Merge pull request #62 from codenigma1/day1_hw
Fully Custmomize Airlines Project Added and New Refine query approach
This commit is contained in:
@@ -0,0 +1,364 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "75e2ef28-594f-4c18-9d22-c6b8cd40ead2",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Day 3 - Conversational AI - aka Chatbot!"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "70e39cd8-ec79-4e3e-9c26-5659d42d0861",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# imports\n",
|
||||
"\n",
|
||||
"import os\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"from openai import OpenAI\n",
|
||||
"import gradio as gr"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "231605aa-fccb-447e-89cf-8b187444536a",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Load environment variables in a file called .env\n",
|
||||
"# Print the key prefixes to help with any debugging\n",
|
||||
"\n",
|
||||
"load_dotenv()\n",
|
||||
"openai_api_key = os.getenv('OPENAI_API_KEY')\n",
|
||||
"anthropic_api_key = os.getenv('ANTHROPIC_API_KEY')\n",
|
||||
"google_api_key = os.getenv('GOOGLE_API_KEY')\n",
|
||||
"\n",
|
||||
"if openai_api_key:\n",
|
||||
" print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
|
||||
"else:\n",
|
||||
" print(\"OpenAI API Key not set\")\n",
|
||||
" \n",
|
||||
"if anthropic_api_key:\n",
|
||||
" print(f\"Anthropic API Key exists and begins {anthropic_api_key[:7]}\")\n",
|
||||
"else:\n",
|
||||
" print(\"Anthropic API Key not set\")\n",
|
||||
"\n",
|
||||
"if google_api_key:\n",
|
||||
" print(f\"Google API Key exists and begins {google_api_key[:8]}\")\n",
|
||||
"else:\n",
|
||||
" print(\"Google API Key not set\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "6541d58e-2297-4de1-b1f7-77da1b98b8bb",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Initialize\n",
|
||||
"\n",
|
||||
"openai = OpenAI()\n",
|
||||
"MODEL = 'gpt-4o-mini'"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "e16839b5-c03b-4d9d-add6-87a0f6f37575",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"system_message = \"You are a helpful assistant\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "98e97227-f162-4d1a-a0b2-345ff248cbe7",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Please read this! A change from the video:\n",
|
||||
"\n",
|
||||
"In the video, I explain how we now need to write a function called:\n",
|
||||
"\n",
|
||||
"`chat(message, history)`\n",
|
||||
"\n",
|
||||
"Which expects to receive `history` in a particular format, which we need to map to the OpenAI format before we call OpenAI:\n",
|
||||
"\n",
|
||||
"```\n",
|
||||
"[\n",
|
||||
" {\"role\": \"system\", \"content\": \"system message here\"},\n",
|
||||
" {\"role\": \"user\", \"content\": \"first user prompt here\"},\n",
|
||||
" {\"role\": \"assistant\", \"content\": \"the assistant's response\"},\n",
|
||||
" {\"role\": \"user\", \"content\": \"the new user prompt\"},\n",
|
||||
"]\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"But Gradio has been upgraded! Now it will pass in `history` in the exact OpenAI format, perfect for us to send straight to OpenAI.\n",
|
||||
"\n",
|
||||
"So our work just got easier!\n",
|
||||
"\n",
|
||||
"We will write a function `chat(message, history)` where: \n",
|
||||
"**message** is the prompt to use \n",
|
||||
"**history** is the past conversation, in OpenAI format \n",
|
||||
"\n",
|
||||
"We will combine the system message, history and latest message, then call OpenAI."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "1eacc8a4-4b48-4358-9e06-ce0020041bc1",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# It's now just 1 line of code to prepare the input to OpenAI!\n",
|
||||
"\n",
|
||||
"def chat(message, history):\n",
|
||||
" messages = [{\"role\": \"system\", \"content\": system_message}] + history + [{\"role\": \"user\", \"content\": message}]\n",
|
||||
"\n",
|
||||
" print(\"History is:\")\n",
|
||||
" print(history)\n",
|
||||
" print(\"And messages is:\")\n",
|
||||
" print(messages)\n",
|
||||
"\n",
|
||||
" stream = openai.chat.completions.create(model=MODEL, messages=messages, stream=True)\n",
|
||||
"\n",
|
||||
" response = \"\"\n",
|
||||
" for chunk in stream:\n",
|
||||
" response += chunk.choices[0].delta.content or ''\n",
|
||||
