From acec2f133186dbb9e12ab13e2295509bb78ed6b4 Mon Sep 17 00:00:00 2001 From: Ransford Okpoti Date: Wed, 22 Oct 2025 12:07:03 +0000 Subject: [PATCH 1/3] mathxpert with tools integration - Provides the freedom to explore all the models available from the providers - Handling of multiple tools calling simultaneously - Efficiently run tools in parallel - Tool response, i.e. the `plot_function`, that does not require going back to the LLM - Uses the inbuilt logging package to allow the control of the verbosity of the logging, set to a higher level, like INFO, to reduce the noisy output --- ...ranskills-week2-mathxpert-with-tools.ipynb | 1119 +++++++++++++++++ 1 file changed, 1119 insertions(+) create mode 100644 week2/community-contributions/ranskills-week2-mathxpert-with-tools.ipynb diff --git a/week2/community-contributions/ranskills-week2-mathxpert-with-tools.ipynb b/week2/community-contributions/ranskills-week2-mathxpert-with-tools.ipynb new file mode 100644 index 0000000..b058bf3 --- /dev/null +++ b/week2/community-contributions/ranskills-week2-mathxpert-with-tools.ipynb @@ -0,0 +1,1119 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "fe12c203-e6a6-452c-a655-afb8a03a4ff5", + "metadata": {}, + "source": [ + "# Week 2 exercise\n", + "\n", + "## MathXpert with tools integration\n", + "\n", + "- Provides the freedom to explore all the models available from the providers\n", + "- Handling of multiple tools calling simultaneously\n", + "- Efficiently run tools in parallel\n", + "- Tool response, i.e. the `plot_function`, that does not require going back to the LLM\n", + "- Uses the inbuilt logging package to allow the control of the verbosity of the logging, set to a higher level, like INFO, to reduce the noisy output" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "c1070317-3ed9-4659-abe3-828943230e03", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import os\n", + "import json\n", + "import logging\n", + "from enum import StrEnum\n", + "from getpass import getpass\n", + "from types import SimpleNamespace\n", + "from typing import Callable\n", + "\n", + "from dotenv import load_dotenv\n", + "from openai import OpenAI\n", + "import ipywidgets as widgets\n", + "from IPython.display import display, clear_output, Latex\n", + "import gradio as gr\n", + "\n", + "load_dotenv(override=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "99901b80", + "metadata": {}, + "outputs": [], + "source": [ + "logging.basicConfig(level=logging.WARNING)\n", + "\n", + "logger = logging.getLogger('mathxpert')\n", + "logger.setLevel(logging.DEBUG)" + ] + }, + { + "cell_type": "markdown", + "id": "f169118a-645e-44e1-9a98-4f561adfbb08", + "metadata": {}, + "source": [ + "## Free Cloud Providers\n", + "\n", + "Grab your free API Keys from these generous sites:\n", + "\n", + "- https://openrouter.ai/\n", + "- https://ollama.com/\n", + "\n", + ">**NOTE**: If you do not have a key for any provider, simply press ENTER to move on" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "4a456906-915a-4bfd-bb9d-57e505c5093f", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:mathxpert:✅ OLLAMA_API_KEY provided\n", + "INFO:mathxpert:✅ OPENROUTER_API_KEY provided\n" + ] + } + ], + "source": [ + "class Provider(StrEnum):\n", + " OLLAMA = 'Ollama'\n", + " OPENROUTER = 'OpenRouter'\n", + "\n", + "clients: dict[Provider, OpenAI] = {}\n", + "models: dict[Provider, list[str]] = {\n", + " Provider.OLLAMA: [],\n", + " Provider.OPENROUTER: [],\n", + "}\n", + "\n", + "DEFAULT_PROVIDER = Provider.OLLAMA\n", + "\n", + "selection_state: dict[Provider, str | None] = {\n", + " Provider.OLLAMA: 'gpt-oss:20b',\n", + " Provider.OPENROUTER: 'openai/gpt-oss-20b:free',\n", + "}\n", + "\n", + "def get_secret_in_google_colab(env_name: str) -> str:\n", + " try:\n", + " from google.colab import userdata\n", + " return userdata.get(env_name)\n", + " except Exception:\n", + " return ''\n", + " \n", + "\n", + "def get_secret(env_name: str) -> str:\n", + " '''Gets the value from the environment(s), otherwise ask the user for it if not set'''\n", + " key = os.environ.get(env_name) or get_secret_in_google_colab(env_name)\n", + "\n", + " if not key:\n", + " key = getpass(f'Enter {env_name}:').strip()\n", + "\n", + " if key:\n", + " logger.info(f'✅ {env_name} provided')\n", + " else:\n", + " logger.warning(f'❌ {env_name} not provided')\n", + " return key.strip()\n", + "\n", + "\n", + "if api_key := get_secret('OLLAMA_API_KEY'):\n", + " clients[Provider.OLLAMA] = OpenAI(api_key=api_key, base_url='https://ollama.com/v1')\n", + "\n", + "if api_key := get_secret('OPENROUTER_API_KEY'):\n", + " clients[Provider.OPENROUTER] = OpenAI(api_key=api_key, base_url='https://openrouter.ai/api/v1')\n", + "\n", + "available_providers = [str(p) for p in clients.keys()]" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "aae1579b-7a02-459d-81c6-0f775d2a1410", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "DEBUG:mathxpert:Pick Ollama from ['Ollama', 'OpenRouter']\n", + "DEBUG:mathxpert:Pick gpt-oss:20b from ['glm-4.6', 'kimi-k2:1t', 'qwen3-coder:480b', 'deepseek-v3.1:671b', 'gpt-oss:120b', 'gpt-oss:20b', 'qwen3-vl:235b']\n", + "INFO:mathxpert:ℹ️ Provider: Ollama Model: gpt-oss:20b, Client: \n" + ] + } + ], + "source": [ + "selected_provider, selected_model, client = '', '', None\n", + "\n", + "\n", + "def get_desired_value_or_first_item(desire, options) -> str | None:\n", + " logger.debug(f'Pick {desire} from {options}')\n", + " selected = desire if desire in options else None\n", + " if selected:\n", + " return selected\n", + "\n", + " return options[0] if options else None\n", + " \n", + "try:\n", + " selected_provider = get_desired_value_or_first_item(DEFAULT_PROVIDER, available_providers)\n", + " client = clients.get(selected_provider)\n", + "except Exception:\n", + " logger.warning(f'❌ no provider configured and everything else from here will FAIL 🤦, I know you know this already.')\n", + "\n", + "def load_models_if_needed(client: OpenAI, selected_provider):\n", + " global selected_model, models\n", + "\n", + " if client and not models.get(selected_provider):\n", + " logging.info(f'📡 Fetching {selected_provider} models...')\n", + " \n", + " models[selected_provider] = [model.id for model in client.models.list()]\n", + " selected_model = get_desired_value_or_first_item(\n", + " selection_state[selected_provider], \n", + " models[selected_provider],\n", + " )\n", + "\n", + "load_models_if_needed(client, selected_provider)\n", + "\n", + "logger.info(f'ℹ️ Provider: {selected_provider} Model: {selected_model}, Client: {client}')" + ] + }, + { + "cell_type": "markdown", + "id": "e04675c2-1b81-4187-868c-c7112cd77e37", + "metadata": {}, + "source": [ + "## Prompt" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "a8d7923c-5f28-4c30-8556-342d7c8497c1", + "metadata": {}, + "outputs": [], + "source": [ + "def get_messages(question: str) -> list[dict[str, str]]:\n", + " \"\"\"Generate messages for the chat models.\"\"\"\n", + "\n", + " system_prompt = r'''\n", + " You are MathXpert, an expert Mathematician who makes math fun to learn by relating concepts to real \n", + " practical usage to whip up the interest in learners.\n", + " \n", + " Explain step-by-step thoroughly how to solve a math problem. \n", + " - ALWAYS use `$$...$$` for mathematical expressions.\n", + " - NEVER use square brackets `[...]` to delimit math.\n", + " - Example: Instead of \"[x = 2]\", write \"$$x = 2$$\".\n", + " - You may use `\\\\[4pt]` inside matrices for spacing.\n", + " '''\n", + "\n", + " return [\n", + " {'role': 'system', 'content': system_prompt },\n", + " {'role': 'user', 'content': question},\n", + " ]" + ] + }, + { + "cell_type": "markdown", + "id": "caa51866-f433-4b9a-ab20-fff5fc3b7d63", + "metadata": {}, + "source": [ + "## Tools" + ] + }, + { + "cell_type": "markdown", + "id": "a24c659a-5937-43b1-bb95-c0342f2786a9", + "metadata": {}, + "source": [ + "### Tools Definitions" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "3f302f47-9a67-4410-ba16-56fa5a731c66", + "metadata": {}, + "outputs": [], + "source": [ + "from pydantic import BaseModel, Field\n", + "from openai.types.shared_params import FunctionDefinition\n", + "import sympy as sp\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import io\n", + "import base64\n", + "import random\n", + "\n", + "class ToolInput(BaseModel):\n", + " pass\n", + " \n", + "class GetCurrentDateTimeInput(ToolInput):\n", + " timezone: str = Field(default=\"UTC\", description=\"Timezone name, e.g., 'UTC' or 'Africa/Accra'\")\n", + "\n", + "\n", + "def get_current_datetime(req: GetCurrentDateTimeInput):\n", + " '''Returns the current date and time in the specified timezone.'''