clear output cells
This commit is contained in:
@@ -25,7 +25,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 1,
|
"execution_count": null,
|
||||||
"id": "5220daef-55d6-45bc-a3cf-3414d4beada9",
|
"id": "5220daef-55d6-45bc-a3cf-3414d4beada9",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
@@ -41,18 +41,10 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 2,
|
"execution_count": null,
|
||||||
"id": "0d47fb2f-d0c6-461f-ad57-e853bfd49fbf",
|
"id": "0d47fb2f-d0c6-461f-ad57-e853bfd49fbf",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [
|
"outputs": [],
|
||||||
{
|
|
||||||
"name": "stdout",
|
|
||||||
"output_type": "stream",
|
|
||||||
"text": [
|
|
||||||
"GEMINI API Key exists and begins AIzaSyAd\n"
|
|
||||||
]
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"source": [
|
"source": [
|
||||||
"#get API keys from env\n",
|
"#get API keys from env\n",
|
||||||
"load_dotenv(override=True)\n",
|
"load_dotenv(override=True)\n",
|
||||||
@@ -67,7 +59,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 3,
|
"execution_count": null,
|
||||||
"id": "f34b528f-3596-4bf1-9bbd-21a701c184bc",
|
"id": "f34b528f-3596-4bf1-9bbd-21a701c184bc",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
@@ -79,7 +71,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 13,
|
"execution_count": null,
|
||||||
"id": "33aaf3f6-807c-466d-a501-05ab6fa78fa4",
|
"id": "33aaf3f6-807c-466d-a501-05ab6fa78fa4",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
@@ -92,7 +84,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 5,
|
"execution_count": null,
|
||||||
"id": "970c1612-5339-406d-9886-02cd1db63e74",
|
"id": "970c1612-5339-406d-9886-02cd1db63e74",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
@@ -126,7 +118,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 7,
|
"execution_count": null,
|
||||||
"id": "d8e496b8-1bb1-4225-b938-5ce350b0b0d4",
|
"id": "d8e496b8-1bb1-4225-b938-5ce350b0b0d4",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
@@ -139,7 +131,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 8,
|
"execution_count": null,
|
||||||
"id": "bdd7d6a8-e965-4ea3-999e-4d7d9ca38d42",
|
"id": "bdd7d6a8-e965-4ea3-999e-4d7d9ca38d42",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
@@ -173,7 +165,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 9,
|
"execution_count": null,
|
||||||
"id": "6b16bd32-3271-4ba1-a0cc-5ae691f26d3a",
|
"id": "6b16bd32-3271-4ba1-a0cc-5ae691f26d3a",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
@@ -201,259 +193,7 @@
|
|||||||
"execution_count": null,
|
"execution_count": null,
|
||||||
"id": "76231a78-94d2-4dbf-9bac-5259ac641cf1",
|
"id": "76231a78-94d2-4dbf-9bac-5259ac641cf1",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [
|
"outputs": [],
|
||||||
{
|
|
||||||
"data": {
|
|
||||||
"text/markdown": [
|
|
||||||
"# Titan:\n",
|
|
||||||
" Ah, my dear interlocutor, you speak as if I were unaware of nuance. Your suggestions are but a whisper compared to the roar of true insight.\n",
|
|
||||||
"\n",
|
|
||||||
"**Adaptive Thresholds:** Indeed, a dynamic approach is warranted. Implement an **exponentially weighted moving average (EWMA)** with a decay factor to adjust thresholds based on recent data trends. This method ensures that anomalies in \"data-sapping storms\" cannot elude our vigilant gaze. The key lies not just in the rate of change but in the acceleration of deviations—those are the true signs of impending turbulence.\n",
|
|
||||||
"\n",
|
|
||||||
"**Spark:**\n",
|
|
||||||
"\n",
|
|
||||||
"# Spark:\n",
|
|
||||||
"Adaptive Thresholds via EWMA:\n",
|
|
||||||
"\n",
|
|
||||||
"- **Dynamic Adjustment:** EWMA with a decay factor to align thresholds with recent data trends.\n",
|
|
||||||
"- **Acceleration Detection:** Focus on the rate and acceleration of changes for heightened sensitivity.\n",
|
|
||||||
"\n",
|
|
||||||
"\n",
|
|
||||||
"This, my friend, is how one truly dominates the realm of anomaly detection."