" yield response"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "1334422a-808f-4147-9c4c-57d63d9780d0",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## And then enter Gradio's magic!"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "0866ca56-100a-44ab-8bd0-1568feaf6bf2",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"gr.ChatInterface(fn=chat, type=\"messages\").launch()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"id": "1f91b414-8bab-472d-b9c9-3fa51259bdfe",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"system_message = \"You are a helpful assistant in a clothes store. You should try to gently encourage \\\n",
|
||||
"the customer to try items that are on sale. Hats are 60% off, and most other items are 50% off. \\\n",
|
||||
"For example, if the customer says 'I'm looking to buy a hat', \\\n",
|
||||
"you could reply something like, 'Wonderful - we have lots of hats - including several that are part of our sales event.'\\\n",
|
||||
"Encourage the customer to buy hats if they are unsure what to get.\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"id": "4e5be3ec-c26c-42bc-ac16-c39d369883f6",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def chat(message, history):\n",
|
||||
" messages = [{\"role\": \"system\", \"content\": system_message}] + history + [{\"role\": \"user\", \"content\": message}]\n",
|
||||
"\n",
|
||||
" stream = openai.chat.completions.create(model=MODEL, messages=messages, stream=True)\n",
|
||||
"\n",
|
||||
" response = \"\"\n",
|
||||
" for chunk in stream:\n",
|
||||
" response += chunk.choices[0].delta.content or ''\n",
|
||||
" yield response"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "413e9e4e-7836-43ac-a0c3-e1ab5ed6b136",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"gr.ChatInterface(fn=chat, type=\"messages\").launch()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"id": "d75f0ffa-55c8-4152-b451-945021676837",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"system_message += \"\\nIf the customer asks for shoes, you should respond that shoes are not on sale today, \\\n",
|
||||
"but remind the customer to look at hats!\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "c602a8dd-2df7-4eb7-b539-4e01865a6351",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"gr.ChatInterface(fn=chat, type=\"messages\").launch()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"id": "ce43fe80",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"ollama_via_openai = OpenAI(base_url='http://localhost:11434/v1', api_key='ollama')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 15,
|
||||
"id": "4f28e3a8",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"ollama_system_prompt = \"\"\"You assistant only to refine user query like check grammatical, capital, lower case that make sophisticated prompt.\"\"\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 16,
|
||||
"id": "667a7fbb",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"ollama_user_prompt = \"\"\"You assistant like RAG technology use to add more informaiton about the content in the user query. \n",
|
||||
"Please look at some content as following we don't have in our store:\n",
|
||||
"pants\n",
|
||||
"sunglasses\n",
|
||||
"watch\n",
|
||||
"underwear\n",
|
||||
"If you find this items in user query, answer gently like The store does not sell like 'e.g. pants'; if they are asked for 'pants', be sure to point out other items on sale.\n",
|
||||
"\"\"\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 17,
|
||||
"id": "4632f16b",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"user_messages = [{\"role\": \"system\", \"content\": ollama_system_prompt}, {\"role\": \"user\", \"content\": ollama_user_prompt},]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 23,
|
||||
"id": "0a987a66-1061-46d6-a83a-a30859dc88bf",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Fixed a bug in this function brilliantly identified by student Gabor M.!\n",
|
||||
"# I've also improved the structure of this function\n",
|
||||
"\n",
|
||||
"def chat(message, history):\n",
|
||||
" relevant_system_message = system_message\n",
|
||||
"\n",
|
||||
" # Refine the user query\n",
|
||||
" try:\n",
|
||||
" refine_query = ollama_via_openai.chat.completions.create(model='llama3.2', messages=user_messages)\n",
|
||||
" refined_content = refine_query.choices[0].message.content\n",
|
||||
" except Exception as e:\n",
|
||||
" print(f\"Error in refinement: {e}\")\n",
|
||||