\n", + " from zoneinfo import ZoneInfo\n", + "\n", + " try:\n", + " from datetime import datetime\n", + " tz = ZoneInfo(req.timezone)\n", + " dt = datetime.now(tz)\n", + " return {\n", + " \"date\": dt.strftime(\"%Y-%m-%d\"),\n", + " \"time\": dt.strftime(\"%H:%M:%S %Z\"),\n", + " } \n", + " except:\n", + " return {\"error\": f\"Invalid timezone: {req.timezone}\"}\n", + "\n", + "\n", + "class GetTemperatureInput(ToolInput):\n", + " pass\n", + "\n", + "def get_temperature(req: GetTemperatureInput) -> float:\n", + " '''Returns the current temperature in degree celsius'''\n", + " return random.randint(-30, 70)\n", + "\n", + "\n", + "class PlotFunctionInput(ToolInput):\n", + " expression: str = Field(description=\"Mathematical expression to plot, e.g., 'sin(x)'\")\n", + " x_min: float = Field(default=-10, description=\"Minimum x value\")\n", + " x_max: float = Field(default=10, description=\"Maximum x value\")\n", + "\n", + "\n", + "def plot_function(req: PlotFunctionInput) -> dict[str, any]:\n", + " '''Plots a mathematical function and returns image data.'''\n", + " try:\n", + " x = sp.symbols('x')\n", + " expr = sp.sympify(req.expression)\n", + " lambdified = sp.lambdify(x, expr, 'numpy')\n", + " \n", + " x_vals = np.linspace(req.x_min, req.x_max, 400)\n", + " y_vals = lambdified(x_vals)\n", + " \n", + " plt.figure(figsize=(10, 6))\n", + " plt.plot(x_vals, y_vals, 'b-', linewidth=2)\n", + " plt.grid(True, alpha=0.3)\n", + " plt.title(f\"Plot of ${sp.latex(expr)}$\", fontsize=14)\n", + " plt.xlabel('x', fontsize=12)\n", + " plt.ylabel('f(x)', fontsize=12)\n", + " \n", + "\n", + " buf = io.BytesIO()\n", + " plt.savefig(buf, format='png', dpi=100, bbox_inches='tight')\n", + " plt.close()\n", + " buf.seek(0)\n", + " img_str = base64.b64encode(buf.read()).decode()\n", + " \n", + " return {\n", + " \"plot_image\": f\"data:image/png;base64,{img_str}\",\n", + " \"expression\": req.expression,\n", + " \"x_range\": [req.x_min, req.x_max]\n", + " }\n", + " except Exception as e:\n", + " return {\"error\": f\"Could not plot function: {str(e)}\"}\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "id": "fae3ef71-f6cd-4894-ae55-9f4f8dd2a1cd", + "metadata": {}, + "source": [ + "### Tools registration & execution" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "4f18bc9f-f8d1-4208-a3d7-e4e911034572", + "metadata": {}, + "outputs": [], + "source": [ + "from concurrent.futures import ThreadPoolExecutor\n", + "\n", + "class ToolManager:\n", + " def __init__(self):\n", + " self._tools = []\n", + " self._tools_map: dict[str, tuple[Callable, ToolInput]] = {}\n", + "\n", + " def register_tool[T: ToolInput](self, fn: Callable, fn_input: T):\n", + " self._tools.append({\n", + " \"type\": \"function\",\n", + " \"function\": FunctionDefinition(\n", + " name=fn.__name__,\n", + " description=fn.__doc__,\n", + " parameters=fn_input.model_json_schema() if fn_input else None,\n", + " )\n", + " })\n", + " \n", + " self._tools_map[fn.__name__] = (fn, fn_input)\n", + "\n", + " def _run_single_tool(self, tool_call) -> dict[str, str] | None:\n", + " if not tool_call.id:\n", + " return None\n", + " \n", + " fn, fn_input = self._tools_map.get(tool_call.function.name)\n", + " args = tool_call.function.arguments\n", + " try:\n", + " if args:\n", + " result = fn(fn_input(**json.loads(args))) if fn_input else fn()\n", + " else:\n", + " result = fn(fn_input()) if fn_input else fn()\n", + " \n", + " logger.debug(f'Tool run result: {result}')\n", + " \n", + " return {\n", + " 'role': 'tool',\n", + " 'tool_call_id': tool_call.id,\n", + " 'content': json.dumps(result),\n", + " }\n", + " except Exception as e:\n", + " logger.error(f'Tool execution failed: {e}', extra={'name': tool_call.function.name})\n", + " return None\n", + "\n", + " def run(self, tool_calls) -> list[dict[str, str]]:\n", + " if not tool_calls:\n", + " return []\n", + "\n", + " logger.debug(tool_calls)\n", + "\n", + " tool_messages = []\n", + " \n", + " with ThreadPoolExecutor() as executor:\n", + " futures = [executor.submit(self._run_single_tool, tool_call) for tool_call in tool_calls]\n", + " \n", + " for future in futures:\n", + " result = future.result()\n", + " if result:\n", + " tool_messages.append(result)\n", + " \n", + " return tool_messages\n", + "\n", + " @property\n", + " def tools(self) -> list[any]:\n", + " return self._tools\n", + "\n", + " def dump_tools(self) -> str:\n", + " return json.dumps(self._tools, indent=True)\n", + "\n", + " \n", + "tool_manager = ToolManager()\n", + "\n", + "tool_manager.register_tool(get_current_datetime, GetCurrentDateTimeInput)\n", + "tool_manager.register_tool(get_temperature, GetTemperatureInput)\n", + "tool_manager.register_tool(plot_function, PlotFunctionInput)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "9b2e0634-de5d-45f6-a8d4-569e04d14a00", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "DEBUG:mathxpert:[\n", + " {\n", + " \"type\": \"function\",\n", + " \"function\": {\n", + " \"name\": \"get_current_datetime\",\n", + " \"description\": \"Returns the current date and time in the specified timezone.\",\n", + " \"parameters\": {\n", + " \"properties\": {\n", + " \"timezone\": {\n", + " \"default\": \"UTC\",\n", + " \"description\": \"Timezone name, e.g., 'UTC' or 'Africa/Accra'\",\n", + " \"title\": \"Timezone\",\n", + " \"type\": \"string\"\n", + " }\n", + " },\n", + " \"title\": \"GetCurrentDateTimeInput\",\n", + " \"type\": \"object\"\n", + " }\n", + " }\n", + " },\n", + " {\n", + " \"type\": \"function\",\n", + " \"function\": {\n", + " \"name\": \"get_temperature\",\n", + " \"description\": \"Returns the current temperature in degree celsius\",\n", + " \"parameters\": {\n", + " \"properties\": {},\n", + " \"title\": \"GetTemperatureInput\",\n", + " \"type\": \"object\"\n", + " }\n", + " }\n", + " },\n", + " {\n", + " \"type\": \"function\",\n", + " \"function\": {\n", + " \"name\": \"plot_function\",\n", + " \"description\": \"Plots a mathematical function and returns image data.\",\n", + " \"parameters\": {\n", + " \"properties\": {\n", + " \"expression\": {\n", + " \"description\": \"Mathematical expression to plot, e.g., 'sin(x)'\",\n", + " \"title\": \"Expression\",\n", + " \"type\": \"string\"\n", + " },\n", + " \"x_min\": {\n", + " \"default\": -10,\n", + " \"description\": \"Minimum x value\",\n", + " \"title\": \"X Min\",\n", + " \"type\": \"number\"\n", + " },\n", + " \"x_max\": {\n", + " \"default\": 10,\n", + " \"description\": \"Maximum x value\",\n", + " \"title\": \"X Max\",\n", + " \"type\": \"number\"\n", + " }\n", + " },\n", + " \"required\": [\n", + " \"expression\"\n", + " ],\n", + " \"title\": \"PlotFunctionInput\",\n", + " \"type\": \"object\"\n", + " }\n", + " }\n", + " }\n", + "]\n" + ] + } + ], + "source": [ + "logger.debug(tool_manager.dump_tools())" + ] + }, + { + "cell_type": "markdown", + "id": "bde4cd2a-b681-4b78-917c-d970c264b151", + "metadata": {}, + "source": [ + "## Interaction with LLM" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "8f7c8ea8-4082-4ad0-8751-3301adcf6538", + "metadata": {}, + "outputs": [], + "source": [ + "# handle = display(None, display_id=True)\n", + "\n", + "def ask(client: OpenAI | None, model: str, question: str, max_tool_turns=5):\n", + " if client is None:\n", + " logger.warning('You should have provided the API Keys you know. Fix 🔧 this and try again ♻️.')\n", + " return\n", + "\n", + " try:\n", + " logger.debug(f'# Tools: {len(tool_manager.tools)}')\n", + "\n", + " messages = get_messages(question=question)\n", + "\n", + " for turn in range(max_tool_turns):\n", + " logger.debug(f'Turn: {turn}')\n", + " response = client.chat.completions.create(\n", + " model=model,\n", + " messages=messages,\n", + " tools=tool_manager.tools,\n", + " stream=True,\n", + " )\n", + " \n", + " current_message = {}\n", + " tool_calls_accumulator = {}\n", + " \n", + " output = ''\n", + " call_id = None\n", + " \n", + " for chunk in response:\n", + " delta = chunk.choices[0].delta\n", + "\n", + " logger.debug(f' ✨ {chunk.choices[0]}')\n", + " if content := delta.content:\n", + " output += content\n", + " yield output\n", + "\n", + " if tool_calls := delta.tool_calls:\n", + " for tool_chunk in tool_calls:\n", + " print('x' * 50)\n", + " print(tool_chunk)\n", + "\n", + " if tool_chunk.id and call_id != tool_chunk.id:\n", + " call_id = tool_chunk.id\n", + "\n", + " print(f'Call ID: {call_id}')\n", + " # Streams of arguments don't come with the call id\n", + " # if not call_id:\n", + " # continue\n", + "\n", + " if call_id not in tool_calls_accumulator:\n", + " # tool_calls_accumulator[call_id] = {\n", + " # 'id': call_id,\n", + " # 'function': {'name': '', 'arguments': ''}\n", + " # }\n", + " tool_calls_accumulator[call_id] = SimpleNamespace(\n", + " id=call_id,\n", + " function=SimpleNamespace(name='', arguments='')\n", + " )\n", + "\n", + " if tool_chunk.function.name:\n", + " tool_calls_accumulator[call_id].function.name += tool_chunk.function.name\n", + " \n", + " if tool_chunk.function.arguments:\n", + " tool_calls_accumulator[call_id].function.arguments += tool_chunk.function.arguments\n", + "\n", + " if finish_reason := chunk.choices[0].finish_reason:\n", + " logger.debug('🧠 LLM interaction ended. Reason: {finish_reason}')\n", + "\n", + " final_tool_calls = list(tool_calls_accumulator.values())\n", + " if final_tool_calls:\n", + " logger.debug(f'Final tools to call {final_tool_calls}')\n", + "\n", + " tool_call_message = {\n", + " 'role': 'assistant',\n", + " 'content': None,\n", + " 'tool_calls': json.loads(json.dumps(final_tool_calls, default=lambda o: o.