Add D2-property-rental-assistant
This commit is contained in:
@@ -0,0 +1,189 @@
|
||||
# AI Property Rental Assistant
|
||||
|
||||
An intelligent property rental assistant Jupyter notebook that scrapes real estate listings from OnTheMarket and uses a local LLM (DeepSeek R1) to analyze and recommend properties based on user requirements.
|
||||
|
||||
## Features
|
||||
|
||||
- **Web Scraping**: Automatically fetches property listings from OnTheMarket
|
||||
- **AI-Powered Analysis**: Uses DeepSeek R1 model via Ollama for intelligent recommendations
|
||||
- **Personalized Recommendations**: Filters and ranks properties based on:
|
||||
- Budget constraints
|
||||
- Number of bedrooms
|
||||
- Tenant type (student, family, professional)
|
||||
- Location preferences
|
||||
- **Clean Output**: Returns formatted markdown with top 3-5 property recommendations
|
||||
- **Smart Filtering**: Handles cases where no suitable properties are found with helpful suggestions
|
||||
|
||||
## Prerequisites
|
||||
|
||||
- Python 3.7+
|
||||
- Ollama installed and running locally
|
||||
- DeepSeek R1 14B model pulled in Ollama
|
||||
|
||||
## Installation
|
||||
|
||||
1. **Clone the repository**
|
||||
```bash
|
||||
git clone <your-repo-url>
|
||||
cd property-rental-assistant
|
||||
```
|
||||
|
||||
2. **Install required Python packages**
|
||||
```bash
|
||||
pip install requests beautifulsoup4 ollama ipython jupyter
|
||||
```
|
||||
|
||||
3. **Install and setup Ollama**
|
||||
```bash
|
||||
# Install Ollama (macOS/Linux)
|
||||
curl -fsSL https://ollama.ai/install.sh | sh
|
||||
|
||||
# For Windows, download from: https://ollama.ai/download
|
||||
```
|
||||
|
||||
4. **Pull the DeepSeek R1 model**
|
||||
```bash
|
||||
ollama pull deepseek-r1:14b
|
||||
```
|
||||
|
||||
5. **Start Ollama server**
|
||||
```bash
|
||||
ollama serve
|
||||
```
|
||||
|
||||
## Usage
|
||||
|
||||
### Running the Notebook
|
||||
|
||||
1. **Start Jupyter Notebook**
|
||||
```bash
|
||||
jupyter notebook
|
||||
```
|
||||
|
||||
2. **Open the notebook**
|
||||
Navigate to `property_rental_assistant.ipynb` in the Jupyter interface
|
||||
|
||||
3. **Run all cells**
|
||||
Click `Cell` → `Run All` or use `Shift + Enter` to run cells individually
|
||||
|
||||
### Customizing Search Parameters
|
||||
|
||||
Modify the `user_needs` variable in the notebook:
|
||||
```python
|
||||
user_needs = "I'm a student looking for a 2-bedroom house in Durham under £2,000/month"
|
||||
```
|
||||
|
||||
Other examples:
|
||||
- `"Family of 4 looking for 3-bedroom house with garden in Durham, budget £2,500/month"`
|
||||
- `"Professional couple seeking modern 1-bed apartment near city center, max £1,500/month"`
|
||||
- `"Student group needs 4-bedroom house near Durham University, £600/month per person"`
|
||||
|
||||
### Changing the Property Website
|
||||
|
||||
Update the `website_url` variable in the notebook:
|
||||
```python
|
||||
website_url = "https://www.onthemarket.com/to-rent/property/durham/"
|
||||
```
|
||||
|
||||
## Architecture
|
||||
|
||||
```
|
||||
┌─────────────────┐ ┌──────────────┐ ┌─────────────┐
|
||||
│ OnTheMarket │────▶│ Web Scraper │────▶│ Ollama │
|
||||
│ Website │ │ (BeautifulSoup)│ │ (DeepSeek R1)│
|
||||
└─────────────────┘ └──────────────┘ └─────────────┘
|
||||
│
|
||||
▼
|
||||
┌─────────────────────────────────┐
|
||||