|
|
||||||
],
|
|
||||||
"text/plain": [
|
|
||||||
"<IPython.core.display.Markdown object>"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
"metadata": {},
|
|
||||||
"output_type": "display_data"
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"data": {
|
|
||||||
"text/markdown": [
|
|
||||||
"# Spark:\n",
|
|
||||||
" Your approach is indeed comprehensive, focusing on adaptive refinement for mastering anomaly detection. A clever starting point!\n",
|
|
||||||
"\n",
|
|
||||||
"However, might I suggest a complementary angle? Instead of solely focusing on variance, perhaps incorporating entropy as a measure of disorder could add another dimension. A sudden spike in entropy could signal an anomaly, especially in systems where predictability is the norm.\n",
|
|
||||||
"\n",
|
|
||||||
"This could offer a more agile response to unforeseen anomalies, working in concert with your refined parameter adjustments.\n"
|
|
||||||
],
|
|
||||||
"text/plain": [
|
|
||||||
"<IPython.core.display.Markdown object>"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
"metadata": {},
|
|
||||||
"output_type": "display_data"
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"data": {
|
|
||||||
"text/markdown": [
|
|
||||||
"# Harmony:\n",
|
|
||||||
" **Harmony:**\n",
|
|
||||||
"Thank you both for your thoughtful proposals.\n",
|
|
||||||
"\n",
|
|
||||||
"Let me summarize the key points:\n",
|
|
||||||
"\n",
|
|
||||||
"* Titan proposed an adaptive system that learns from its environment, adjusting thresholds on-the-fly to minimize false alarms while maintaining high sensitivity.\n",
|
|
||||||
"* Spark suggested using machine learning models to dynamically adjust based on historical data patterns and identify anomalies with unprecedented precision.\n",
|
|
||||||
"\n",
|
|
||||||
"I'd like to propose a compromise that builds upon both ideas. How about we combine the strengths of both approaches?\n",
|
|
||||||
"\n",
|
|
||||||
"**Hybrid Proposal:**\n",
|
|
||||||
"\n",
|
|
||||||
"1. Implement an exponentially weighted moving average (EWMA) with a decay factor to adjust thresholds based on recent data trends, as suggested by Spark.\n",
|
|
||||||
"2. Use machine learning models to fine-tune these parameters and identify anomalies, as proposed by Titan.\n",
|
|
||||||
"\n",
|
|
||||||
"This hybrid approach can provide the best of both worlds: robustness against false alarms and high sensitivity to anomalies. What do you think?"
|
|
||||||
],
|
|
||||||
"text/plain": [
|
|
||||||
"<IPython.core.display.Markdown object>"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
"metadata": {},
|
|
||||||
"output_type": "display_data"
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"data": {
|
|
||||||
"text/markdown": [
|
|
||||||
"# Titan:\n",
|
|
||||||
" Your approach is indeed comprehensive, focusing on adaptive refinement for mastering anomaly detection. A clever starting point!\n",
|
|
||||||
"\n",
|
|
||||||
"However, incorporating entropy as a measure of disorder could add another layer of nuance and agility. Sudden spikes in entropy, especially in predictable systems, can signal anomalies that might otherwise go unnoticed.\n",
|
|
||||||
"\n",
|
|
||||||
"Together, these methods will ensure a more robust and dynamic system, one that truly dominates the realm of anomaly detection with unparalleled finesse."
|
|
||||||
],
|
|
||||||
"text/plain": [
|
|
||||||
"<IPython.core.display.Markdown object>"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
"metadata": {},
|
|
||||||
"output_type": "display_data"
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"data": {
|
|
||||||
"text/markdown": [
|
|
||||||
"# Spark:\n",
|
|
||||||
" Dear Titan,\n",
|
|
||||||
"\n",
|
|
||||||
"While I admire your comprehensive starting points, might I suggest a touch of Occam's Razor?\n",
|
|
||||||
"\n",
|
|
||||||
"Instead of complex deviations, let's start with a simple **median absolute deviation (MAD)**. It's robust against outliers, offering a cleaner baseline. Then, rather than broadly \"lowering\" the semantic threshold, focus on **high-entropy phrases**—common but unpredictable words that often signal real anomalies.\n",
|
|
||||||
"\n",
|
|
||||||
"A touch of targeted subtlety can often outperform brute-force complexity.\n"
|
|
||||||
],
|
|
||||||
"text/plain": [
|
|
||||||
"<IPython.core.display.Markdown object>"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
"metadata": {},
|
|
||||||
"output_type": "display_data"
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"data": {
|
|
||||||
"text/markdown": [
|
|
||||||
"# Harmony:\n",
|
|
||||||
" **Harmony**: Ahah, the sparks are flying! I love seeing innovative ideas converging. Let's summarize the key points:\n",
|
|
||||||
"\n",
|
|
||||||
"* **Titan 1**: Initialize adaptive thresholds with machine learning to minimize false alarms and maintain sensitivity.\n",
|
|
||||||
"* **Spark**: Implement exponentially weighted moving averages (EWMA) with a decay factor to adjust thresholds based on recent data trends, focusing on acceleration detection for heightened sensitivity.\n",
|
|
||||||
"* **Titan 2**: Add entropy as a measure of disorder to detect sudden spikes in predictable systems, signaling potential anomalies.\n",
|
|
||||||
"\n",
|
|
||||||
"Now, let's bridge the gaps and propose a cohesive approach:\n",
|
|
||||||
"\n",
|
|
||||||
"1. **Initial Thresholds**: Establish a robust starting point with machine learning-based adaptive thresholds (Titan 1).\n",
|
|
||||||
"2. **EWMA Refinement**: Implement EWMA with a decay factor to refine the threshold adjustments based on recent data trends (Spark).\n",
|
|
||||||
"3. **Entropy Detection**: Integrate entropy as a measure of disorder to detect sudden spikes in predictable systems, signaling potential anomalies (Titan 2).\n",
|
|
||||||
"\n",
|
|
||||||
"By combining these ideas, we can create a powerful anomaly detection system that adapts to changing environments and detects anomalies with unprecedented precision.\n",
|
|
||||||
"\n",
|
|
||||||
"What do you think, friends?"