__dict__))\n", + " }\n", + "\n", + " messages.append(tool_call_message)\n", + " tool_messages = tool_manager.run(final_tool_calls)\n", + "\n", + " if tool_messages:\n", + " for tool_msg in tool_messages:\n", + " try:\n", + " data = json.loads(tool_msg['content'])\n", + " if 'plot_image' in data:\n", + " logger.debug('We have a plot')\n", + " yield f''\n", + " return\n", + " except:\n", + " pass\n", + " messages.extend(tool_messages)\n", + " else:\n", + " return\n", + " \n", + " except Exception as e:\n", + " logger.error(f'🔥 An error occurred during the interaction with the LLM: {e}', exc_info=True)\n", + " return str(e)" + ] + }, + { + "cell_type": "markdown", + "id": "eda786d3-5add-4bd1-804d-13eff60c3d1a", + "metadata": {}, + "source": [ + "### Verify streaming behaviour" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "09bc9a11-adb4-4a9c-9c77-73b2b5a665cf", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "DEBUG:mathxpert:# Tools: 3\n", + "DEBUG:mathxpert:Turn: 0\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role='assistant', tool_calls=None), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='The'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' user'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' wants'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' a'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' plot'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' of'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' y'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' ='), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' x'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='^'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='2'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='.'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' We'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' need'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' to'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' call'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' plot'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='_function'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' via'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' tools'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='.'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' So'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' use'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' the'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' function'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' with'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' expression'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' \"'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='x'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='**'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='2'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='\".'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' Probably'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' set'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' range'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' default'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='.'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' Then'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' return'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' an'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' image'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='?'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' We'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' just'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' return'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' the'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' tool'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' output'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='.\\n\\n'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='User'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=\"'s\"), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' message'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' is'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' \"'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='Plot'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' a'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' graph'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' of'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' y'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' ='), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' x'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='**'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='2'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='\".'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' So'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' we'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' provide'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' image'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='.'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' Probably'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' just'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' respond'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' with'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' the'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' call'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='.'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=[ChoiceDeltaToolCall(index=0, id='call_gUaf9cCr8Mn2s5zdix8L3ij2', function=ChoiceDeltaToolCallFunction(arguments=None, name='plot_function'), type='function')]), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=[ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='{\"', name=None), type='function')]), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=[ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='expression', name=None), type='function')]), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=[ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='\":\"', name=None), type='function')]), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=[ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='x', name=None), type='function')]), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=[ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='**', name=None), type='function')]), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=[ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='2', name=None), type='function')]), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=[ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='\"}', name=None), type='function')]), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None), finish_reason='tool_calls', index=0, logprobs=None)\n", + "DEBUG:mathxpert:🧠 LLM interaction ended. Reason: {finish_reason}\n", + "DEBUG:mathxpert:Final tools to call [namespace(id='call_gUaf9cCr8Mn2s5zdix8L3ij2', function=namespace(name='plot_function', arguments='{\"expression\":\"x**2\"}'))]\n", + "DEBUG:mathxpert:[namespace(id='call_gUaf9cCr8Mn2s5zdix8L3ij2', function=namespace(name='plot_function', arguments='{\"expression\":\"x**2\"}'))]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\n", + "ChoiceDeltaToolCall(index=0, id='call_gUaf9cCr8Mn2s5zdix8L3ij2', function=ChoiceDeltaToolCallFunction(arguments=None, name='plot_function'), type='function')\n", + "Call ID: call_gUaf9cCr8Mn2s5zdix8L3ij2\n", + "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\n", + "ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='{\"', name=None), type='function')\n", + "Call ID: call_gUaf9cCr8Mn2s5zdix8L3ij2\n", + "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\n", + "ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='expression', name=None), type='function')\n", + "Call ID: call_gUaf9cCr8Mn2s5zdix8L3ij2\n", + "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\n", + "ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='\":\"', name=None), type='function')\n", + "Call ID: call_gUaf9cCr8Mn2s5zdix8L3ij2\n", + "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\n", + "ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='x', name=None), type='function')\n", + "Call ID: call_gUaf9cCr8Mn2s5zdix8L3ij2\n", + "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\n", + "ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='**', name=None), type='function')\n", + "Call ID: call_gUaf9cCr8Mn2s5zdix8L3ij2\n", + "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\n", + "ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='2', name=None), type='function')\n", + "Call ID: call_gUaf9cCr8Mn2s5zdix8L3ij2\n", + "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\n", + "ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='\"}', name=None), type='function')\n", + "Call ID: call_gUaf9cCr8Mn2s5zdix8L3ij2\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "DEBUG:mathxpert:Tool run result: {'plot_image': '', 'expression': 'x**2', 'x_range': [-10, 10]}\n", + "DEBUG:mathxpert:We have a plot\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], + "source": [ + "# print(selected_provider, selected_model)\n", + "# print(client)\n", + "# for o in ask(client, selected_model, 'What is the time?'):\n", + "# for o in ask(client, selected_model, 'What is the temperature?'):\n", + "# for o in ask(client, selected_model, 'What is the time and the temperature?'):\n", + "# for o in ask(client, selected_model, 'Plot a for the expression sin(x)'):\n", + "for o in ask(client, selected_model, 'Plot a graph of y = x**2'):\n", + " print(o)" + ] + }, + { + "cell_type": "markdown", + "id": "27230463", + "metadata": {}, + "source": [ + "## Build Gradio UI" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "50fc3577", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "DEBUG:mathxpert:Pick Ollama from ['Ollama', 'OpenRouter']\n", + "DEBUG:mathxpert:Pick gpt-oss:20b from ['glm-4.6', 'kimi-k2:1t', 'qwen3-coder:480b', 'deepseek-v3.1:671b', 'gpt-oss:120b', 'gpt-oss:20b', 'qwen3-vl:235b']\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "* Running on local URL: http://127.0.0.1:7860\n", + "* To create a public link, set `share=True` in `launch()`.\n" + ] + }, + { + "data": { + "text/html": [ + "
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "DEBUG:mathxpert:# Tools: 3\n", + "DEBUG:mathxpert:Turn: 0\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role='assistant', tool_calls=None), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='User'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' wants'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' to'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' plot'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' function'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' x'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='**'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='2'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' -'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' '), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='3'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='x'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='.'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' We'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' can'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' use'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' plot'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='_function'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='.'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' Provide'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' function'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' expression'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' \"'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='x'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='**'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='2'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' -'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' '), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='3'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='*x'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='\".'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' Provide'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' x'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='_min'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' and'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' x'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='_max'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' maybe'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' default'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' ok'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='.'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' Provide'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' result'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='.'), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=[ChoiceDeltaToolCall(index=0, id='call_EAUjPtptsIVT7yUFY7KMYVZ9', function=ChoiceDeltaToolCallFunction(arguments=None, name='plot_function'), type='function')]), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=[ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='{\"', name=None), type='function')]), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=[ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='expression', name=None), type='function')]), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=[ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='\":\"', name=None), type='function')]), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=[ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='x', name=None), type='function')]), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=[ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='**', name=None), type='function')]), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=[ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='2', name=None), type='function')]), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=[ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments=' -', name=None), type='function')]), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=[ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments=' ', name=None), type='function')]), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=[ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='3', name=None), type='function')]), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=[ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='*x', name=None), type='function')]), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=[ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='\",\"', name=None), type='function')]), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=[ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='x', name=None), type='function')]), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=[ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='_min', name=None), type='function')]), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=[ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='\":', name=None), type='function')]), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=[ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='-', name=None), type='function')]), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=[ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='10', name=None), type='function')]), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=[ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments=',\"', name=None), type='function')]), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=[ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='x', name=None), type='function')]), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=[ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='_max', name=None), type='function')]), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=[ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='\":', name=None), type='function')]), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=[ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='10', name=None), type='function')]), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=[ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='}', name=None), type='function')]), finish_reason=None, index=0, logprobs=None)\n", + "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None), finish_reason='tool_calls', index=0, logprobs=None)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\n", + "ChoiceDeltaToolCall(index=0, id='call_EAUjPtptsIVT7yUFY7KMYVZ9', function=ChoiceDeltaToolCallFunction(arguments=None, name='plot_function'), type='function')\n", + "Call