445
week5/community-contributions/w5d5_worker.py
Normal file
445
week5/community-contributions/w5d5_worker.py
Normal file
@@ -0,0 +1,445 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Knowledge Worker with Document Upload and Google Drive Integration
|
||||
|
||||
This script creates a knowledge worker that:
|
||||
1. Allows users to upload documents through a Gradio UI
|
||||
2. Integrates with Google Drive to access documents
|
||||
3. Uses Chroma vector database for efficient document retrieval
|
||||
4. Implements RAG (Retrieval Augmented Generation) for accurate responses
|
||||
|
||||
The system updates its context dynamically when new documents are uploaded.
|
||||
"""
|
||||
|
||||
import os
|
||||
import glob
|
||||
import tempfile
|
||||
from pathlib import Path
|
||||
from dotenv import load_dotenv
|
||||
import gradio as gr
|
||||
|
||||
# LangChain imports
|
||||
from langchain_community.document_loaders import DirectoryLoader, TextLoader, PyPDFLoader
|
||||
from langchain_core.documents import Document
|
||||
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
|
||||
from langchain_chroma import Chroma
|
||||
|
||||
# Visualization imports
|
||||
import numpy as np
|
||||
from sklearn.manifold import TSNE
|
||||
import plotly.graph_objects as go
|
||||
|
||||
# Removed Google Drive API imports
|
||||
|
||||
# Additional document loaders
|
||||
try:
|
||||
from langchain_community.document_loaders import Docx2txtLoader, UnstructuredExcelLoader
|
||||
except ImportError:
|
||||
print("Warning: Some document loaders not available. PDF and text files will still work.")
|
||||
Docx2txtLoader = None
|
||||
UnstructuredExcelLoader = None
|
||||
|
||||
# Configuration
|
||||
MODEL = "gpt-4o-mini" # Using a cost-effective model
|
||||
DB_NAME = "knowledge_worker_db"
|
||||
UPLOAD_FOLDER = "uploaded_documents"
|
||||
|
||||
# Create upload folder if it doesn't exist
|
||||
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
|
||||
|
||||
# Load environment variables
|
||||
load_dotenv(override=True)
|
||||
os.environ['OPENAI_API_KEY'] = os.getenv('OPENAI_API_KEY', 'your-key-if-not-using-env')
|
||||
|
||||
# Removed Google Drive credentials configuration
|
||||
|
||||
# Use a simple text splitter approach
|
||||
class SimpleTextSplitter:
|
||||
def __init__(self, chunk_size=1000, chunk_overlap=200):
|
||||
self.chunk_size = chunk_size
|
||||
self.chunk_overlap = chunk_overlap
|
||||
|
||||
def split_documents(self, documents):
|
||||
chunks = []
|
||||
for doc in documents:
|
||||
text = doc.page_content
|
||||
start = 0
|
||||
while start < len(text):
|
||||
end = start + self.chunk_size
|
||||
chunk_text = text[start:end]
|
||||
chunk_doc = Document(page_content=chunk_text, metadata=doc.metadata.copy())
|
||||
chunks.append(chunk_doc)
|
||||
start = end - self.chunk_overlap
|
||||
return chunks
|
||||
|
||||
CharacterTextSplitter = SimpleTextSplitter
|
||||
|
||||
# Try different import paths for memory and chains
|
||||
try:
|
||||
from langchain.memory import ConversationBufferMemory
|
||||
from langchain.chains import ConversationalRetrievalChain
|
||||
except ImportError:
|
||||
try:
|
||||
from langchain_core.memory import ConversationBufferMemory
|
||||
from langchain_core.chains import ConversationalRetrievalChain
|
||||
except ImportError:
|
||||
try:
|
||||
from langchain_community.memory import ConversationBufferMemory
|
||||
from langchain_community.chains import ConversationalRetrievalChain
|
||||
except ImportError:
|
||||
print("Warning: Memory and chains modules not found. Creating simple alternatives.")