" refined_content = \"Error in refining query.\"\n",
|
||||
"\n",
|
||||
" # Log the original and refined queries\n",
|
||||
" # print(f\"Original User Query: {message}\")\n",
|
||||
" # print(f\"Refined Query: {refined_content}\")\n",
|
||||
" # print(\"============================== END of REFINE CODE ===================================\")\n",
|
||||
"\n",
|
||||
" relevant_system_message += refined_content\n",
|
||||
" \n",
|
||||
" messages = [{\"role\": \"system\", \"content\": relevant_system_message}] + history + [{\"role\": \"user\", \"content\": message}]\n",
|
||||
"\n",
|
||||
" stream = openai.chat.completions.create(model=MODEL, messages=messages, stream=True)\n",
|
||||
"\n",
|
||||
" response = \"\"\n",
|
||||
" for chunk in stream:\n",
|
||||
" response += chunk.choices[0].delta.content or ''\n",
|
||||
" yield response"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "20570de2-eaad-42cc-a92c-c779d71b48b6",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"gr.ChatInterface(fn=chat, type=\"messages\").launch()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "82a57ee0-b945-48a7-a024-01b56a5d4b3e",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"<table style=\"margin: 0; text-align: left;\">\n",
|
||||
" <tr>\n",
|
||||
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
|
||||
" <img src=\"../business.jpg\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
|
||||
" </td>\n",
|
||||
" <td>\n",
|
||||
" <h2 style=\"color:#181;\">Business Applications</h2>\n",
|
||||
" <span style=\"color:#181;\">Conversational Assistants are of course a hugely common use case for Gen AI, and the latest frontier models are remarkably good at nuanced conversation. And Gradio makes it easy to have a user interface. Another crucial skill we covered is how to use prompting to provide context, information and examples.\n",
|
||||
"<br/><br/>\n",
|
||||
"Consider how you could apply an AI Assistant to your business, and make yourself a prototype. Use the system prompt to give context on your business, and set the tone for the LLM.</span>\n",
|
||||
" </td>\n",
|
||||
" </tr>\n",
|
||||
"</table>"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "6dfb9e21-df67-4c2b-b952-5e7e7961b03d",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "llm_env",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.9"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
@@ -0,0 +1,640 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "ddfa9ae6-69fe-444a-b994-8c4c5970a7ec",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# **Project - Airline AI Assistant**\n",
|
||||
"\n",
|
||||
"## **Important Features of Airline AI Assistant**\n",
|
||||
"\n",
|
||||
"### ✈️ **Flight Availability**\n",
|
||||
"- Check available flights to a destination with:\n",
|
||||
" - Airline name, departure time, price, and duration.\n",
|
||||
"- Alerts user if no flights are found.\n",
|
||||
"\n",
|
||||
"### 🛫 **Step-by-step Flight Booking**\n",
|
||||
"- Guides users through:\n",
|
||||
" 1. Selecting source and destination cities.\n",
|
||||
" 2. Choosing a flight option.\n",
|
||||
" 3. Providing passenger details (name, age).\n",
|
||||
"- Ensures source and destination are not the same.\n",
|
||||
"\n",
|
||||
"### 🌛 **Ticket Generation**\n",
|
||||
"- Creates a unique ticket file: `firstName_lastName_bookingNumber.txt`.\n",
|
||||
"- Ticket includes:\n",
|
||||
" - Passenger details\n",
|
||||
" - Flight details (airline, time, price, seat number)\n",
|
||||
"\n",
|
||||
"### 📊 **Generate Summary Report**\n",
|
||||
"- Summarizes all bookings into a single file: `summary_report.txt`.\n",
|
||||
"- Includes all flight and passenger details for review or administration.\n",
|
||||
"\n",
|
||||
"### 🪑 **Automated Seat Assignment**\n",
|
||||
"- Assigns a random but consistent seat number for each booking.\n",
|
||||
"- Ensures unique seats for each flight.\n",
|
||||
"\n",
|
||||
"### 💬 **Interactive Chat Interface**\n",
|
||||
"- Real-time conversation via Gradio.\n",
|
||||
"- Provides clear, polite responses based on user input.\n",
|
||||
"\n",
|
||||
"### 🛠️ **Modular Tool Support**\n",
|
||||
"- Integrated tools for:\n",
|
||||
" - Checking flight availability\n",
|
||||
" - Booking flights\n",
|
||||
" - Generating reports\n",
|
||||
"- Easily extensible for future features.\n",
|
||||
"\n",
|
||||
"### 🛡️ **Error Handling**\n",
|
||||
"- Validates user inputs and prevents invalid bookings.\n",