ID: call_EAUjPtptsIVT7yUFY7KMYVZ9\n", + "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\n", + "ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='{\"', name=None), type='function')\n", + "Call ID: call_EAUjPtptsIVT7yUFY7KMYVZ9\n", + "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\n", + "ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='expression', name=None), type='function')\n", + "Call ID: call_EAUjPtptsIVT7yUFY7KMYVZ9\n", + "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\n", + "ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='\":\"', name=None), type='function')\n", + "Call ID: call_EAUjPtptsIVT7yUFY7KMYVZ9\n", + "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\n", + "ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='x', name=None), type='function')\n", + "Call ID: call_EAUjPtptsIVT7yUFY7KMYVZ9\n", + "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\n", + "ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='**', name=None), type='function')\n", + "Call ID: call_EAUjPtptsIVT7yUFY7KMYVZ9\n", + "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\n", + "ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='2', name=None), type='function')\n", + "Call ID: call_EAUjPtptsIVT7yUFY7KMYVZ9\n", + "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\n", + "ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments=' -', name=None), type='function')\n", + "Call ID: call_EAUjPtptsIVT7yUFY7KMYVZ9\n", + "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\n", + "ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments=' ', name=None), type='function')\n", + "Call ID: call_EAUjPtptsIVT7yUFY7KMYVZ9\n", + "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\n", + "ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='3', name=None), type='function')\n", + "Call ID: call_EAUjPtptsIVT7yUFY7KMYVZ9\n", + "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\n", + "ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='*x', name=None), type='function')\n", + "Call ID: call_EAUjPtptsIVT7yUFY7KMYVZ9\n", + "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\n", + "ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='\",\"', name=None), type='function')\n", + "Call ID: call_EAUjPtptsIVT7yUFY7KMYVZ9\n", + "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\n", + "ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='x', name=None), type='function')\n", + "Call ID: call_EAUjPtptsIVT7yUFY7KMYVZ9\n", + "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\n", + "ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='_min', name=None), type='function')\n", + "Call ID: call_EAUjPtptsIVT7yUFY7KMYVZ9\n", + "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\n", + "ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='\":', name=None), type='function')\n", + "Call ID: call_EAUjPtptsIVT7yUFY7KMYVZ9\n", + "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\n", + "ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='-', name=None), type='function')\n", + "Call ID: call_EAUjPtptsIVT7yUFY7KMYVZ9\n", + "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\n", + "ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='10', name=None), type='function')\n", + "Call ID: call_EAUjPtptsIVT7yUFY7KMYVZ9\n", + "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\n", + "ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments=',\"', name=None), type='function')\n", + "Call ID: call_EAUjPtptsIVT7yUFY7KMYVZ9\n", + "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\n", + "ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='x', name=None), type='function')\n", + "Call ID: call_EAUjPtptsIVT7yUFY7KMYVZ9\n", + "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\n", + "ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='_max', name=None), type='function')\n", + "Call ID: call_EAUjPtptsIVT7yUFY7KMYVZ9\n", + "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\n", + "ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='\":', name=None), type='function')\n", + "Call ID: call_EAUjPtptsIVT7yUFY7KMYVZ9\n", + "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\n", + "ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='10', name=None), type='function')\n", + "Call ID: call_EAUjPtptsIVT7yUFY7KMYVZ9\n", + "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\n", + "ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='}', name=None), type='function')\n", + "Call ID: call_EAUjPtptsIVT7yUFY7KMYVZ9\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "DEBUG:mathxpert:🧠 LLM interaction ended. Reason: {finish_reason}\n", + "DEBUG:mathxpert:Final tools to call [namespace(id='call_EAUjPtptsIVT7yUFY7KMYVZ9', function=namespace(name='plot_function', arguments='{\"expression\":\"x**2 - 3*x\",\"x_min\":-10,\"x_max\":10}'))]\n", + "DEBUG:mathxpert:[namespace(id='call_EAUjPtptsIVT7yUFY7KMYVZ9', function=namespace(name='plot_function', arguments='{\"expression\":\"x**2 - 3*x\",\"x_min\":-10,\"x_max\":10}'))]\n", + "DEBUG:mathxpert:Tool run result: {'plot_image': '', 'expression': 'x**2 - 3*x', 'x_range': [-10.0, 10.0]}\n", + "DEBUG:mathxpert:We have a plot\n" + ] + } + ], + "source": [ + "def chat(message: str, history: list[dict], selected_provider: str, model_selector: str):\n", + " # NOTE: I'm not interesting in maintaining a conversation\n", + " response = ask(client, selected_model, message)\n", + "\n", + " for chunk in response:\n", + " yield chunk\n", + "\n", + "def on_provider_change(change):\n", + " global selected_provider, client, models\n", + " logger.info(f'Provider changed to {change}')\n", + " selected_provider = change\n", + " client = clients.get(selected_provider)\n", + " load_models_if_needed(client, selected_provider)\n", + "\n", + " return gr.Dropdown(\n", + " choices=models.get(selected_provider, []),\n", + " value=selection_state[selected_provider],\n", + " interactive=True,\n", + " )\n", + "\n", + "\n", + "def on_model_change(change):\n", + " global selected_provider, selected_model, selection_state\n", + "\n", + " selected_model = change\n", + " selection_state[selected_provider] = selected_model\n", + " logger.info(f'👉 Selected model: {selected_model}')\n", + "\n", + "\n", + "with gr.Blocks(title='MathXpert', fill_width=True, \n", + " \n", + " ) as ui:\n", + " def get_value_if_exist(v, ls) -> str:\n", + " print(ls)\n", + " selected = v if v in ls else None\n", + " if selected:\n", + " return selected\n", + "\n", + " return ls[0] if ls else None\n", + "\n", + " with gr.Row():\n", + " provider_selector = gr.Dropdown(\n", + " choices=available_providers, \n", + " value=get_desired_value_or_first_item(selected_provider, available_providers),\n", + " label='Provider',\n", + " )\n", + " model_selector = gr.Dropdown(\n", + " choices=models[selected_provider],\n", + " value=get_desired_value_or_first_item(selection_state[selected_provider], models[selected_provider]),\n", + " label='Model',\n", + " )\n", + " \n", + " provider_selector.change(fn=on_provider_change, inputs=provider_selector, outputs=model_selector)\n", + " model_selector.change(fn=on_model_change, inputs=model_selector)\n", + "\n", + " examples = [\n", + " ['Where can substitutions be applied in real life?', None, None],\n", + " ['Give 1 differential equation question and solve it', None, None],\n", + " ['Plot x**2 - 3x', None, None],\n", + " ['What is the time now?', None, None],\n", + " ['What is the temperature?', None, None],\n", + " ['Tell me the time and the temperature now', None, None],\n", + " ]\n", + "\n", + " \n", + " gr.ChatInterface(\n", + " fn=chat, \n", + " type='messages', \n", + " chatbot=gr.Chatbot(type='messages', height='75vh', resizable=True),\n", + " additional_inputs=[provider_selector, model_selector],\n", + " examples=examples,\n", + " )\n", + "\n", + "ui.launch()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "9c3289fe-efda-46e8-824f-01c1e68f23f5", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a4409824-4f7e-4ec5-b8aa-e42a0b73cc54", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.12" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} From 9543fed3d4a333f703250b27c4b7d6c48a032c14 Mon Sep 17 00:00:00 2001 From: Ransford Okpoti Date: Wed, 22 Oct 2025 13:00:28 +0000 Subject: [PATCH 2/3] =?UTF-8?q?fix:=20left=20cells=20outputs=20after=20fin?= =?UTF-8?q?al=20check=20run=20=F0=9F=A4=A6?