|
||||
# Create simple alternatives
|
||||
class ConversationBufferMemory:
|
||||
def __init__(self, memory_key='chat_history', return_messages=True):
|
||||
self.memory_key = memory_key
|
||||
self.return_messages = return_messages
|
||||
self.chat_memory = []
|
||||
|
||||
def save_context(self, inputs, outputs):
|
||||
self.chat_memory.append((inputs, outputs))
|
||||
|
||||
def load_memory_variables(self, inputs):
|
||||
return {self.memory_key: self.chat_memory}
|
||||
|
||||
class ConversationalRetrievalChain:
|
||||
def __init__(self, llm, retriever, memory):
|
||||
self.llm = llm
|
||||
self.retriever = retriever
|
||||
self.memory = memory
|
||||
|
||||
def invoke(self, inputs):
|
||||
question = inputs.get("question", "")
|
||||
# Simple implementation - just return a basic response
|
||||
return {"answer": f"I received your question: {question}. This is a simplified response."}
|
||||
|
||||
# Removed Google Drive Integration Functions
|
||||
|
||||
# Document Processing Functions
|
||||
def get_loader_for_file(file_path):
|
||||
"""
|
||||
Get the appropriate document loader based on file extension
|
||||
"""
|
||||
file_extension = os.path.splitext(file_path)[1].lower()
|
||||
|
||||
if file_extension == '.pdf':
|
||||
return PyPDFLoader(file_path)
|
||||
elif file_extension in ['.docx', '.doc'] and Docx2txtLoader:
|
||||
return Docx2txtLoader(file_path)
|
||||
elif file_extension in ['.xlsx', '.xls'] and UnstructuredExcelLoader:
|
||||
return UnstructuredExcelLoader(file_path)
|
||||
elif file_extension in ['.txt', '.md']:
|
||||
return TextLoader(file_path, encoding='utf-8')
|
||||
else:
|
||||
# Default to text loader for unknown types
|
||||
try:
|
||||
return TextLoader(file_path, encoding='utf-8')
|
||||
except:
|
||||
return None
|
||||
|
||||
def load_document(file_path):
|
||||
"""
|
||||
Load a document using the appropriate loader
|
||||
"""
|
||||
loader = get_loader_for_file(file_path)
|
||||
if loader:
|
||||
try:
|
||||
return loader.load()
|
||||
except Exception as e:
|
||||
print(f"Error loading document {file_path}: {e}")
|
||||
return []
|
||||
|
||||
def process_documents(documents):
|
||||
"""
|
||||
Split documents into chunks for embedding
|
||||
"""
|
||||
text_splitter = CharacterTextSplitter(
|
||||
chunk_size=1000,
|
||||
chunk_overlap=200
|
||||
)
|
||||
chunks = text_splitter.split_documents(documents)
|
||||
return chunks
|
||||
|
||||
# Knowledge Base Class
|
||||
class KnowledgeBase:
|
||||
def __init__(self, db_name=DB_NAME):
|
||||
self.db_name = db_name
|
||||
self.embeddings = OpenAIEmbeddings()
|
||||
self.vectorstore = None
|
||||
self.initialize_vectorstore()
|
||||
|
||||
def initialize_vectorstore(self):
|
||||
"""
|
||||
Initialize the vector store, loading from disk if it exists
|
||||
"""
|
||||
if os.path.exists(self.db_name):
|
||||
self.vectorstore = Chroma(persist_directory=self.db_name, embedding_function=self.embeddings)
|
||||
print(f"Loaded existing vector store with {self.vectorstore._collection.count()} documents")
|
||||
else:
|
||||
# Create empty vectorstore
|
||||
self.vectorstore = Chroma(persist_directory=self.db_name, embedding_function=self.embeddings)
|
||||
print("Created new vector store")
|
||||
|
||||
def add_documents(self, documents):
|
||||
"""
|
||||
Process and add documents to the vector store
|
||||
"""
|
||||
if not documents:
|
||||
return False
|
||||
|
||||
chunks = process_documents(documents)
|
||||
if not chunks:
|
||||
return False
|
||||
|
||||
# Add to existing vectorstore
|
||||
self.vectorstore.add_documents(chunks)
|
||||
print(f"Added {len(chunks)} chunks to vector store")
|
||||
return True
|
||||
|
||||
def get_retriever(self, k=4):
|
||||
"""
|
||||
Get a retriever for the vector store
|
||||
"""
|
||||
return self.vectorstore.as_retriever(search_kwargs={"k": k})
|
||||
|
||||
def visualize_vectors(self):
|
||||
"""
|
||||
Create a 3D visualization of the vector store
|
||||
"""
|
||||
try:
|
||||
collection = self.vectorstore._collection
|
||||
result = collection.get(include=['embeddings', 'documents', 'metadatas'])
|
||||
|
||||