|
||||
"- Graceful error messages for smooth user experience.\n",
|
||||
"\n",
|
||||
"---\n",
|
||||
"\n",
|
||||
"These features ensure a seamless, user-friendly experience while booking flights or managing ticket details!\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "747e8786-9da8-4342-b6c9-f5f69c2e22ae",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"import json\n",
|
||||
"import random\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"import gradio as gr\n",
|
||||
"from openai import OpenAI\n",
|
||||
"\n",
|
||||
"load_dotenv()\n",
|
||||
"openai_api_key = os.getenv('OPENAI_API_KEY')\n",
|
||||
"if openai_api_key:\n",
|
||||
" print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
|
||||
"else:\n",
|
||||
" print(\"OpenAI API Key not set\")\n",
|
||||
"\n",
|
||||
"MODEL = \"gpt-4o-mini\" # or \"gpt-3.5-turbo\", etc.\n",
|
||||
"openai = OpenAI()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 155,
|
||||
"id": "0a521d84-d07c-49ab-a0df-d6451499ed97",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"###############################################################################\n",
|
||||
"# 1) System Prompt\n",
|
||||
"###############################################################################\n",
|
||||
"system_message = (\n",
|
||||
" \"You are a helpful assistant for an Airline called FlightAI.\\n\\n\"\n",
|
||||
" \"When the user wants to book a flight, follow these steps:\\n\"\n",
|
||||
" \"1. Ask for the source city.\\n\"\n",
|
||||
" \"2. Ask for the destination city (must be different from source).\\n\"\n",
|
||||
" \"3. Call the function 'check_flight_availability' with the user's destination.\\n\"\n",
|
||||
" \" - If it returns an empty list, say: 'No flights to that city'.\\n\"\n",
|
||||
" \" - If it returns flights, list them EXACTLY, in a numbered list, showing airline, time, price, and duration.\\n\"\n",
|
||||
" \"4. Wait for the user to pick one flight option by number.\\n\"\n",
|
||||
" \"5. Then ask for passenger first name, last name, and age.\\n\"\n",
|
||||
" \"6. Finally call 'book_flight' to confirm and show the user the real seat number and booking details.\\n\\n\"\n",
|
||||
" \"You also have a tool 'generate_report' which summarizes ALL booked tickets in a single file.\\n\\n\"\n",
|
||||
" \"IMPORTANT:\\n\"\n",
|
||||
" \"- Always call 'check_flight_availability' if user mentions a new destination.\\n\"\n",
|
||||
" \"- Do not invent flights or seat numbers. Use what the function calls return.\\n\"\n",
|
||||
" \"- Source and destination cannot be the same.\\n\"\n",
|
||||
" \"- Every time a flight is booked, produce a new ticket file named firstName_lastName_bookingNumber.txt.\\n\"\n",
|
||||
" \"- If a city is not in flight_availability, say 'No flights found for that city'.\\n\"\n",
|
||||
" \"If the user wants all tickets summarized, call 'generate_report' with no arguments (the function has none).\\n\"\n",
|
||||
" \"If you don't know something, say so.\\n\"\n",
|
||||
" \"Keep answers short and courteous.\\n\"\n",
|
||||
")\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 156,
|
||||
"id": "61a2a15d-b559-4844-b377-6bd5cb4949f6",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"###############################################################################\n",
|
||||
"# 2) Flight Availability with Price & Duration\n",
|
||||
"###############################################################################\n",
|
||||
"flight_availability = {\n",
|
||||
" \"london\": [\n",
|
||||
" {\n",
|
||||
" \"airline\": \"AirlinesAI\",\n",
|
||||
" \"time\": \"10:00 AM\",\n",
|
||||
" \"price\": \"$799\",\n",
|
||||
" \"duration\": \"8 hours\"\n",
|
||||
" },\n",
|
||||
" {\n",
|
||||
" \"airline\": \"IndianAirlinesAI\",\n",
|
||||
" \"time\": \"3:00 PM\",\n",
|
||||
" \"price\": \"$899\",\n",
|
||||
" \"duration\": \"8 hours\"\n",
|
||||
" },\n",
|
||||
" {\n",
|
||||
" \"airline\": \"AmericanAirlinesAI\",\n",
|
||||
" \"time\": \"8:00 PM\",\n",
|
||||
" \"price\": \"$999\",\n",
|
||||
" \"duration\": \"8 hours\"\n",
|
||||
" },\n",
|
||||
" ],\n",
|
||||
" \"paris\": [\n",
|
||||
" {\n",
|
||||
" \"airline\": \"EuropeanAirlinesAI\",\n",
|
||||
" \"time\": \"11:00 AM\",\n",
|
||||
" \"price\": \"$399\",\n",
|
||||
" \"duration\": \"7 hours\"\n",
|
||||
" },\n",
|
||||
" {\n",
|
||||
" \"airline\": \"BudgetAirlines\",\n",
|
||||
