diff --git a/week7/community_contributions/kwabena/PEFT with Llama.ipynb b/week7/community_contributions/kwabena/PEFT with Llama.ipynb new file mode 100644 index 0000000..3d43535 --- /dev/null +++ b/week7/community_contributions/kwabena/PEFT with Llama.ipynb @@ -0,0 +1,459 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "provenance": [], + "gpuType": "T4" + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "language_info": { + "name": "python" + }, + "accelerator": "GPU" + }, + "cells": [ + { + "cell_type": "markdown", + "source": [ + "\n", + "\n", + "## Predict Product Prices\n", + "\n", + "### And now, to evaluate our fine-tuned open source model\n", + "\n" + ], + "metadata": { + "id": "GHsssBgWM_l0" + } + }, + { + "cell_type": "code", + "source": [ + "# pip installs\n", + "\n", + "!pip install -q --upgrade torch==2.5.1+cu124 torchvision==0.20.1+cu124 torchaudio==2.5.1+cu124 --index-url https://download.pytorch.org/whl/cu124\n", + "!pip install -q --upgrade requests==2.32.3 bitsandbytes==0.46.0 transformers==4.48.3 accelerate==1.3.0 datasets==3.2.0 peft==0.14.0 trl==0.14.0 matplotlib wandb" + ], + "metadata": { + "id": "MDyR63OTNUJ6" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "# imports\n", + "\n", + "import os\n", + "import re\n", + "import math\n", + "from tqdm import tqdm\n", + "from google.colab import userdata\n", + "from huggingface_hub import login\n", + "import torch\n", + "import torch.nn.functional as F\n", + "import transformers\n", + "from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, set_seed\n", + "from datasets import load_dataset, Dataset, DatasetDict\n", + "from datetime import datetime\n", + "from peft import PeftModel\n", + "import matplotlib.pyplot as plt" + ], + "metadata": { + "id": "-yikV8pRBer9" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "# Constants\n", + "\n", + "BASE_MODEL = \"meta-llama/Meta-Llama-3.1-8B\"\n", + "PROJECT_NAME = \"pricer\"\n", + "HF_USER = \"ampelox\" # your HF name here! Or use mine if you just want to reproduce my results.\n", + "\n", + "# The run itself\n", + "\n", + "RUN_NAME = \"2025-10-30_09.40.59\"\n", + "PROJECT_RUN_NAME = f\"{PROJECT_NAME}-{RUN_NAME}\"\n", + "REVISION = \"dd79bbfe3922ac56eeba2b2473ca35b08beedaa4\" # or REVISION = None\n", + "FINETUNED_MODEL = f\"{HF_USER}/{PROJECT_RUN_NAME}\"\n", + "\n", + "# Uncomment this line if you wish to use my model\n", + "# FINETUNED_MODEL = f\"ed-donner/{PROJECT_RUN_NAME}\"\n", + "\n", + "# Data\n", + "\n", + "DATASET_NAME = f\"{HF_USER}/pricer-data\"\n", + "# Or just use the one I've uploaded\n", + "# DATASET_NAME = \"ed-donner/pricer-data\"\n", + "\n", + "# Hyperparameters for QLoRA\n", + "\n", + "QUANT_4_BIT = True\n", + "\n", + "%matplotlib inline\n", + "\n", + "# Used for writing to output in color\n", + "\n", + "GREEN = \"\\033[92m\"\n", + "YELLOW = \"\\033[93m\"\n", + "RED = \"\\033[91m\"\n", + "RESET = \"\\033[0m\"\n", + "COLOR_MAP = {\"red\":RED, \"orange\": YELLOW, \"green\": GREEN}" + ], + "metadata": { + "id": "uuTX-xonNeOK" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "### Log in to HuggingFace\n", + "\n", + "If you don't already have a HuggingFace account, visit https://huggingface.co to sign up and create a token.\n", + "\n", + "Then select the Secrets for this Notebook by clicking on the key icon in the left, and add a new secret called `HF_TOKEN` with the value as your token.\n" + ], + "metadata": { + "id": "8JArT3QAQAjx" + } + }, + { + "cell_type": "code", + "source": [ + "# Log in to HuggingFace\n", + "\n", + "hf_token = userdata.get('HF_TOKEN')\n", + "login(hf_token, add_to_git_credential=True)" + ], + "metadata": { + "id": "WyFPZeMcM88v" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "dataset = load_dataset(DATASET_NAME)\n", + "train = dataset['train']\n", + "test = dataset['test']" + ], + "metadata": { + "id": "cvXVoJH8LS6u" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "test[0]" + ], + "metadata": { + "id": "xb86e__Wc7j_" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "## Now load the Tokenizer and Model" + ], + "metadata": { + "id": "qJWQ0a3wZ0Bw" + } + }, + { + "cell_type": "code", + "source": [ + "# pick the right quantization (thank you Robert M. for spotting the bug with the 8 bit version!)