Create new_training_with_rag (1).py
This commit is contained in:
@@ -0,0 +1,262 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
"""new_training_with_RAG.ipynb
|
||||
|
||||
Automatically generated by Colab.
|
||||
|
||||
Original file is located at
|
||||
https://colab.research.google.com/drive/1gi8FPI1dtnxBNTf86JdmXQ0BYqnKz7LS
|
||||
|
||||
# Predict Product Prices
|
||||
"""
|
||||
|
||||
!nvidia-smi
|
||||
|
||||
!pip install -q datasets requests torch peft bitsandbytes transformers trl accelerate sentencepiece matplotlib langchain-community chromadb
|
||||
|
||||
import os
|
||||
import re
|
||||
import math
|
||||
from tqdm import tqdm
|
||||
from google.colab import userdata
|
||||
from huggingface_hub import login
|
||||
import torch
|
||||
import transformers
|
||||
from transformers import (
|
||||
AutoModelForCausalLM, AutoTokenizer, TrainingArguments,
|
||||
set_seed, BitsAndBytesConfig, GenerationConfig)
|
||||
|
||||
from datasets import load_dataset
|
||||
from peft import LoraConfig, PeftModel
|
||||
from trl import SFTTrainer, SFTConfig
|
||||
from datetime import datetime
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
#LangChain & RAG Imports
|
||||
|
||||
from sentence_transformers import SentenceTransformer
|
||||
from langchain.schema import Document
|
||||
from langchain.vectorstores import Chroma
|
||||
import chromadb
|
||||
from langchain.embeddings import HuggingFaceEmbeddings
|
||||
|
||||
# Commented out IPython magic to ensure Python compatibility.
|
||||
# Constants
|
||||
|
||||
BASE_MODEL = "meta-llama/Meta-Llama-3.1-8B"
|
||||
#BASE_MODEL = 'mistralai/Mistral-7B-Instruct-v0.1'
|
||||
PROJECT_NAME = "pricer-optim"
|
||||
HF_USER = "Adriana213"
|
||||
|
||||
# Data
|
||||
|
||||
DATASET_NAME = f"{HF_USER}/pricer-data"
|
||||
MAX_SEQUENCE_LENGTH = 182
|
||||
|
||||
|
||||
RUN_NAME = f"{PROJECT_NAME}-{datetime.now():%Y%m%d_%H%M%S}"
|
||||
|
||||
HUB_MODEL_NAME = f"{HF_USER}/{RUN_NAME}"
|
||||
|
||||
# Hyperparameters for QLoRA
|
||||
|
||||
LORA_R = 8
|
||||
LORA_ALPHA = 32
|
||||
TARGET_MODULES = ["q_proj", "v_proj", "k_proj", "o_proj"]
|
||||
LORA_DROPOUT = 0.10
|
||||
QUANT_4_BIT = True
|
||||
|
||||
# Hyperparameters for Training
|
||||
|
||||
EPOCHS = 2
|
||||
BATCH_SIZE = 16
|
||||
GRADIENT_ACCUMULATION_STEPS = 1
|
||||
LEARNING_RATE = 2e-4
|
||||
LR_SCHEDULER_TYPE = 'cosine'
|
||||
WARMUP_RATIO = 0.05
|
||||
OPTIMIZER = "paged_adamw_32bit"
|
||||
STEPS = 50
|
||||
SAVE_STEPS = 200
|
||||
EVAL_STEPS = 200 # kept for potential future use
|
||||
|
||||
# %matplotlib inline
|
||||
|
||||
HUB_MODEL_NAME
|
||||
|
||||
"""### Log in to HuggingFace & get Data"""
|
||||
|
||||
hf_token = userdata.get('HF_TOKEN')
|
||||
login(hf_token, add_to_git_credential=True)
|
||||
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
dataset = load_dataset(DATASET_NAME)
|
||||
train = dataset['train']
|
||||
test = dataset['test']
|
||||
|
||||
"""## Now load the Tokenizer and Model
|
||||
|
||||
The model is "quantized" - we are reducing the precision to 4 bits.
