Create new_training_with_rag (1).py

This commit is contained in:
Adriana394
2025-06-03 15:33:14 +02:00
parent 41ae0bdc24
commit bfc20be33c

View File

@@ -0,0 +1,262 @@
# -*- coding: utf-8 -*-
"""new_training_with_RAG.ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1gi8FPI1dtnxBNTf86JdmXQ0BYqnKz7LS
# Predict Product Prices
"""
!nvidia-smi
!pip install -q datasets requests torch peft bitsandbytes transformers trl accelerate sentencepiece matplotlib langchain-community chromadb
import os
import re
import math
from tqdm import tqdm
from google.colab import userdata
from huggingface_hub import login
import torch
import transformers
from transformers import (
AutoModelForCausalLM, AutoTokenizer, TrainingArguments,
set_seed, BitsAndBytesConfig, GenerationConfig)
from datasets import load_dataset
from peft import LoraConfig, PeftModel
from trl import SFTTrainer, SFTConfig
from datetime import datetime
import matplotlib.pyplot as plt
#LangChain & RAG Imports
from sentence_transformers import SentenceTransformer
from langchain.schema import Document
from langchain.vectorstores import Chroma
import chromadb
from langchain.embeddings import HuggingFaceEmbeddings
# Commented out IPython magic to ensure Python compatibility.
# Constants
BASE_MODEL = "meta-llama/Meta-Llama-3.1-8B"
#BASE_MODEL = 'mistralai/Mistral-7B-Instruct-v0.1'
PROJECT_NAME = "pricer-optim"
HF_USER = "Adriana213"
# Data
DATASET_NAME = f"{HF_USER}/pricer-data"
MAX_SEQUENCE_LENGTH = 182
RUN_NAME = f"{PROJECT_NAME}-{datetime.now():%Y%m%d_%H%M%S}"
HUB_MODEL_NAME = f"{HF_USER}/{RUN_NAME}"
# Hyperparameters for QLoRA
LORA_R = 8
LORA_ALPHA = 32
TARGET_MODULES = ["q_proj", "v_proj", "k_proj", "o_proj"]
LORA_DROPOUT = 0.10
QUANT_4_BIT = True
# Hyperparameters for Training
EPOCHS = 2
BATCH_SIZE = 16
GRADIENT_ACCUMULATION_STEPS = 1
LEARNING_RATE = 2e-4
LR_SCHEDULER_TYPE = 'cosine'
WARMUP_RATIO = 0.05
OPTIMIZER = "paged_adamw_32bit"
STEPS = 50
SAVE_STEPS = 200
EVAL_STEPS = 200 # kept for potential future use
# %matplotlib inline
HUB_MODEL_NAME
"""### Log in to HuggingFace & get Data"""
hf_token = userdata.get('HF_TOKEN')
login(hf_token, add_to_git_credential=True)
torch.cuda.empty_cache()
dataset = load_dataset(DATASET_NAME)
train = dataset['train']
test = dataset['test']
"""## Now load the Tokenizer and Model
The model is "quantized" - we are reducing the precision to 4 bits.
"""
# Pick the right quantization
if QUANT_4_BIT:
quant_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_quant_type="nf4"
)
else:
quant_config = BitsAndBytesConfig(
load_in_8bit=True,
bnb_8bit_compute_dtype=torch.bfloat16
)
# Load the Tokenizer and the Model
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "right"
base_model = AutoModelForCausalLM.from_pretrained(
BASE_MODEL,
quantization_config=quant_config,
device_map="auto",
)
base_model.generation_config.pad_token_id = tokenizer.pad_token_id
print(f"Memory footprint: {base_model.get_memory_footprint() / 1e6:.1f} MB")
"""# Data Collator
"""
from trl import DataCollatorForCompletionOnlyLM
response_template = "Price is $"
collator = DataCollatorForCompletionOnlyLM(response_template,
tokenizer=tokenizer)
"""# Set up the configuration for Training"""
# LoRA Config
lora_parameters = LoraConfig(
lora_alpha = LORA_ALPHA,
lora_dropout = LORA_DROPOUT,
r = LORA_R,
bias = "none",
task_type = "CAUSAL_LM",
target_modules = TARGET_MODULES,
)
# Training Config
train_parameters = SFTConfig(
output_dir = RUN_NAME,
num_train_epochs = EPOCHS,
per_device_train_batch_size = BATCH_SIZE,
per_device_eval_batch_size = 4,
eval_strategy = "no",
eval_steps = EVAL_STEPS,
gradient_accumulation_steps = GRADIENT_ACCUMULATION_STEPS,
optim = OPTIMIZER,
save_steps = SAVE_STEPS,
save_total_limit = 5,
logging_steps = 50,
learning_rate = LEARNING_RATE,
weight_decay = 0.01,
fp16=False,
bf16=True,
max_grad_norm=0.3,
max_steps=-1,
warmup_ratio = WARMUP_RATIO,
group_by_length=True,
lr_scheduler_type = LR_SCHEDULER_TYPE,
run_name = RUN_NAME,
max_seq_length = MAX_SEQUENCE_LENGTH,
dataset_text_field = "text",
save_strategy = "steps",
hub_strategy = "every_save",
push_to_hub = True,
hub_model_id = HUB_MODEL_NAME,
hub_private_repo = True,
report_to = 'none',
)
fine_tuning = SFTTrainer(
model = base_model,
train_dataset = train,
eval_dataset=test,
peft_config = lora_parameters,
args = train_parameters,
data_collator = collator,
)
"""## Fine Tuning"""
fine_tuning.train()
fine_tuning.model.push_to_hub(RUN_NAME, private=True)
print(f"Saved to the hub: {RUN_NAME}")
"""# Implement RAG"""
HF_USER = "Adriana213"
RUN_NAME = "pricer-optim-20250514_061529"
fine_tuned_model = PeftModel.from_pretrained(base_model, f"{HF_USER}/{RUN_NAME}")
print(f"✅ Loaded fine-tuned adapter: {HF_USER}/{RUN_NAME}")
base_model = fine_tuned_model
"""## Build Chroma index"""
docs = [
Document(page_content=text, metadata = {'price': price})
for text, price in zip(train['text'], train['price'])
]
# Create embeddings & persist Chroma index
embedding = HuggingFaceEmbeddings(model_name = 'all-MiniLM-L6-v2')
chroma = Chroma.from_documents(
documents = docs,
embedding = embedding,
persist_directory = 'chroma_train_index'
)
chroma.persist()
print('Chroma index built and persisted.')
"""## RAG Prediction Function"""
generation_config = GenerationConfig(
max_new_token = 10,
do_sample = False,
temperature = 0.1
)
def predict_price_rag(desc: str, k: int = 3) -> float:
hits = chroma.similarity_search(desc, k = k)
shot_strs = [
f'Description: {doc.page_content}\nPrice is ${doc.metadata["price"]}'
for doc in hits
]
prompt = "\n\n".join(shot_strs) + f"\n\nDescription: {desc}\nPrice is $"
inputs = tokenizer(prompt, return_tensors="pt").to(base_model.device)
out = base_model.generate(**inputs, generation_config=generation_config)
text = tokenizer.decode(
out[0, inputs["input_ids"].shape[-1]:],
skip_special_tokens=True
).strip()
return float(re.findall(r"\d+\.?\d+", text)[0])
!zip -r chroma_index.zip chroma_train_index
from google.colab import files
files.download("chroma_index.zip")