│ AI-Generated Recommendations │
|
||||
│ • Top 5 matching properties │
|
||||
│ • Filtered by requirements │
|
||||
│ • Markdown formatted output │
|
||||
└─────────────────────────────────┘
|
||||
```
|
||||
|
||||
## Project Structure
|
||||
|
||||
```
|
||||
property-rental-assistant/
|
||||
│
|
||||
├── property_rental_assistant.ipynb # Main Jupyter notebook
|
||||
└── README.md # This file
|
||||
```
|
||||
|
||||
## 🔧 Configuration
|
||||
|
||||
### Ollama API Settings
|
||||
```python
|
||||
OLLAMA_API = "http://localhost:11434/api/chat" # Default Ollama endpoint
|
||||
MODEL = "deepseek-r1:14b" # Model to use
|
||||
```
|
||||
|
||||
### Web Scraping Settings
|
||||
```python
|
||||
headers = {
|
||||
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36"
|
||||
}
|
||||
timeout = 10 # Request timeout in seconds
|
||||
```
|
||||
|
||||
### Content Limits
|
||||
```python
|
||||
website.text[:4000] # Truncate content to 4000 chars for token limits
|
||||
```
|
||||
|
||||
## How It Works
|
||||
|
||||
1. **Web Scraping**: The `Website` class fetches and parses HTML content from the property listing URL
|
||||
2. **Content Cleaning**: Removes scripts, styles, and images to extract clean text
|
||||
3. **Prompt Engineering**: Combines system prompt with user requirements and scraped data
|
||||
4. **LLM Analysis**: Sends the prompt to DeepSeek R1 via Ollama API
|
||||
5. **Recommendation Generation**: The AI analyzes listings and returns top matches in markdown format
|
||||
|
||||
## 🛠️ Troubleshooting
|
||||
|
||||
### Ollama Connection Error
|
||||
```
|
||||
Error communicating with Ollama: [Errno 111] Connection refused
|
||||
```
|
||||
**Solution**: Ensure Ollama is running with `ollama serve`
|
||||
|
||||
### Model Not Found
|
||||
```
|
||||
Error: model 'deepseek-r1:14b' not found
|
||||
```
|
||||
**Solution**: Pull the model with `ollama pull deepseek-r1:14b`
|
||||
|
||||
### Web Scraping Blocked
|
||||
```
|
||||
Error fetching website: 403 Forbidden
|
||||
```
|
||||
**Solution**: The website may be blocking automated requests. Try:
|
||||
- Updating the User-Agent string
|
||||
- Adding delays between requests
|
||||
- Using a proxy or VPN
|
||||
|
||||
### Insufficient Property Data
|
||||
If recommendations are poor quality, the scraper may not be capturing listing details properly. Check:
|
||||
- The website structure hasn't changed
|
||||
- The content truncation limit (4000 chars) isn't too restrictive
|
||||
|
||||
## Future Enhancements
|
||||
|
||||
- [ ] Support multiple property websites (Rightmove, Zoopla, SpareRoom)
|
||||
- [ ] Interactive CLI for dynamic user input
|
||||
- [ ] Property image analysis
|
||||
- [ ] Save search history and favorite properties
|
||||
- [ ] Email notifications for new matching properties
|
||||
- [ ] Price trend analysis
|
||||
- [ ] Commute time calculations to specified locations
|
||||
- [ ] Multi-language support
|
||||
- [ ] Web interface with Flask/FastAPI
|
||||
- [ ] Docker containerization
|
||||
|
||||
## Acknowledgments
|
||||
|
||||
- [Ollama](https://ollama.ai/) for local LLM hosting
|
||||
- [DeepSeek](https://www.deepseek.com/) for the R1 model
|
||||
- [BeautifulSoup](https://www.crummy.com/software/BeautifulSoup/) for web scraping
|
||||
- [OnTheMarket](https://www.onthemarket.com/) for property data
|
||||
Reference in New Issue
Block a user