|
||||
"""
|
||||
|
||||
# Pick the right quantization
|
||||
|
||||
if QUANT_4_BIT:
|
||||
quant_config = BitsAndBytesConfig(
|
||||
load_in_4bit=True,
|
||||
bnb_4bit_use_double_quant=True,
|
||||
bnb_4bit_compute_dtype=torch.bfloat16,
|
||||
bnb_4bit_quant_type="nf4"
|
||||
)
|
||||
else:
|
||||
quant_config = BitsAndBytesConfig(
|
||||
load_in_8bit=True,
|
||||
bnb_8bit_compute_dtype=torch.bfloat16
|
||||
)
|
||||
|
||||
# Load the Tokenizer and the Model
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, trust_remote_code=True)
|
||||
tokenizer.pad_token = tokenizer.eos_token
|
||||
tokenizer.padding_side = "right"
|
||||
|
||||
base_model = AutoModelForCausalLM.from_pretrained(
|
||||
BASE_MODEL,
|
||||
quantization_config=quant_config,
|
||||
device_map="auto",
|
||||
)
|
||||
|
||||
base_model.generation_config.pad_token_id = tokenizer.pad_token_id
|
||||
|
||||
print(f"Memory footprint: {base_model.get_memory_footprint() / 1e6:.1f} MB")
|
||||
|
||||
"""# Data Collator
|
||||
|
||||
"""
|
||||
|
||||
from trl import DataCollatorForCompletionOnlyLM
|
||||
|
||||
response_template = "Price is $"
|
||||
collator = DataCollatorForCompletionOnlyLM(response_template,
|
||||
tokenizer=tokenizer)
|
||||
|
||||
"""# Set up the configuration for Training"""
|
||||
|
||||
# LoRA Config
|
||||
|
||||
lora_parameters = LoraConfig(
|
||||
lora_alpha = LORA_ALPHA,
|
||||
lora_dropout = LORA_DROPOUT,
|
||||
r = LORA_R,
|
||||
bias = "none",
|
||||
task_type = "CAUSAL_LM",
|
||||
target_modules = TARGET_MODULES,
|
||||
)
|
||||
|
||||
# Training Config
|
||||
|
||||
train_parameters = SFTConfig(
|
||||
output_dir = RUN_NAME,
|
||||
num_train_epochs = EPOCHS,
|
||||
per_device_train_batch_size = BATCH_SIZE,
|
||||
per_device_eval_batch_size = 4,
|
||||
eval_strategy = "no",
|
||||
eval_steps = EVAL_STEPS,
|
||||
gradient_accumulation_steps = GRADIENT_ACCUMULATION_STEPS,
|
||||
optim = OPTIMIZER,
|
||||
save_steps = SAVE_STEPS,
|
||||
save_total_limit = 5,
|
||||
logging_steps = 50,
|
||||
learning_rate = LEARNING_RATE,
|
||||
weight_decay = 0.01,
|
||||
fp16=False,
|
||||
bf16=True,
|
||||
max_grad_norm=0.3,
|
||||
max_steps=-1,
|
||||
warmup_ratio = WARMUP_RATIO,
|
||||
group_by_length=True,
|
||||
lr_scheduler_type = LR_SCHEDULER_TYPE,
|
||||
run_name = RUN_NAME,
|
||||
max_seq_length = MAX_SEQUENCE_LENGTH,
|
||||
dataset_text_field = "text",
|
||||
save_strategy = "steps",
|
||||
hub_strategy = "every_save",
|
||||
push_to_hub = True,
|
||||
hub_model_id = HUB_MODEL_NAME,
|
||||
hub_private_repo = True,
|
||||
report_to = 'none',
|
||||
)
|
||||
|
||||
|
||||
fine_tuning = SFTTrainer(
|
||||
model = base_model,
|
||||
train_dataset = train,
|
||||
eval_dataset=test,
|
||||
peft_config = lora_parameters,
|
||||
args = train_parameters,
|
||||
data_collator = collator,
|
||||
)
|
||||
|
||||
"""## Fine Tuning"""
|
||||
|
||||
fine_tuning.train()
|
||||
|
||||
fine_tuning.model.push_to_hub(RUN_NAME, private=True)
|
||||
print(f"Saved to the hub: {RUN_NAME}")
|
||||
|
||||
"""# Implement RAG"""
|
||||
|
||||
HF_USER = "Adriana213"
|
||||
RUN_NAME = "pricer-optim-20250514_061529"
|
||||
fine_tuned_model = PeftModel.from_pretrained(base_model, f"{HF_USER}/{RUN_NAME}")
|
||||
print(f"✅ Loaded fine-tuned adapter: {HF_USER}/{RUN_NAME}")
|
||||
|
||||
base_model = fine_tuned_model
|
||||
|
||||
"""## Build Chroma index"""
|
||||
|
||||
docs = [
|
||||
Document(page_content=text, metadata = {'price': price})
|
||||
for text, price in zip(train['text'], train['price'])
|
||||
]
|
||||
|
||||
# Create embeddings & persist Chroma index
|
||||
|
||||
embedding = HuggingFaceEmbeddings(model_name = 'all-MiniLM-L6-v2')
|
||||
chroma = Chroma.from_documents(
|
||||
documents = docs,
|
||||
embedding = embedding,
|
||||
persist_directory = 'chroma_train_index'
|
||||
)
|
||||
|
||||
chroma.persist()
|
||||
print('Chroma index built and persisted.')
|
||||
|
||||
"""## RAG Prediction Function"""
|
||||
|
||||
generation_config = GenerationConfig(
|
||||
max_new_token = 10,
|
||||
do_sample = False,
|
||||
temperature = 0.1
|
||||
)
|
||||
|
||||
def predict_price_rag(desc: str, k: int = 3) -> float:
|
||||
hits = chroma.similarity_search(desc, k = k)
|
||||
shot_strs = [
|
||||
f'Description: {doc.page_content}\nPrice is ${doc.metadata["price"]}'
|
||||
for doc in hits
|
||||
]
|
||||
|
||||
prompt = "\n\n".join(shot_strs) + f"\n\nDescription: {desc}\nPrice is $"
|
||||
|
||||
inputs = tokenizer(prompt, return_tensors="pt").to(base_model.device)
|
||||
out = base_model.generate(**inputs, generation_config=generation_config)
|
||||
text = tokenizer.decode(
|
||||
out[0, inputs["input_ids"].shape[-1]:],
|
||||
skip_special_tokens=True
|
||||
).strip()
|
||||
return float(re.findall(r"\d+\.?\d+", text)[0])
|
||||
|
||||
!zip -r chroma_index.zip chroma_train_index
|
||||
|
||||
from google.colab import files
|
||||
files.download("chroma_index.zip")
|
||||
Reference in New Issue
Block a user