components=3, random_state=42)\n",
+ "reduced_vectors = tsne.fit_transform(vectors)\n",
+ "\n",
+ "# Create the 3D scatter plot\n",
+ "fig = go.Figure(data=[go.Scatter3d(\n",
+ " x=reduced_vectors[:, 0],\n",
+ " y=reduced_vectors[:, 1],\n",
+ " z=reduced_vectors[:, 2],\n",
+ " mode='markers',\n",
+ " marker=dict(size=5, color=colors, opacity=0.8),\n",
+ " text=[f\"Type: {t}
Text: {d[:100]}...\" for t, d in zip(senders, documents)],\n",
+ " hoverinfo='text'\n",
+ ")])\n",
+ "\n",
+ "fig.update_layout(\n",
+ " title='3D Chroma Vector Store Visualization',\n",
+ " scene=dict(xaxis_title='x', yaxis_title='y', zaxis_title='z'),\n",
+ " width=900,\n",
+ " height=700,\n",
+ " margin=dict(r=20, b=10, l=10, t=40)\n",
+ ")\n",
+ "\n",
+ "fig.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "bbbcb659-13ce-47ab-8a5e-01b930494964",
+ "metadata": {},
+ "source": [
+ "## Langchain and Gradio to prototype a chat with the LLM\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "d72567e8-f891-4797-944b-4612dc6613b1",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "\n",
+ "from langchain.prompts import PromptTemplate\n",
+ "from langchain.chains.combine_documents import create_stuff_documents_chain\n",
+ "from langchain.chains import create_retrieval_chain\n",
+ "\n",
+ "# create a new Chat with OpenAI\n",
+ "llm = ChatOpenAI(temperature=0.7, model_name=MODEL)\n",
+ "\n",
+ "# Alternative - if you'd like to use Ollama locally, uncomment this line instead\n",
+ "# llm = ChatOpenAI(temperature=0.7, model_name='llama3.2', base_url='http://localhost:11434/v1', api_key='ollama')\n",
+ "\n",
+ "# change LLM standard prompt (standard prompt defaults the answer to be 'I don't know' too often, especially when using a small LLM\n",
+ "\n",
+ "qa_prompt=PromptTemplate.from_template(\"Use the following pieces of context to answer the user's question. Answer as best you can given the information you have;\\\n",
+ " if you have a reasonable idea of the answer,/then explain it and mention that you're unsure. \\\n",
+ " But if you don't know the answer, don't make it up. \\\n",
+ " {context} \\\n",
+ " Question: {question} \\\n",
+ " Helpful Answer:\"\n",
+ " )\n",
+ "\n",
+ "\n",
+ "# Wrap into a StuffDocumentsChain, matching the variable name 'context'\n",
+ "combine_docs_chain = create_stuff_documents_chain(\n",
+ " llm=llm,\n",
+ " prompt=qa_prompt,\n",
+ " document_variable_name=\"context\"\n",
+ ")\n",
+ "\n",
+ "# set up the conversation memory for the chat\n",
+ "#memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)\n",
+ "memory = ConversationBufferMemory(\n",
+ " memory_key='chat_history', \n",
+ " return_messages=True,\n",
+ " output_key='answer' \n",
+ ")\n",
+ "\n",
+ "# the retriever is an abstraction over the VectorStore that will be used during RAG\n",
+ "retriever = vectorstore.as_retriever(search_kwargs={\"k\": 10})\n",
+ "\n",
+ "# putting it together: set up the conversation chain with the GPT 3.5 LLM, the vector store and memory\n",
+ "# conversation_chain = ConversationalRetrievalChain.from_llm(llm=llm, retriever=retriever, memory=memory)\n",
+ "\n",
+ "conversation_chain = ConversationalRetrievalChain.from_llm(\n",
+ " llm=llm,\n",
+ " retriever=retriever,\n",
+ " memory=memory,\n",
+ " combine_docs_chain_kwargs={\"prompt\": qa_prompt},\n",
+ " return_source_documents=True\n",
+ ")\n",
+ "\n",
+ "def chat(question, history):\n",
+ " result = conversation_chain.invoke({\"question\": question})\n",
+ " return result[\"answer\"]\n",
+ "\n",
+ "view = gr.ChatInterface(chat, type=\"messages\").launch(inbrowser=False)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "fe4229aa-6afe-4592-93a4-71a47ab69846",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.11.0"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}