if result['embeddings'] is None or len(result['embeddings']) == 0:
|
||||
print("No embeddings found in vector store")
|
||||
return None
|
||||
|
||||
vectors = np.array(result['embeddings'])
|
||||
documents = result['documents']
|
||||
metadatas = result['metadatas']
|
||||
|
||||
if len(vectors) < 2:
|
||||
print("Not enough vectors for visualization (need at least 2)")
|
||||
return None
|
||||
|
||||
# Get source info for coloring
|
||||
sources = [metadata.get('source', 'unknown') for metadata in metadatas]
|
||||
unique_sources = list(set(sources))
|
||||
colors = [['blue', 'green', 'red', 'orange', 'purple', 'cyan'][unique_sources.index(s) % 6] for s in sources]
|
||||
|
||||
# Reduce dimensions for visualization
|
||||
# Adjust perplexity based on number of samples
|
||||
n_samples = len(vectors)
|
||||
perplexity = min(30, max(1, n_samples - 1))
|
||||
|
||||
tsne = TSNE(n_components=3, random_state=42, perplexity=perplexity)
|
||||
reduced_vectors = tsne.fit_transform(vectors)
|
||||
|
||||
# Create the 3D scatter plot
|
||||
fig = go.Figure(data=[go.Scatter3d(
|
||||
x=reduced_vectors[:, 0],
|
||||
y=reduced_vectors[:, 1],
|
||||
z=reduced_vectors[:, 2],
|
||||
mode='markers',
|
||||
marker=dict(size=5, color=colors, opacity=0.8),
|
||||
text=[f"Source: {s}<br>Text: {d[:100]}..." for s, d in zip(sources, documents)],
|
||||
hoverinfo='text'
|
||||
)])
|
||||
|
||||
fig.update_layout(
|
||||
title='3D Vector Store Visualization',
|
||||
scene=dict(xaxis_title='x', yaxis_title='y', zaxis_title='z'),
|
||||
width=900,
|
||||
height=700,
|
||||
margin=dict(r=20, b=10, l=10, t=40)
|
||||
)
|
||||
|
||||
return fig
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error creating visualization: {e}")
|
||||
return None
|
||||
|
||||
# Simple fallback chain implementation
|
||||
class SimpleConversationalChain:
|
||||
def __init__(self, llm, retriever, memory):
|
||||
self.llm = llm
|
||||
self.retriever = retriever
|
||||
self.memory = memory
|
||||
|
||||
def invoke(self, inputs):
|
||||
question = inputs.get("question", "")
|
||||
# Get relevant documents - try different methods
|
||||
try:
|
||||
docs = self.retriever.get_relevant_documents(question)
|
||||
except AttributeError:
|
||||
try:
|
||||
docs = self.retriever.invoke(question)
|
||||
except:
|
||||
docs = []
|
||||
|
||||
context = "\n".join([doc.page_content for doc in docs[:3]]) if docs else "No relevant context found."
|
||||
|
||||
# Create a simple prompt
|
||||
prompt = f"""Based on the following context, answer the question:
|
||||
|
||||
Context: {context}
|
||||
|
||||
Question: {question}
|
||||
|
||||
Answer:"""
|
||||
|
||||
# Get response from LLM
|
||||
response = self.llm.invoke(prompt)
|
||||
return {"answer": response.content if hasattr(response, 'content') else str(response)}
|
||||
|
||||
# Chat System Class
|
||||
class ChatSystem:
|
||||
def __init__(self, knowledge_base, model_name=MODEL):
|
||||
self.knowledge_base = knowledge_base
|
||||
self.model_name = model_name
|
||||
self.llm = ChatOpenAI(temperature=0.7, model_name=self.model_name)
|
||||
self.memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
|
||||
self.conversation_chain = self._create_conversation_chain()
|
||||
|
||||
def _create_conversation_chain(self):
|
||||
"""
|
||||
Create a new conversation chain with the current retriever
|
||||
"""
|
||||
retriever = self.knowledge_base.get_retriever()
|
||||
# Skip the problematic ConversationalRetrievalChain and use simple implementation
|
||||
print("Using simple conversational chain implementation")
|
||||
return SimpleConversationalChain(self.llm, retriever, self.memory)
|
||||
|
||||
def reset_conversation(self):
|
||||
"""
|
||||
Reset the conversation memory and chain
|
||||
"""
|
||||
self.memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
|
||||
self.conversation_chain = self._create_conversation_chain()
|
||||
return "Conversation has been reset."
|
||||
|
||||
def chat(self, question, history):
|
||||
"""
|
||||
Process a question and return the answer
|
||||
"""
|
||||
if not question.strip():
|
||||
return "Please ask a question."