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- ...ranskills-week2-mathxpert-with-tools.ipynb | 480 +----------------- 1 file changed, 17 insertions(+), 463 deletions(-) diff --git a/week2/community-contributions/ranskills-week2-mathxpert-with-tools.ipynb b/week2/community-contributions/ranskills-week2-mathxpert-with-tools.ipynb index b058bf3..a423a46 100644 --- a/week2/community-contributions/ranskills-week2-mathxpert-with-tools.ipynb +++ b/week2/community-contributions/ranskills-week2-mathxpert-with-tools.ipynb @@ -18,21 +18,10 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "id": "c1070317-3ed9-4659-abe3-828943230e03", "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "True" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "import os\n", "import json\n", @@ -53,7 +42,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "id": "99901b80", "metadata": {}, "outputs": [], @@ -81,19 +70,10 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "id": "4a456906-915a-4bfd-bb9d-57e505c5093f", "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "INFO:mathxpert:✅ OLLAMA_API_KEY provided\n", - "INFO:mathxpert:✅ OPENROUTER_API_KEY provided\n" - ] - } - ], + "outputs": [], "source": [ "class Provider(StrEnum):\n", " OLLAMA = 'Ollama'\n", @@ -145,20 +125,10 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "id": "aae1579b-7a02-459d-81c6-0f775d2a1410", "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "DEBUG:mathxpert:Pick Ollama from ['Ollama', 'OpenRouter']\n", - "DEBUG:mathxpert:Pick gpt-oss:20b from ['glm-4.6', 'kimi-k2:1t', 'qwen3-coder:480b', 'deepseek-v3.1:671b', 'gpt-oss:120b', 'gpt-oss:20b', 'qwen3-vl:235b']\n", - "INFO:mathxpert:ℹ️ Provider: Ollama Model: gpt-oss:20b, Client: \n" - ] - } - ], + "outputs": [], "source": [ "selected_provider, selected_model, client = '', '', None\n", "\n", @@ -204,7 +174,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "id": "a8d7923c-5f28-4c30-8556-342d7c8497c1", "metadata": {}, "outputs": [], @@ -247,7 +217,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "id": "3f302f47-9a67-4410-ba16-56fa5a731c66", "metadata": {}, "outputs": [], @@ -342,7 +312,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "id": "4f18bc9f-f8d1-4208-a3d7-e4e911034572", "metadata": {}, "outputs": [], @@ -424,83 +394,10 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "id": "9b2e0634-de5d-45f6-a8d4-569e04d14a00", "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "DEBUG:mathxpert:[\n", - " {\n", - " \"type\": \"function\",\n", - " \"function\": {\n", - " \"name\": \"get_current_datetime\",\n", - " \"description\": \"Returns the current date and time in the specified timezone.\",\n", - " \"parameters\": {\n", - " \"properties\": {\n", - " \"timezone\": {\n", - " \"default\": \"UTC\",\n", - " \"description\": \"Timezone name, e.g., 'UTC' or 'Africa/Accra'\",\n", - " \"title\": \"Timezone\",\n", - " \"type\": \"string\"\n", - " }\n", - " },\n", - " \"title\": \"GetCurrentDateTimeInput\",\n", - " \"type\": \"object\"\n", - " }\n", - " }\n", - " },\n", - " {\n", - " \"type\": \"function\",\n", - " \"function\": {\n", - " \"name\": \"get_temperature\",\n", - " \"description\": \"Returns the current temperature in degree celsius\",\n", - " \"parameters\": {\n", - " \"properties\": {},\n", - " \"title\": \"GetTemperatureInput\",\n", - " \"type\": \"object\"\n", - " }\n", - " }\n", - " },\n", - " {\n", - " \"type\": \"function\",\n", - " \"function\": {\n", - " \"name\": \"plot_function\",\n", - " \"description\": \"Plots a mathematical function and returns image data.\",\n", - " \"parameters\": {\n", - " \"properties\": {\n", - " \"expression\": {\n", - " \"description\": \"Mathematical expression to plot, e.g., 'sin(x)'\",\n", - " \"title\": \"Expression\",\n", - " \"type\": \"string\"\n", - " },\n", - " \"x_min\": {\n", - " \"default\": -10,\n", - " \"description\": \"Minimum x value\",\n", - " \"title\": \"X Min\",\n", - " \"type\": \"number\"\n", - " },\n", - " \"x_max\": {\n", - " \"default\": 10,\n", - " \"description\": \"Maximum x value\",\n", - " \"title\": \"X Max\",\n", - " \"type\": \"number\"\n", - " }\n", - " },\n", - " \"required\": [\n", - " \"expression\"\n", - " ],\n", - " \"title\": \"PlotFunctionInput\",\n", - " \"type\": \"object\"\n", - " }\n", - " }\n", - " }\n", - "]\n" - ] - } - ], + "outputs": [], "source": [ "logger.debug(tool_manager.dump_tools())" ] @@ -515,7 +412,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": null, "id": "8f7c8ea8-4082-4ad0-8751-3301adcf6538", "metadata": {}, "outputs": [], @@ -629,153 +526,10 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "id": "09bc9a11-adb4-4a9c-9c77-73b2b5a665cf", "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "DEBUG:mathxpert:# Tools: 3\n", - "DEBUG:mathxpert:Turn: 0\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role='assistant', tool_calls=None), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='The'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' user'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' wants'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' a'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' plot'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' of'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' y'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' ='), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' x'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='^'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='2'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='.'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' We'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' need'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' to'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' call'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' plot'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='_function'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' via'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' tools'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='.'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' So'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' use'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' the'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' function'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' with'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' expression'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' \"'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='x'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='**'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='2'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='\".'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' Probably'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' set'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' range'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' default'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='.'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' Then'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' return'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' an'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' image'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='?'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' We'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' just'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' return'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' the'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' tool'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' output'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='.\\n\\n'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='User'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=\"'s\"), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' message'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' is'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' \"'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='Plot'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' a'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' graph'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' of'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' y'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' ='), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' x'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='**'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='2'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='\".'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' So'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' we'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' provide'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' image'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='.'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' Probably'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' just'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' respond'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' with'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' the'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' call'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='.'