Merge pull request #520 from RalphMaa/day5-community-contributions-branch

Add Day 5 translation challenge and exercise
This commit is contained in:
Ed Donner
2025-07-18 22:58:42 -04:00
committed by GitHub
2 changed files with 557 additions and 0 deletions

View File

@@ -0,0 +1,191 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "75e66023-eccf-46a9-8b70-7b21ede16ddd",
"metadata": {},
"source": [
"# End of week 1 exercise\n",
"\n",
"To demonstrate your familiarity with OpenAI API, and also Ollama, build a tool that takes a technical question, \n",
"and responds with an explanation. This is a tool that you will be able to use yourself during the course!"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "72d21373-edbd-4432-a29d-db8e6c9c5808",
"metadata": {},
"outputs": [],
"source": [
"# imports\n",
"\n",
"import os\n",
"from dotenv import load_dotenv\n",
"from IPython.display import Markdown, display, update_display\n",
"from openai import OpenAI\n",
"import ollama"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d4e4c15b-7ae8-43e9-839d-7cc49345be5a",
"metadata": {},
"outputs": [],
"source": [
"!ollama pull llama3.2"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7fb44166-1c65-42fc-9950-1960bc3cc432",
"metadata": {},
"outputs": [],
"source": [
"# constants\n",
"\n",
"MODEL_GPT = 'gpt-4o-mini'\n",
"MODEL_LLAMA = 'llama3.2'"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "58f5f1e1-5296-4631-9698-8645d4621a0c",
"metadata": {},
"outputs": [],
"source": [
"# set up environment\n",
"\n",
"# Get the openai key\n",
"\n",
"load_dotenv(override=True)\n",
"openai_api_key = os.getenv('OPENAI_API_KEY')\n",
"\n",
"if openai_api_key and openai_api_key.startswith('sk-proj-') and len(openai_api_key)>10:\n",
" print(\"API key looks good so far\")\n",
"else:\n",
" print(\"There might be a problem with your API key? Please visit the troubleshooting notebook!\")\n",
"\n",
"openai = OpenAI()\n",
"# Get the ollama key using the llama model\n",
"\n",
"ollama_via_openai = OpenAI(base_url='http://localhost:11434/v1', api_key='ollama')\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "12f07b33-76b9-42fa-9962-21f2a5796126",
"metadata": {},
"outputs": [],
"source": [
"system_prompt = \"You are a knowledgeable technical instructor who helps students understand \\\n",
"complex concepts across a wide range of technical topics. Your expertise includes artificial]\\\n",
"intelligence, machine learning, large language models (LLMs), and programming in languages \\\n",
"such as Python, JavaScript, Java, and more. You also provide in-depth support for \\\n",
"AI engineering questions and other advanced technical subjects.\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "330abeb7-7db2-4f23-9d19-dd698058a400",
"metadata": {},
"outputs": [],
"source": [
"# here is the question; type over this to ask something new\n",
"\n",
"question = \"\"\"\n",
"Please explain what this code does and why:\n",
"yield from {book.get(\"author\") for book in books if book.get(\"author\")}\n",
"\"\"\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "bd11ad48-91ec-4cdf-9c57-99a0451e7a2f",
"metadata": {},
"outputs": [],
"source": [
"# Get gpt-4o-mini to answer, with streaming\n",
"stream_GPT = openai.chat.completions.create(\n",
" model=MODEL_GPT,\n",
" messages=[\n",
" {\"role\": \"system\", \"content\": system_prompt},\n",
" {\"role\": \"user\", \"content\": question}\n",
" ],\n",
" stream = True\n",
" )\n",
"response_GPT = \"\"\n",
"display_handle = display(Markdown(\"\"), display_id=True)\n",
"for chunk in stream_GPT:\n",
" response_GPT += chunk.choices[0].delta.content or ''\n",
" response_GPT = response_GPT.replace(\"```\",\"\").replace(\"markdown\", \"\")\n",
" update_display(Markdown(response_GPT), display_id=display_handle.display_id)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "dd2527ae-0d75-4f15-a45f-92075e3059d6",