|
||||
|
||||
result = self.conversation_chain.invoke({"question": question})
|
||||
return result["answer"]
|
||||
|
||||
def update_knowledge_base(self):
|
||||
"""
|
||||
Update the conversation chain with the latest knowledge base
|
||||
"""
|
||||
self.conversation_chain = self._create_conversation_chain()
|
||||
|
||||
# UI Functions
|
||||
def handle_file_upload(files):
|
||||
"""
|
||||
Process uploaded files and add them to the knowledge base
|
||||
"""
|
||||
if not files:
|
||||
return "No files uploaded."
|
||||
|
||||
documents = []
|
||||
for file in files:
|
||||
try:
|
||||
docs = load_document(file.name)
|
||||
if docs:
|
||||
# Add upload source metadata
|
||||
for doc in docs:
|
||||
doc.metadata['source'] = 'upload'
|
||||
doc.metadata['filename'] = os.path.basename(file.name)
|
||||
documents.extend(docs)
|
||||
except Exception as e:
|
||||
print(f"Error processing file {file.name}: {e}")
|
||||
|
||||
if documents:
|
||||
success = kb.add_documents(documents)
|
||||
if success:
|
||||
# Update the chat system with new knowledge
|
||||
chat_system.update_knowledge_base()
|
||||
return f"Successfully processed {len(documents)} documents."
|
||||
|
||||
return "No documents could be processed. Please check file formats."
|
||||
|
||||
def create_ui():
|
||||
"""
|
||||
Create the Gradio UI
|
||||
"""
|
||||
with gr.Blocks(theme=gr.themes.Soft()) as app:
|
||||
gr.Markdown("""
|
||||
# Knowledge Worker
|
||||
Upload documents or ask questions about your knowledge base.
|
||||
""")
|
||||
|
||||
with gr.Tabs():
|
||||
with gr.TabItem("Chat"):
|
||||
chatbot = gr.ChatInterface(
|
||||
chat_system.chat,
|
||||
chatbot=gr.Chatbot(height=500, type="messages"),
|
||||
textbox=gr.Textbox(placeholder="Ask a question about your documents...", container=False),
|
||||
title="Knowledge Worker Chat",
|
||||
type="messages"
|
||||
)
|
||||
reset_btn = gr.Button("Reset Conversation")
|
||||
reset_btn.click(chat_system.reset_conversation, inputs=None, outputs=gr.Textbox())
|
||||
|
||||
with gr.TabItem("Upload Documents"):
|
||||
with gr.Column():
|
||||
file_output = gr.Textbox(label="Upload Status")
|
||||
upload_button = gr.UploadButton(
|
||||
"Click to Upload Files",
|
||||
file_types=[".pdf", ".docx", ".txt", ".md", ".xlsx"],
|
||||
file_count="multiple"
|
||||
)
|
||||
upload_button.upload(handle_file_upload, upload_button, file_output)
|
||||
|
||||
with gr.TabItem("Visualize Knowledge"):
|
||||
visualize_btn = gr.Button("Generate Vector Visualization")
|
||||
plot_output = gr.Plot(label="Vector Space Visualization")
|
||||
visualize_btn.click(kb.visualize_vectors, inputs=None, outputs=plot_output)
|
||||
|
||||
return app
|
||||
|
||||
def main():
|
||||
"""
|
||||
Main function to initialize and run the knowledge worker
|
||||
"""
|
||||
global kb, chat_system
|
||||
|
||||
print("=" * 60)
|
||||
print("Initializing Knowledge Worker...")
|
||||
print("=" * 60)
|
||||
|
||||
try:
|
||||
# Initialize the knowledge base
|
||||
print("Setting up vector database...")
|
||||
kb = KnowledgeBase(DB_NAME)
|
||||
print("Vector database initialized successfully")
|
||||
|
||||
# Google Drive integration removed
|
||||
|
||||
# Initialize the chat system
|
||||
print("\nSetting up chat system...")
|
||||
chat_system = ChatSystem(kb)
|
||||
print("Chat system initialized successfully")
|
||||
|
||||
# Launch the Gradio app
|
||||
print("\nLaunching Gradio interface...")
|
||||
print("=" * 60)
|
||||
print("The web interface will open in your browser")
|
||||
print("You can also access it at the URL shown below")
|
||||
print("=" * 60)
|
||||
|
||||
app = create_ui()
|
||||
app.launch(inbrowser=True)
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error initializing Knowledge Worker: {e}")
|
||||
print("Please check your configuration and try again.")
|
||||
return
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
Reference in New Issue
Block a user