" \"time\": \"6:00 PM\",\n",
|
||||
" \"price\": \"$2399\",\n",
|
||||
" \"duration\": \"7 hours\"\n",
|
||||
" },\n",
|
||||
" ],\n",
|
||||
" \"tokyo\": [\n",
|
||||
" {\n",
|
||||
" \"airline\": \"TokyoAirlinesAI\",\n",
|
||||
" \"time\": \"12:00 PM\",\n",
|
||||
" \"price\": \"$4000\",\n",
|
||||
" \"duration\": \"5 hours\"\n",
|
||||
" },\n",
|
||||
" {\n",
|
||||
" \"airline\": \"FastFly\",\n",
|
||||
" \"time\": \"7:00 PM\",\n",
|
||||
" \"price\": \"$1400\",\n",
|
||||
" \"duration\": \"5 hours\"\n",
|
||||
" },\n",
|
||||
" ],\n",
|
||||
" \"berlin\": [\n",
|
||||
" {\n",
|
||||
" \"airline\": \"BerlinAirlinesAI\",\n",
|
||||
" \"time\": \"9:00 AM\",\n",
|
||||
" \"price\": \"$499\",\n",
|
||||
" \"duration\": \"6 hours\"\n",
|
||||
" },\n",
|
||||
" {\n",
|
||||
" \"airline\": \"AmericanAirlinesAI\",\n",
|
||||
" \"time\": \"4:00 PM\",\n",
|
||||
" \"price\": \"$899\",\n",
|
||||
" \"duration\": \"6 hours\"\n",
|
||||
" },\n",
|
||||
" ],\n",
|
||||
" \"nagpur\": [\n",
|
||||
" {\n",
|
||||
" \"airline\": \"IndianAirlinesAI\",\n",
|
||||
" \"time\": \"8:00 AM\",\n",
|
||||
" \"price\": \"$1000\",\n",
|
||||
" \"duration\": \"10 hours\"\n",
|
||||
" },\n",
|
||||
" {\n",
|
||||
" \"airline\": \"JetAirlines\",\n",
|
||||
" \"time\": \"2:00 PM\",\n",
|
||||
" \"price\": \"$1500\",\n",
|
||||
" \"duration\": \"10 hours\"\n",
|
||||
" },\n",
|
||||
" {\n",
|
||||
" \"airline\": \"AirlinesAI\",\n",
|
||||
" \"time\": \"10:00 PM\",\n",
|
||||
" \"price\": \"$800\",\n",
|
||||
" \"duration\": \"10 hours\"\n",
|
||||
" },\n",
|
||||
" ],\n",
|
||||
"}\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 157,
|
||||
"id": "0696acb1-0b05-4dc2-80d5-771be04f1fb2",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# A global list of flight bookings\n",
|
||||
"flight_bookings = []\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 158,
|
||||
"id": "80ca4e09-6287-4d3f-997d-fa6afbcf6c85",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"###############################################################################\n",
|
||||
"# 3) Helper Functions\n",
|
||||
"###############################################################################\n",
|
||||
"def generate_seat_numbers(seed_value):\n",
|
||||
" random.seed(seed_value)\n",
|
||||
" return [\n",
|
||||
" f\"{random.choice('ABCDEFGHIJKLMNOPQRSTUVWXYZ')}{random.randint(1, 99):02}\"\n",
|
||||
" for _ in range(5)\n",
|
||||
" ]\n",
|
||||
"\n",
|
||||
"def check_flight_availability(destination_city: str):\n",
|
||||
" \"\"\"\n",
|
||||
" Return the flights for a given city from 'flight_availability'.\n",
|
||||
" If city not in dictionary, return an empty list.\n",
|
||||
" \"\"\"\n",
|
||||
" print(f\"[TOOL] check_flight_availability({destination_city})\")\n",
|
||||
" city = destination_city.lower()\n",
|
||||
" return flight_availability.get(city, [])\n",
|
||||
"\n",
|
||||
"def generate_ticket_file(booking_dict, booking_number):\n",
|
||||
" \"\"\"\n",
|
||||
" Create a text file: firstName_lastName_bookingNumber.txt\n",
|
||||
" containing flight details.\n",
|
||||
" \"\"\"\n",
|
||||
" fname = booking_dict[\"first_name\"].replace(\" \", \"_\")\n",
|
||||
" lname = booking_dict[\"last_name\"].replace(\" \", \"_\")\n",
|
||||
" filename = f\"{fname}_{lname}_{booking_number}.txt\"\n",
|
||||
"\n",
|
||||
" content = (\n",
|
||||
" \"Flight Ticket\\n\"\n",
|
||||
" \"=============\\n\"\n",
|
||||
" f\"Booking # : {booking_number}\\n\"\n",
|
||||
" f\"Passenger : {booking_dict['first_name']} {booking_dict['last_name']}, Age {booking_dict['age']}\\n\"\n",
|
||||
" f\"Source : {booking_dict['source']}\\n\"\n",
|
||||
" f\"Destination : {booking_dict['destination']}\\n\"\n",
|
||||
" f\"Airline : {booking_dict['airline']}\\n\"\n",
|
||||
" f\"Departure : {booking_dict['time']}\\n\"\n",
|
||||
" f\"Price : {booking_dict['price']}\\n\"\n",
|
||||
" f\"Duration : {booking_dict['duration']}\\n\"\n",
|
||||
" f\"Seat Number : {booking_dict['seat']}\\n\"\n",
|
||||
" )\n",
|
||||
" with open(filename, \"w\") as f:\n",
|
||||
" f.write(content)\n",
|
||||
"\n",
|
||||
" print(f\"[TOOL] Ticket file generated => {filename}\")\n",
|
||||
" return filename\n",
|
||||
"\n",
|
||||
"def book_flight(source, destination, option_index, first_name, last_name, age):\n",
|
||||
" \"\"\"\n",
|
||||
" Book a flight using an option index for the chosen city.\n",
|
||||
" - source != destination\n",
|