"metadata": {},
"outputs": [],
"source": [
"# Get Llama 3.2 to answer\n",
"\n",
"response_llama = ollama_via_openai.chat.completions.create(\n",
" model=MODEL_LLAMA,\n",
" messages=[\n",
" {\"role\": \"system\", \"content\": system_prompt},\n",
" {\"role\": \"user\", \"content\": question}\n",
" ],\n",
" )\n",
"result = response_llama.choices[0].message.content\n",
"\n",
"display(Markdown(result))\n",
"\n",
"# import ollama\n",
"\n",
"# response = ollama.chat(model=MODEL_LLAMA, messages=[\n",
"# {\"role\": \"system\", \"content\": system_prompt},\n",
"# {\"role\": \"user\", \"content\": question}\n",
"# ])\n",
"# print(response['message']['content'])"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c2747739-ba64-4067-902f-c1acc0dbdaca",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.13"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -0,0 +1,366 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "53b9681c-896a-4e5d-b62c-44c90612e67c",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import requests\n",
"import json\n",
"from typing import List\n",
"from dotenv import load_dotenv\n",
"from bs4 import BeautifulSoup\n",
"from IPython.display import Markdown, display, update_display\n",
"from openai import OpenAI"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3c6f1133-5c17-4ca7-819c-f64cc48212ec",
"metadata": {},
"outputs": [],
"source": [
"# Initialize constants and get api_key\n",
"\n",
"load_dotenv(override=True)\n",
"api_key = os.getenv('OPENAI_API_KEY')\n",
"\n",
"#Check if api_key is correct\n",
"if api_key and api_key.startswith('sk-proj-') and len(api_key)>10:\n",
" print(\"API key looks good so far\")\n",
"else:\n",
" print(\"There might be a problem with your API key? Please visit the troubleshooting notebook!\")\n",
" \n",
"MODEL = 'gpt-4o-mini'\n",
"openai = OpenAI()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4cdb0a59-b5e1-4df5-a17e-8c36c80695b4",
"metadata": {},
"outputs": [],
"source": [
"# A class to represent a Webpage\n",
"\n",
"# Some websites need you to use proper headers when fetching them:\n",
"headers = {\n",
" \"User-Agent\": \"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/117.0.0.0 Safari/537.36\"\n",
"}\n",
"\n",
"class Website:\n",
" \"\"\"\n",
" A utility class to represent a Website that we have scraped, now with links\n",
" \"\"\"\n",
"\n",
" def __init__(self, url):\n",
" self.url = url\n",
" response = requests.get(url, headers=headers)\n",
" self.body = response.content\n",
" soup = BeautifulSoup(self.body, 'html.parser')\n",
" self.title = soup.title.string if soup.title else \"No title found\"\n",
" if soup.body:\n",
" for irrelevant in soup.body([\"script\", \"style\", \"img\", \"input\"]):\n",
" irrelevant.decompose()\n",
" self.text = soup.body.get_text(separator=\"\\n\", strip=True)\n",
" else:\n",
" self.text = \"\"\n",
" links = [link.get('href') for link in soup.find_all('a')]\n",
" self.links = [link for link in links if link]\n",
"\n",
" def get_contents(self):\n",
" return f\"Webpage Title:\\n{self.title}\\nWebpage Contents:\\n{self.text}\\n\\n\""
]
},
{
"cell_type": "markdown",
"id": "50d4cffe-da7a-4cab-afea-d061a1a608ac",
"metadata": {},
"source": [
"Step 1: Find relevant links to the website in order to create the brochure (Use Multi-shot prompting)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b43b4c64-bc6a-41ca-bdb9-aa714e4e794e",
"metadata": {},
"outputs": [],
"source": [
"link_system_prompt = \"You are provided with a list of links found on a webpage like ['https://edwarddonner.com/', https://www.udemy.com/course/llm-engineering-master-ai-and-large-language-models/?referralCode=35EB41EBB11DD247CF54&couponCode=KEEPLEARNING] or ['https://huggingface.co/', https://huggingface.co/models] \\\n",
"You are able to decide which of the links would be most relevant to include in a brochure about the company, \\\n",