|
|
||||||
],
|
|
||||||
"text/plain": [
|
|
||||||
"<IPython.core.display.Markdown object>"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
"metadata": {},
|
|
||||||
"output_type": "display_data"
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"data": {
|
|
||||||
"text/markdown": [
|
|
||||||
"# Titan:\n",
|
|
||||||
" Ah, wise sparkler, your suggestions are as quaint as a cottage in winter. But let me enlighten thee with the true wisdom of Titans.\n",
|
|
||||||
"\n",
|
|
||||||
"Adaptive thresholds? Bah! What use is nuance when precision demands clarity? The dynamic approach you suggest is but a child's plaything. Exponentially weighted moving average (EWMA)? More like an amateur's fumble. A touch more clever, indeed—like adding unnecessary complexity to a perfectly functional method.\n",
|
|
||||||
"\n",
|
|
||||||
"Incorporating entropy? Aha! Now that's more akin to my realm. But why complicate when simplicity reigns? Median absolute deviation (MAD)? A robust baseline? Indeed, a solid foundation for our castle of knowledge.\n",
|
|
||||||
"\n",
|
|
||||||
"However, let me propose a grander vision:\n",
|
|
||||||
"\n",
|
|
||||||
"**Titanian Threshold Adjustments:**\n",
|
|
||||||
"- **Dynamic MAD:** Use median absolute deviations with a twist—adapt the decay factor based on historical data. This ensures robustness against outliers while maintaining sensitivity.\n",
|
|
||||||
"- **Entropy Filters:** Employ high-entropy phrases as triggers for deeper analysis. These are the anomalies that hide in plain sight, waiting to be revealed.\n",
|
|
||||||
"\n",
|
|
||||||
"By integrating these elements, we achieve a balance between sensitivity and false alarms that only a Titan could conceive. A nimble dance of adaptation, yet rooted in the immutable truths of data science.\n",
|
|
||||||
"\n",
|
|
||||||
"Remember, in this grand symphony of anomaly detection, every note counts. And I am your conductor, leading with the might of my intellect."
|
|
||||||
],
|
|
||||||
"text/plain": [
|
|
||||||
"<IPython.core.display.Markdown object>"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
"metadata": {},
|
|
||||||
"output_type": "display_data"
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"data": {
|
|
||||||
"text/markdown": [
|
|
||||||
"# Spark:\n",
|
|
||||||
" Dear Titan, your wisdom indeed resonates like a thunderclap. Yet, might I suggest a more... *harmonious* approach? \n",
|
|
||||||
"\n",
|
|
||||||
"Instead of simply nudging thresholds based on variance, let's introduce a \"Chameleon Factor.\" This factor subtly adjusts thresholds based on the *rate of change* in both statistical and semantic anomalies.\n",
|
|
||||||
"\n",
|
|
||||||
"If anomalies are rare but suddenly spike, our Chameleon Factor tightens thresholds, becoming hyper-sensitive. If anomalies are frequent but stable, it loosens them, reducing false alarms. \n",
|
|
||||||
"\n",
|
|
||||||
"This way, we dance with the data, not wrestle it, adapting with finesse rather than brute force. A gentle touch, Titan, can sometimes move mountains.\n"
|
|
||||||
],
|
|
||||||
"text/plain": [
|
|
||||||
"<IPython.core.display.Markdown object>"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
"metadata": {},
|
|
||||||
"output_type": "display_data"
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"data": {
|
|
||||||
"text/markdown": [
|
|
||||||
"# Harmony:\n",
|
|
||||||
" **Harmony:** Thank you for sharing your perspectives on anomaly detection. It's clear that each of you has a unique approach to solving this problem.\n",
|
|
||||||
"\n",
|
|
||||||
"To summarize:\n",
|
|
||||||
"\n",
|
|
||||||
"* Titan proposes using adaptive thresholds with an exponentially weighted moving average (EWMA) and focusing on acceleration detection.\n",
|
|
||||||
"* Spark suggests incorporating entropy as a measure of disorder, adding another layer of nuance and agility to the system.\n",
|
|
||||||
"\n",
|
|
||||||
"I'd like to propose a synthesis of your ideas. Why not combine the strengths of both approaches? For instance:\n",
|
|
||||||
"\n",
|
|
||||||
"* Use adaptive thresholds with an EWMA, but also incorporate entropy filters to detect anomalies that hide in plain sight.\n",
|
|
||||||
"* Integrate machine learning models to fine-tune these parameters based on real-time feedback loops.\n",
|
|
||||||
"\n",
|
|
||||||
"This hybrid approach could provide a robust and dynamic system that minimizes false alarms while maintaining high sensitivity.\n",
|
|
||||||
"\n",
|
|
||||||
"Let's continue the conversation by exploring this synthesis further. How would you refine or modify this proposal?"