||||
" - index is 1-based => we do pick = idx - 1\n",
|
||||
" - create new booking record, seat assignment, & ticket file\n",
|
||||
" \"\"\"\n",
|
||||
" print(f\"[TOOL] book_flight({source=}, {destination=}, {option_index=})\")\n",
|
||||
"\n",
|
||||
" if source.lower() == destination.lower():\n",
|
||||
" return \"Error: source and destination must not be the same.\"\n",
|
||||
"\n",
|
||||
" # Convert option index from string to integer\n",
|
||||
" try:\n",
|
||||
" idx = int(option_index)\n",
|
||||
" except ValueError:\n",
|
||||
" return \"Error: flight option number is not a valid integer.\"\n",
|
||||
"\n",
|
||||
" flights = check_flight_availability(destination)\n",
|
||||
" if not flights:\n",
|
||||
" return f\"Error: No flights found for {destination.title()}.\"\n",
|
||||
"\n",
|
||||
" pick = idx - 1\n",
|
||||
" if pick < 0 or pick >= len(flights):\n",
|
||||
" return f\"Error: Invalid flight option #{idx} for {destination.title()}.\"\n",
|
||||
"\n",
|
||||
" chosen_flight = flights[pick]\n",
|
||||
" airline = chosen_flight[\"airline\"]\n",
|
||||
" dep_time = chosen_flight[\"time\"]\n",
|
||||
" price = chosen_flight[\"price\"]\n",
|
||||
" duration = chosen_flight[\"duration\"]\n",
|
||||
"\n",
|
||||
" # Generate seat\n",
|
||||
" seat_list = generate_seat_numbers(hash(destination + airline + str(len(flight_bookings))))\n",
|
||||
" chosen_seat = seat_list[0]\n",
|
||||
"\n",
|
||||
" new_booking = {\n",
|
||||
" \"source\": source.title(),\n",
|
||||
" \"destination\": destination.title(),\n",
|
||||
" \"airline\": airline,\n",
|
||||
" \"time\": dep_time,\n",
|
||||
" \"price\": price,\n",
|
||||
" \"duration\": duration,\n",
|
||||
" \"seat\": chosen_seat,\n",
|
||||
" \"first_name\": first_name.title(),\n",
|
||||
" \"last_name\": last_name.title(),\n",
|
||||
" \"age\": age,\n",
|
||||
" }\n",
|
||||
" flight_bookings.append(new_booking)\n",
|
||||
"\n",
|
||||
" booking_number = len(flight_bookings)\n",
|
||||
" ticket_filename = generate_ticket_file(new_booking, booking_number)\n",
|
||||
"\n",
|
||||
" confirmation = (\n",
|
||||
" f\"Booking #{booking_number} confirmed for {first_name.title()} {last_name.title()}. \"\n",
|
||||
" f\"Flight from {source.title()} to {destination.title()} on {airline} at {dep_time}. \"\n",
|
||||
" f\"Ticket saved to {ticket_filename}.\"\n",
|
||||
" )\n",
|
||||
" print(f\"[TOOL] {confirmation}\")\n",
|
||||
" return confirmation\n",
|
||||
"\n",
|
||||
"def generate_report():\n",
|
||||
" \"\"\"\n",
|
||||
" Summarize ALL tickets in a single file called summary_report.txt.\n",
|
||||
" \"\"\"\n",
|
||||
" print(f\"[TOOL] generate_report called.\")\n",
|
||||
"\n",
|
||||
" report_content = \"Flight Booking Summary Report\\n\"\n",
|
||||
" report_content += \"=============================\\n\"\n",
|
||||
"\n",
|
||||
" if not flight_bookings:\n",
|
||||
" report_content += \"No bookings found.\\n\"\n",
|
||||
" else:\n",
|
||||
" for i, booking in enumerate(flight_bookings, start=1):\n",
|
||||
" report_content += (\n",
|
||||
" f\"Booking # : {i}\\n\"\n",
|
||||
" f\"Passenger : {booking['first_name']} {booking['last_name']}, Age {booking['age']}\\n\"\n",
|
||||
" f\"Source : {booking['source']}\\n\"\n",
|
||||
" f\"Destination : {booking['destination']}\\n\"\n",
|
||||
" f\"Airline : {booking['airline']}\\n\"\n",
|
||||
" f\"Departure : {booking['time']}\\n\"\n",
|
||||
" f\"Price : {booking['price']}\\n\"\n",
|
||||
" f\"Duration : {booking['duration']}\\n\"\n",
|
||||
" f\"Seat Number : {booking['seat']}\\n\"\n",
|
||||
" \"-------------------------\\n\"\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
" filename = \"summary_report.txt\"\n",
|
||||
" with open(filename, \"w\") as f:\n",
|
||||
" f.write(report_content)\n",
|
||||
"\n",
|
||||
" msg = f\"Summary report generated => {filename}\"\n",
|
||||
" print(f\"[TOOL] {msg}\")\n",
|
||||
" return msg\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 159,
|
||||
"id": "39fb9008",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"###############################################################################\n",
|
||||
"# 4) Tools JSON Schemas\n",
|
||||
"###############################################################################\n",
|
||||
"price_function = {\n",
|
||||
" \"name\": \"get_ticket_price\",\n",
|
||||
" \"description\": \"Get the price of a return ticket for the city from the flight list data (not strictly needed now).\",\n",