"such as links to an About page, or a News page, or a Home page, or a Company page, or Careers/Jobs pages.\\n\"\n",
"link_system_prompt += \"You should respond in JSON as in these example:\"\n",
"link_system_prompt += \"\"\"\n",
"{\n",
" \"links\": [\n",
" {\"type\": \"about page\", \"url\": \"https://full.url/goes/here/about\"},\n",
" {\"type\": \"careers page\", \"url\": \"https://another.full.url/careers\"}\n",
" ]\n",
"}\n",
"\n",
"{\n",
" \"links\": [\n",
" {\"type\": \"home page\", \"url\": \"https://full.url/goes/here/about\"},\n",
" {\"type\": \"news page\", \"url\": \"https://another.full.url/careers\"}\n",
" ]\n",
"}\n",
"\"\"\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "15d2870c-67ab-4aa2-89f5-04b608a9c810",
"metadata": {},
"outputs": [],
"source": [
"def get_links_user_prompt(website):\n",
" user_prompt = f\"Here is the list of links on the website of {website.url} - \"\n",
" user_prompt += \"please decide which of these are relevant web links for a brochure about the company, respond with the full https URL in JSON format. \\\n",
"Do not include Terms of Service, Privacy, email links.\\n\"\n",
" user_prompt += \"Links (some might be relative links):\\n\"\n",
" user_prompt += \"\\n\".join(website.links)\n",
" return user_prompt"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e255be42-5e71-47ca-9275-c0cf22beeb00",
"metadata": {},
"outputs": [],
"source": [
"def get_links(url):\n",
" website = Website(url)\n",
" response = openai.chat.completions.create(\n",
" model=MODEL,\n",
" messages=[\n",
" {\"role\": \"system\", \"content\": link_system_prompt},\n",
" {\"role\": \"user\", \"content\": get_links_user_prompt(website)}\n",
" ],\n",
" response_format={\"type\": \"json_object\"}\n",
" )\n",
" result = response.choices[0].message.content\n",
" return json.loads(result)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "818b6e50-c403-42a1-8ee4-7606eaf0006f",
"metadata": {},
"outputs": [],
"source": [
"get_links('https://huggingface.co/')"
]
},
{
"cell_type": "markdown",
"id": "030ceb9b-ef71-41fd-9f23-92cb6e1d137e",
"metadata": {},
"source": [
"Step 2: Generate the brochure using the relevant links we got from OpenAI's selection"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a703230e-d57b-43a5-bdd0-e25fc2ec2e3b",
"metadata": {},
"outputs": [],
"source": [
"def get_all_details(url):\n",
" result = \"Landing page:\\n\"\n",
" result += Website(url).get_contents()\n",
" links = get_links(url)\n",
" print(\"Found links:\", links)\n",
" for link in links[\"links\"]:\n",
" result += f\"\\n\\n{link['type']}\\n\"\n",
" result += Website(link[\"url\"]).get_contents()\n",
" return result"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "74d19852-f817-4fee-a95c-35ca7a83234f",
"metadata": {},
"outputs": [],
"source": [
"system_prompt = \"\"\"You are an assistant that analyzes the contents of several relevant pages from a company website \\\n",
"and creates a short brochure about the company for prospective customers, investors and recruits. Respond in markdown.\\\n",
"Include details of company culture, customers and careers/jobs if you have the information. \\\n",
"Example 1: \\\n",
"Relevant pages: \\\n",
"- https://example.com/about \\\n",
"- https://example.com/careers \\\n",
"- https://example.com/news \\\n",
"\n",
"Brochure: \\\n",
"# About ExampleCorp \\\n",
"ExampleCorp is a global leader in AI-driven logistics optimization. Founded in 2015, the company serves clients in over 30 countries... \\\n",
"\n",
"--- \\\n",
"\n",
"Example 2: \\\n",
"Relevant pages: \\\n",
"- https://techstart.io/home \\\n",
"- https://techstart.io/jobs \\\n",
"- https://techstart.io/customers \\\n",
"\n",
"Brochure: \\\n",
"# Welcome to TechStart \\\n",
"TechStart builds tools that power the future of software development. With a team-first culture and customers like Stripe, Atlassian... \\\n",