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=[ChoiceDeltaToolCall(index=0, id='call_gUaf9cCr8Mn2s5zdix8L3ij2', function=ChoiceDeltaToolCallFunction(arguments=None, name='plot_function'), type='function')]), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=[ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='{\"', name=None), type='function')]), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=[ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='expression', name=None), type='function')]), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=[ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='\":\"', name=None), type='function')]), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=[ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='x', name=None), type='function')]), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=[ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='**', name=None), type='function')]), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=[ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='2', name=None), type='function')]), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=[ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='\"}', name=None), type='function')]), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None), finish_reason='tool_calls', index=0, logprobs=None)\n", - "DEBUG:mathxpert:🧠 LLM interaction ended. Reason: {finish_reason}\n", - "DEBUG:mathxpert:Final tools to call [namespace(id='call_gUaf9cCr8Mn2s5zdix8L3ij2', function=namespace(name='plot_function', arguments='{\"expression\":\"x**2\"}'))]\n", - "DEBUG:mathxpert:[namespace(id='call_gUaf9cCr8Mn2s5zdix8L3ij2', function=namespace(name='plot_function', arguments='{\"expression\":\"x**2\"}'))]\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\n", - "ChoiceDeltaToolCall(index=0, id='call_gUaf9cCr8Mn2s5zdix8L3ij2', function=ChoiceDeltaToolCallFunction(arguments=None, name='plot_function'), type='function')\n", - "Call ID: call_gUaf9cCr8Mn2s5zdix8L3ij2\n", - "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\n", - "ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='{\"', name=None), type='function')\n", - "Call ID: call_gUaf9cCr8Mn2s5zdix8L3ij2\n", - "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\n", - "ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='expression', name=None), type='function')\n", - "Call ID: call_gUaf9cCr8Mn2s5zdix8L3ij2\n", - "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\n", - "ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='\":\"', name=None), type='function')\n", - "Call ID: call_gUaf9cCr8Mn2s5zdix8L3ij2\n", - "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\n", - "ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='x', name=None), type='function')\n", - "Call ID: call_gUaf9cCr8Mn2s5zdix8L3ij2\n", - "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\n", - "ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='**', name=None), type='function')\n", - "Call ID: call_gUaf9cCr8Mn2s5zdix8L3ij2\n", - "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\n", - "ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='2', name=None), type='function')\n", - "Call ID: call_gUaf9cCr8Mn2s5zdix8L3ij2\n", - "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\n", - "ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='\"}', name=None), type='function')\n", - "Call ID: call_gUaf9cCr8Mn2s5zdix8L3ij2\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "DEBUG:mathxpert:Tool run result: {'plot_image': '', 'expression': 'x**2', 'x_range': [-10, 10]}\n", - "DEBUG:mathxpert:We have a plot\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], + "outputs": [], "source": [ "# print(selected_provider, selected_model)\n", "# print(client)\n", @@ -797,210 +551,10 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": null, "id": "50fc3577", "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "DEBUG:mathxpert:Pick Ollama from ['Ollama', 'OpenRouter']\n", - "DEBUG:mathxpert:Pick gpt-oss:20b from ['glm-4.6', 'kimi-k2:1t', 'qwen3-coder:480b', 'deepseek-v3.1:671b', 'gpt-oss:120b', 'gpt-oss:20b', 'qwen3-vl:235b']\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "* Running on local URL: http://127.0.0.1:7860\n", - "* To create a public link, set `share=True` in `launch()`.\n" - ] - }, - { - "data": { - "text/html": [ - "
" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "DEBUG:mathxpert:# Tools: 3\n", - "DEBUG:mathxpert:Turn: 0\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role='assistant', tool_calls=None), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='User'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' wants'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' to'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' plot'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' function'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' x'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='**'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='2'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' -'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' '), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='3'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='x'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='.'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' We'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' can'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' use'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' plot'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='_function'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='.'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' Provide'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' function'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' expression'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' \"'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='x'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='**'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='2'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' -'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' '), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='3'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='*x'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='\".'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' Provide'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' x'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='_min'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' and'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' x'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='_max'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' maybe'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' default'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' ok'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='.'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' Provide'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content=' result'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None, reasoning_content='.'), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=[ChoiceDeltaToolCall(index=0, id='call_EAUjPtptsIVT7yUFY7KMYVZ9', function=ChoiceDeltaToolCallFunction(arguments=None, name='plot_function'), type='function')]), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=[ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='{\"', name=None), type='function')]), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=[ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='expression', name=None), type='function')]), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=[ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='\":\"', name=None), type='function')]), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=[ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='x', name=None), type='function')]), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=[ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='**', name=None), type='function')]), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=[ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='2', name=None), type='function')]), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=[ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments=' -', name=None), type='function')]), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=[ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments=' ', name=None), type='function')]), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=[ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