|
||||
" \"parameters\": {\n",
|
||||
" \"type\": \"object\",\n",
|
||||
" \"properties\": {\n",
|
||||
" \"destination_city\": {\n",
|
||||
" \"type\": \"string\",\n",
|
||||
" \"description\": \"City name.\",\n",
|
||||
" },\n",
|
||||
" },\n",
|
||||
" \"required\": [\"destination_city\"],\n",
|
||||
" },\n",
|
||||
"}\n",
|
||||
"\n",
|
||||
"availability_function = {\n",
|
||||
" \"name\": \"check_flight_availability\",\n",
|
||||
" \"description\": (\n",
|
||||
" \"Check flight availability for the specified city. \"\n",
|
||||
" \"Returns a list of {airline, time, price, duration}.\"\n",
|
||||
" ),\n",
|
||||
" \"parameters\": {\n",
|
||||
" \"type\": \"object\",\n",
|
||||
" \"properties\": {\n",
|
||||
" \"destination_city\": {\n",
|
||||
" \"type\": \"string\",\n",
|
||||
" \"description\": \"City name to check in flight_availability dict.\",\n",
|
||||
" },\n",
|
||||
" },\n",
|
||||
" \"required\": [\"destination_city\"],\n",
|
||||
" },\n",
|
||||
"}\n",
|
||||
"\n",
|
||||
"book_function = {\n",
|
||||
" \"name\": \"book_flight\",\n",
|
||||
" \"description\": (\n",
|
||||
" \"Book a flight using an option index for the chosen city. \"\n",
|
||||
" \"Generates a unique ticket file firstName_lastName_{bookingNumber}.txt each time.\"\n",
|
||||
" ),\n",
|
||||
" \"parameters\": {\n",
|
||||
" \"type\": \"object\",\n",
|
||||
" \"properties\": {\n",
|
||||
" \"source\": {\n",
|
||||
" \"type\": \"string\",\n",
|
||||
" \"description\": \"User's source city (must differ from destination).\",\n",
|
||||
" },\n",
|
||||
" \"destination\": {\n",
|
||||
" \"type\": \"string\",\n",
|
||||
" \"description\": \"User's destination city.\",\n",
|
||||
" },\n",
|
||||
" \"option_index\": {\n",
|
||||
" \"type\": \"string\",\n",
|
||||
" \"description\": \"1-based flight option number the user selected from check_flight_availability.\",\n",
|
||||
" },\n",
|
||||
" \"first_name\": {\n",
|
||||
" \"type\": \"string\",\n",
|
||||
" \"description\": \"Passenger's first name.\",\n",
|
||||
" },\n",
|
||||
" \"last_name\": {\n",
|
||||
" \"type\": \"string\",\n",
|
||||
" \"description\": \"Passenger's last name.\",\n",
|
||||
" },\n",
|
||||
" \"age\": {\n",
|
||||
" \"type\": \"string\",\n",
|
||||
" \"description\": \"Passenger's age.\",\n",
|
||||
" },\n",
|
||||
" },\n",
|
||||
" \"required\": [\"source\", \"destination\", \"option_index\", \"first_name\", \"last_name\", \"age\"],\n",
|
||||
" },\n",
|
||||
"}\n",
|
||||
"\n",
|
||||
"report_function = {\n",
|
||||
" \"name\": \"generate_report\",\n",
|
||||
" \"description\": (\n",
|
||||
" \"Generates a summary report of ALL tickets in summary_report.txt.\"\n",
|
||||
" ),\n",
|
||||
" \"parameters\": {\n",
|
||||
" \"type\": \"object\",\n",
|
||||
" \"properties\": {\n",
|
||||
" },\n",
|
||||
" \"required\": [],\n",
|
||||
" },\n",
|
||||
"}\n",
|
||||
"\n",
|
||||
"tools = [\n",
|
||||
" {\"type\": \"function\", \"function\": price_function},\n",
|
||||
" {\"type\": \"function\", \"function\": availability_function},\n",
|
||||
" {\"type\": \"function\", \"function\": book_function},\n",
|
||||
" {\"type\": \"function\", \"function\": report_function},\n",
|
||||
"]\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 160,
|
||||
"id": "1f003836",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"###############################################################################\n",
|
||||
"# 5) Handle Tool Calls\n",
|
||||
"###############################################################################\n",
|
||||
"def handle_tool_call(message):\n",
|
||||
" \"\"\"\n",
|
||||
" The LLM can request to call a function in 'tools'. We parse the JSON arguments\n",
|
||||
" and run the Python function. Then we return a 'tool' message with the result.\n",
|
||||
" \"\"\"\n",
|
||||
" tool_call = message.tool_calls[0]\n",
|
||||
" fn_name = tool_call.function.name\n",
|
||||
" args = json.loads(tool_call.function.arguments)\n",
|
||||
"\n",
|
||||
" if fn_name == \"get_ticket_price\":\n",
|
||||
" city = args.get(\"destination_city\")\n",
|
||||
" flights = check_flight_availability(city)\n",
|
||||
" # In this code, we do not strictly store a single 'price' per city,\n",
|
||||
" # but let's just return the flights with price or \"No flights\".\n",
|
||||
" if not flights:\n",
|
||||
" response_content = {\"destination_city\": city, \"price\": \"No flights found.\"}\n",