\n", + "\n", + "if QUANT_4_BIT:\n", + " quant_config = BitsAndBytesConfig(\n", + " load_in_4bit=True,\n", + " bnb_4bit_use_double_quant=True,\n", + " bnb_4bit_compute_dtype=torch.bfloat16,\n", + " bnb_4bit_quant_type=\"nf4\"\n", + " )\n", + "else:\n", + " quant_config = BitsAndBytesConfig(\n", + " load_in_8bit=True,\n", + " bnb_8bit_compute_dtype=torch.bfloat16\n", + " )" + ], + "metadata": { + "id": "lAUAAcEC6ido" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "# Load the Tokenizer and the Model\n", + "\n", + "tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, trust_remote_code=True)\n", + "tokenizer.pad_token = tokenizer.eos_token\n", + "tokenizer.padding_side = \"right\"\n", + "\n", + "base_model = AutoModelForCausalLM.from_pretrained(\n", + " BASE_MODEL,\n", + " quantization_config=quant_config,\n", + " device_map=\"auto\",\n", + ")\n", + "base_model.generation_config.pad_token_id = tokenizer.pad_token_id\n", + "\n", + "# Load the fine-tuned model with PEFT\n", + "if REVISION:\n", + " fine_tuned_model = PeftModel.from_pretrained(base_model, FINETUNED_MODEL, revision=REVISION)\n", + "else:\n", + " fine_tuned_model = PeftModel.from_pretrained(base_model, FINETUNED_MODEL)\n", + "\n", + "\n", + "print(f\"Memory footprint: {fine_tuned_model.get_memory_footprint() / 1e6:.1f} MB\")" + ], + "metadata": { + "id": "R_O04fKxMMT-" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "fine_tuned_model" + ], + "metadata": { + "id": "kD-GJtbrdd5t" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "# THE MOMENT OF TRUTH!\n", + "\n", + "## Use the model in inference mode\n", + "\n", + "Remember, GPT-4o had an average error of \\$76. \n", + "Llama 3.1 base model had an average error of \\$395.72. \n", + "This human had an error of \\$127. \n", + "\n", + "## Caveat\n", + "\n", + "Keep in mind that prices of goods vary considerably; the model can't predict things like sale prices that it doesn't have any information about." + ], + "metadata": { + "id": "UObo1-RqaNnT" + } + }, + { + "cell_type": "code", + "source": [ + "def extract_price(s):\n", + " if \"Price is $\" in s:\n", + " contents = s.split(\"Price is $\")[1]\n", + " contents = contents.replace(',','')\n", + " match = re.search(r\"[-+]?\\d*\\.\\d+|\\d+\", contents)\n", + " return float(match.group()) if match else 0\n", + " return 0" + ], + "metadata": { + "id": "Qst1LhBVAB04" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "extract_price(\"Price is $a fabulous 899.99 or so\")" + ], + "metadata": { + "id": "jXFBW_5UeEcp" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "# Original prediction function takes the most likely next token\n", + "\n", + "def model_predict(prompt):\n", + " set_seed(42)\n", + " inputs = tokenizer.encode(prompt, return_tensors=\"pt\").to(\"cuda\")\n", + " attention_mask = torch.ones(inputs.shape, device=\"cuda\")\n", + " outputs = fine_tuned_model.generate(inputs, attention_mask=attention_mask, max_new_tokens=3, num_return_sequences=1)\n", + " response = tokenizer.decode(outputs[0])\n", + " return extract_price(response)" + ], + "metadata": { + "id": "Oj_PzpdFAIMk" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "# An improved prediction function takes a weighted average of the top 3 choices\n", + "# This code would be more complex if we couldn't take advantage of the fact\n", + "# That Llama generates 1 token for any 3 digit number\n", + "\n", + "top_K = 3\n", + "\n", + "def improved_model_predict(prompt, device=\"cuda\"):\n", + " set_seed(42)\n", + " inputs = tokenizer.encode(prompt, return_tensors=\"pt\").to(device)\n", + " attention_mask = torch.ones(inputs.shape, device=device)\n", + "\n", + " with torch.no_grad():\n", + " outputs = fine_tuned_model(inputs, attention_mask=attention_mask)\n", + " next_token_logits = outputs.logits[:, -1, :].to('cpu')\n", + "\n", + " next_token_probs = F.softmax(next_token_logits, dim=-1)\n", + " top_prob, top_token_id = next_token_probs.topk(top_K)\n", + " prices, weights = [], []\n", + " for i in range(top_K):\n", + " predicted_token = tokenizer.decode(top_token_id[0][i])\n", + " probability = top_prob[0][i]\n", + " try:\n", + " result = float(predicted_token)\n", + " except ValueError as e:\n", + " result = 0.0\n", + " if result > 0:\n", + " prices.append(result)\n", + " weights.append(probability)\n", + " if not prices:\n", + " return 0.0, 0.0\n", + " total = sum(weights)\n", + " weighted_prices = [price * weight / total for price, weight in zip(prices, weights)]\n", + " return sum(weighted_prices).item()" + ], + "metadata": { + "id": "Je5dR8QEAI1d" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [], + "metadata": { + "id": "lQk7jNlm1oV9" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "class Tester:\n", + "\n", + " def __init__(self, predictor, data, title=None, size=250):\n", + " self.predictor = predictor\n", + " self.data = data\n", + " self.title = title or predictor.__name__.replace(\"_\", \" \").title()\n", + " self.size = size\n", + " self.guesses = []\n", + " self.truths = []\n", + " self.errors = []\n", + " self.sles = []\n", + " self.colors = []\n", + "\n", + " def color_for(self, error, truth):\n", + " if error<40 or error/truth < 0.2:\n", + " return \"green\"\n", + " elif error<80 or error/truth < 0.4:\n", + " return \"orange\"\n", + " else:\n", + " return \"red\"\n", + "\n", + " def run_datapoint(self, i):\n", + " datapoint = self.data[i]\n", + " guess = self.predictor(datapoint[\"text\"])\n", + " truth = datapoint[\"price\"]\n", + " error = abs(guess - truth)\n", + " log_error = math.log(truth+1) - math.log(guess+1)\n", + " sle = log_error ** 2\n", + " color = self.color_for(error, truth)\n", + " title = datapoint[\"text\"].split(\"\\n\\n\")[1][:20] + \"...\"\n", + " self.guesses.append(guess)\n", + " self.truths.append(truth)\n", + " self.errors.append(error)\n", + " self.sles.append(sle)\n", + " self.colors.append(color)\n", + " print(f\"{COLOR_MAP[color]}{i+1}: Guess: ${guess:,.2f} Truth: ${truth:,.2f} Error: ${error:,.2f} SLE: {sle:,.2f} Item: {title}{RESET}\")\n", + "\n", + " def chart(self, title):\n", + " max_error = max(self.errors)\n", + " plt.figure(figsize=(12, 8))\n", + " max_val = max(max(self.truths), max(self.guesses))\n", + " plt.plot([0, max_val], [0, max_val], color='deepskyblue', lw=2, alpha=0.6)\n", + " plt.scatter(self.truths, self.guesses, s=3, c=self.colors)\n", + " plt.xlabel('Ground Truth')\n", + " plt.ylabel('Model Estimate')\n", + " plt.xlim(0, max_val)\n", + " plt.ylim(0, max_val)\n", + " plt.title(title)\n", + " plt.show()\n", + "\n", + " def report(self):\n", + " average_error = sum(self.errors) / self.size\n", + " rmsle = math.sqrt(sum(self.sles) / self.size)\n", + " hits = sum(1 for color in self.colors if color==\"green\")\n", + " title = f\"{self.title} Error=${average_error:,.2f} RMSLE={rmsle:,.2f} Hits={hits/self.size*100:.1f}%\"\n", + " self.chart(title)\n", + "\n", + " def run(self):\n", + " self.error = 0\n", + " for i in range(self.size):\n", + " self.run_datapoint(i)\n", + " self.report()\n", + "\n", + " @classmethod\n", + " def test(cls, function, data):\n", + " cls(function, data).run()" + ], + "metadata": { + "id": "30lzJXBH7BcK" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "Tester.test(improved_model_predict, test)" + ], + "metadata": { + "id": "W_KcLvyt6kbb" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [], + "metadata": { + "id": "M4NSMcKl3Bhw" + }, + "execution_count": null, + "outputs": [] + } + ] +} \ No newline at end of file