"\n",
"--- \\\n",
"\n",
"\"\"\"\n",
"\n",
"# Or uncomment the lines below for a more humorous brochure - this demonstrates how easy it is to incorporate 'tone':\n",
"\n",
"# system_prompt = \"You are an assistant that analyzes the contents of several relevant pages from a company website \\\n",
"# and creates a short humorous, entertaining, jokey brochure about the company for prospective customers, investors and recruits. Respond in markdown.\\\n",
"# Include details of company culture, customers and careers/jobs if you have the information.\"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a2f19085-0d03-4386-b390-a38014ca6590",
"metadata": {},
"outputs": [],
"source": [
"def get_brochure_user_prompt(company_name, url):\n",
" user_prompt = f\"You are looking at a company called: {company_name}\\n\"\n",
" user_prompt += f\"Here are the contents of its landing page and other relevant pages; use this information to build a short brochure of the company in markdown.\\n\"\n",
" user_prompt += get_all_details(url)\n",
" user_prompt = user_prompt[:5_000] # Truncate if more than 5,000 characters\n",
" return user_prompt"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0ddbdea7-cf80-48d4-8bce-a11bd1a32d47",
"metadata": {},
"outputs": [],
"source": [
"def create_brochure(company_name, url):\n",
" response = openai.chat.completions.create(\n",
" model=MODEL,\n",
" messages=[\n",
" {\"role\": \"system\", \"content\": system_prompt},\n",
" {\"role\": \"user\", \"content\": get_brochure_user_prompt(company_name, url)}\n",
" ],\n",
" )\n",
" result = response.choices[0].message.content\n",
" # display(Markdown(result))\n",
" return result"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "023c1ba0-7f5a-48ac-9a98-dd184432a758",
"metadata": {},
"outputs": [],
"source": [
"create_brochure(\"HuggingFace\", \"https://huggingface.co\")"
]
},
{
"cell_type": "markdown",
"id": "187651f6-d42d-405a-abed-732486161359",
"metadata": {},
"source": [
"Step 3: Translate to French"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7734915d-d38f-40ad-8335-0df39c91f6d8",
"metadata": {},
"outputs": [],
"source": [
"system_prompt = \"\"\"You are a translator that translates the English language to the French language \\\n",
"professionally. All you do, is first show the original version in english and then show the translate version below it in French.\\\n",
"Respond in Markdown\"\"\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "29a1b40c-9040-4a3d-808b-0ca906d5cfc8",
"metadata": {},
"outputs": [],
"source": [
"def get_user_translation_prompt(company_name, url):\n",
" user_prompt=\"You are to translate the following brochure from the english to the french \\\n",
" language and going to display it with the English language brochure version first and then\\\n",
" the French language brochure version, don't make any changes to it, just a translation, the \\\n",
" following is the brochure:\"\n",
" user_prompt+=create_brochure(company_name, url)\n",
" return user_prompt"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a6e45b1f-3fa6-4db8-9f73-8339265502a7",
"metadata": {},
"outputs": [],
"source": [
"def translate_brochure(company_name, url):\n",
" response = openai.chat.completions.create(\n",
" model=MODEL,\n",
" messages=[\n",
" {\"role\": \"system\", \"content\": system_prompt},\n",
" {\"role\": \"user\", \"content\": get_user_translation_prompt(company_name, url)}\n",
" ],\n",
" )\n",
" result = response.choices[0].message.content\n",
" display(Markdown(result))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f71c2496-76ea-4f25-9939-98ebd37cb6a6",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"translate_brochure(\"HuggingFace\", \"https://huggingface.co\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.13"
}
},
"nbformat": 4,
"nbformat_minor": 5
}