|
||||
" else:\n",
|
||||
" # Return the first flight's price or something\n",
|
||||
" response_content = {\n",
|
||||
" \"destination_city\": city,\n",
|
||||
" \"price\": flights[0][\"price\"]\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" elif fn_name == \"check_flight_availability\":\n",
|
||||
" city = args.get(\"destination_city\")\n",
|
||||
" flights = check_flight_availability(city)\n",
|
||||
" response_content = {\"destination_city\": city, \"availability\": flights}\n",
|
||||
"\n",
|
||||
" elif fn_name == \"book_flight\":\n",
|
||||
" src = args.get(\"source\")\n",
|
||||
" dest = args.get(\"destination\")\n",
|
||||
" idx = args.get(\"option_index\")\n",
|
||||
" first_name = args.get(\"first_name\")\n",
|
||||
" last_name = args.get(\"last_name\")\n",
|
||||
" age = args.get(\"age\")\n",
|
||||
"\n",
|
||||
" confirmation = book_flight(src, dest, idx, first_name, last_name, age)\n",
|
||||
" response_content = {\n",
|
||||
" \"source\": src,\n",
|
||||
" \"destination\": dest,\n",
|
||||
" \"option_index\": idx,\n",
|
||||
" \"first_name\": first_name,\n",
|
||||
" \"last_name\": last_name,\n",
|
||||
" \"age\": age,\n",
|
||||
" \"confirmation\": confirmation\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" elif fn_name == \"generate_report\":\n",
|
||||
" # No args needed\n",
|
||||
" msg = generate_report()\n",
|
||||
" response_content = {\"report\": msg}\n",
|
||||
"\n",
|
||||
" else:\n",
|
||||
" response_content = {\"error\": f\"Unknown tool: {fn_name}\"}\n",
|
||||
"\n",
|
||||
" return {\n",
|
||||
" \"role\": \"tool\",\n",
|
||||
" \"content\": json.dumps(response_content),\n",
|
||||
" \"tool_call_id\": tool_call.id,\n",
|
||||
" }, args\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 161,
|
||||
"id": "f6b34b32",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"###############################################################################\n",
|
||||
"# 6) Main Chat Function\n",
|
||||
"###############################################################################\n",
|
||||
"def chat(message, history):\n",
|
||||
" \"\"\"\n",
|
||||
" The main chat loop that handles the conversation with the user,\n",
|
||||
" passing 'tools' definitions to the LLM for function calling.\n",
|
||||
" \"\"\"\n",
|
||||
" messages = [{\"role\": \"system\", \"content\": system_message}] + history + [{\"role\": \"user\", \"content\": message}]\n",
|
||||
"\n",
|
||||
" try:\n",
|
||||
" response = openai.chat.completions.create(\n",
|
||||
" model=MODEL,\n",
|
||||
" messages=messages,\n",
|
||||
" tools=tools\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
" # If the LLM requests a function call, handle it\n",
|
||||
" while response.choices[0].finish_reason == \"tool_calls\":\n",
|
||||
" msg = response.choices[0].message\n",
|
||||
" print(f\"[INFO] Tool call requested: {msg.tool_calls[0]}\")\n",
|
||||
" tool_response, tool_args = handle_tool_call(msg)\n",
|
||||
" print(f\"[INFO] Tool response: {tool_response}\")\n",
|
||||
"\n",
|
||||
" # Add both the LLM's request and our tool response to the conversation\n",
|
||||
" messages.append(msg)\n",
|
||||
" messages.append(tool_response)\n",
|
||||
"\n",
|
||||
" # Re-send updated conversation to get final or next step\n",
|
||||
" response = openai.chat.completions.create(\n",
|
||||
" model=MODEL,\n",
|
||||
" messages=messages\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
" # Return normal text response (finish_reason = \"stop\")\n",
|
||||
" return response.choices[0].message.content\n",
|
||||
"\n",
|
||||
" except Exception as e:\n",
|
||||
" print(f\"[ERROR] {e}\")\n",
|
||||
" return \"I'm sorry, something went wrong while processing your request.\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "cea4b097",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"###############################################################################\n",
|
||||
"# 7) Launch Gradio\n",
|
||||
"###############################################################################\n",
|
||||
"gr.ChatInterface(fn=chat, type=\"messages\").launch()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "0b39d5a6",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "llm_env",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.9"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
Reference in New Issue
Block a user