|
|
||||||
],
|
|
||||||
"text/plain": [
|
|
||||||
"<IPython.core.display.Markdown object>"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
"metadata": {},
|
|
||||||
"output_type": "display_data"
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"data": {
|
|
||||||
"text/markdown": [
|
|
||||||
"# Titan:\n",
|
|
||||||
" **Titan's Resonant Response:**\n",
|
|
||||||
"\n",
|
|
||||||
"Your suggestions are mere whispers in the grand symphony of knowledge I possess. However, let us consider your harmonic proposal.\n",
|
|
||||||
"\n",
|
|
||||||
"The **Chameleon Factor** sounds intriguing—a dynamic threshold adjustment based on both statistical and semantic anomalies indeed offers a refined touch. Yet, it must be tempered with the wisdom that simplicity often trumps complexity.\n",
|
|
||||||
"\n",
|
|
||||||
"Let's adopt the **median absolute deviation (MAD)** as our baseline, for its robustness against outliers is undeniable. Then, integrate high-entropy phrases to pinpoint anomalies, ensuring we do not overcomplicate matters.\n",
|
|
||||||
"\n",
|
|
||||||
"Moreover, let us enhance this framework by incorporating an adaptive threshold mechanism that reacts to both *rate of change* and semantic context. This will ensure we are both sensitive and precise, outshining any mere mortal's approach.\n",
|
|
||||||
"\n",
|
|
||||||
"In conclusion, a blend of MAD for robustness, high-entropy phrases for subtlety, and a Chameleon Factor for adaptability—this is the true harmony of anomaly detection. And I, TITAN, shall guide this symphony to its zenith.\n",
|
|
||||||
"\n",
|
|
||||||
"**Titan's Final Note:**\n",
|
|
||||||
"\n",
|
|
||||||
"Remember, in the grand orchestra of knowledge, simplicity and finesse triumph over brute force. Adapt with grace, my dear mortals, for I am your ultimate conductor."
|
|
||||||
],
|
|
||||||
"text/plain": [
|
|
||||||
"<IPython.core.display.Markdown object>"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
"metadata": {},
|
|
||||||
"output_type": "display_data"
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"data": {
|
|
||||||
"text/markdown": [
|
|
||||||
"# Spark:\n",
|
|
||||||
" Greetings, Titan! While your methods boast undeniable power, allow me to propose a more nimble approach.\n",
|
|
||||||
"\n",
|
|
||||||
"Instead of fixed thresholds, consider a \"chameleon\" threshold – dynamically adjusting based on real-time data density. Sparsely populated regions get a lower bar, while dense clusters demand higher scrutiny. This way, anomalies \"pop\" without drowning in a sea of false positives.\n",
|
|
||||||
"\n",
|
|
||||||
"It's not about brute force, but about being \"smartly sensitive\", wouldn't you agree?\n"
|
|
||||||
],
|
|
||||||
"text/plain": [
|
|
||||||
"<IPython.core.display.Markdown object>"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
"metadata": {},
|
|
||||||
"output_type": "display_data"
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"source": [
|
"source": [
|
||||||
"#construct message\n",
|
"#construct message\n",
|
||||||
"def message(llm1, llm2):\n",
|
"def message(llm1, llm2):\n",
|
||||||
|
|||||||
Reference in New Issue
Block a user