='3', name=None), type='function')]), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=[ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='*x', name=None), type='function')]), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=[ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='\",\"', name=None), type='function')]), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=[ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='x', name=None), type='function')]), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=[ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='_min', name=None), type='function')]), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=[ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='\":', name=None), type='function')]), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=[ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='-', name=None), type='function')]), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=[ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='10', name=None), type='function')]), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=[ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments=',\"', name=None), type='function')]), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=[ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='x', name=None), type='function')]), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=[ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='_max', name=None), type='function')]), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=[ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='\":', name=None), type='function')]), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=[ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='10', name=None), type='function')]), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=[ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='}', name=None), type='function')]), finish_reason=None, index=0, logprobs=None)\n", - "DEBUG:mathxpert: ✨ Choice(delta=ChoiceDelta(content=None, function_call=None, refusal=None, role=None, tool_calls=None), finish_reason='tool_calls', index=0, logprobs=None)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\n", - "ChoiceDeltaToolCall(index=0, id='call_EAUjPtptsIVT7yUFY7KMYVZ9', function=ChoiceDeltaToolCallFunction(arguments=None, name='plot_function'), type='function')\n", - "Call ID: call_EAUjPtptsIVT7yUFY7KMYVZ9\n", - "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\n", - "ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='{\"', name=None), type='function')\n", - "Call ID: call_EAUjPtptsIVT7yUFY7KMYVZ9\n", - "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\n", - "ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='expression', name=None), type='function')\n", - "Call ID: call_EAUjPtptsIVT7yUFY7KMYVZ9\n", - "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\n", - "ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='\":\"', name=None), type='function')\n", - "Call ID: call_EAUjPtptsIVT7yUFY7KMYVZ9\n", - "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\n", - "ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='x', name=None), type='function')\n", - "Call ID: call_EAUjPtptsIVT7yUFY7KMYVZ9\n", - "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\n", - "ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='**', name=None), type='function')\n", - "Call ID: call_EAUjPtptsIVT7yUFY7KMYVZ9\n", - "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\n", - "ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='2', name=None), type='function')\n", - "Call ID: call_EAUjPtptsIVT7yUFY7KMYVZ9\n", - "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\n", - "ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments=' -', name=None), type='function')\n", - "Call ID: call_EAUjPtptsIVT7yUFY7KMYVZ9\n", - "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\n", - "ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments=' ', name=None), type='function')\n", - "Call ID: call_EAUjPtptsIVT7yUFY7KMYVZ9\n", - "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\n", - "ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='3', name=None), type='function')\n", - "Call ID: call_EAUjPtptsIVT7yUFY7KMYVZ9\n", - "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\n", - "ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='*x', name=None), type='function')\n", - "Call ID: call_EAUjPtptsIVT7yUFY7KMYVZ9\n", - "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\n", - "ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='\",\"', name=None), type='function')\n", - "Call ID: call_EAUjPtptsIVT7yUFY7KMYVZ9\n", - "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\n", - "ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='x', name=None), type='function')\n", - "Call ID: call_EAUjPtptsIVT7yUFY7KMYVZ9\n", - "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\n", - "ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='_min', name=None), type='function')\n", - "Call ID: call_EAUjPtptsIVT7yUFY7KMYVZ9\n", - "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\n", - "ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='\":', name=None), type='function')\n", - "Call ID: call_EAUjPtptsIVT7yUFY7KMYVZ9\n", - "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\n", - "ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='-', name=None), type='function')\n", - "Call ID: call_EAUjPtptsIVT7yUFY7KMYVZ9\n", - "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\n", - "ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='10', name=None), type='function')\n", - "Call ID: call_EAUjPtptsIVT7yUFY7KMYVZ9\n", - "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\n", - "ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments=',\"', name=None), type='function')\n", - "Call ID: call_EAUjPtptsIVT7yUFY7KMYVZ9\n", - "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\n", - "ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='x', name=None), type='function')\n", - "Call ID: call_EAUjPtptsIVT7yUFY7KMYVZ9\n", - "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\n", - "ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='_max', name=None), type='function')\n", - "Call ID: call_EAUjPtptsIVT7yUFY7KMYVZ9\n", - "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\n", - "ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='\":', name=None), type='function')\n", - "Call ID: call_EAUjPtptsIVT7yUFY7KMYVZ9\n", - "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\n", - "ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='10', name=None), type='function')\n", - "Call ID: call_EAUjPtptsIVT7yUFY7KMYVZ9\n", - "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\n", - "ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='}', name=None), type='function')\n", - "Call ID: call_EAUjPtptsIVT7yUFY7KMYVZ9\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "DEBUG:mathxpert:🧠 LLM interaction ended. Reason: {finish_reason}\n", - "DEBUG:mathxpert:Final tools to call [namespace(id='call_EAUjPtptsIVT7yUFY7KMYVZ9', function=namespace(name='plot_function', arguments='{\"expression\":\"x**2 - 3*x\",\"x_min\":-10,\"x_max\":10}'))]\n", - "DEBUG:mathxpert:[namespace(id='call_EAUjPtptsIVT7yUFY7KMYVZ9', function=namespace(name='plot_function', arguments='{\"expression\":\"x**2 - 3*x\",\"x_min\":-10,\"x_max\":10}'))]\n", - "DEBUG:mathxpert:Tool run result: {'plot_image': '', 'expression': 'x**2 - 3*x', 'x_range': [-10.0, 10.0]}\n", - "DEBUG:mathxpert:We have a plot\n" - ] - } - ], + "outputs": [], "source": [ "def chat(message: str, history: list[dict], selected_provider: str, model_selector: str):\n", " # NOTE: I'm not interesting in maintaining a conversation\n", From 4af5ebbec5935e02cee6409eb7192a2c3a071b86 Mon Sep 17 00:00:00 2001 From: Ransford Okpoti Date: Wed, 22 Oct 2025 13:02:45 +0000 Subject: [PATCH 3/3] =?UTF-8?q?fix:=20remove=20unused=20trailing=20cells?= =?UTF-8?q?=20=F0=9F=A4=A6?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- .../ranskills-week2-mathxpert-with-tools.ipynb | 16 ---------------- 1 file changed, 16 deletions(-) diff --git a/week2/community-contributions/ranskills-week2-mathxpert-with-tools.ipynb b/week2/community-contributions/ranskills-week2-mathxpert-with-tools.ipynb index a423a46..3891b8e 100644 --- a/week2/community-contributions/ranskills-week2-mathxpert-with-tools.ipynb +++ b/week2/community-contributions/ranskills-week2-mathxpert-with-tools.ipynb @@ -631,22 +631,6 @@ "\n", "ui.launch()" ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "9c3289fe-efda-46e8-824f-01c1e68f23f5", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "a4409824-4f7e-4ec5-b8aa-e42a0b73cc54", - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": {