week4: ai stock trading

This commit is contained in:
Omar Marie
2025-07-21 20:49:24 +03:00
parent 59f4a5be27
commit c3d0a8e8b7
10 changed files with 3043 additions and 221 deletions

View File

@@ -0,0 +1,549 @@
"""
Main Streamlit Application for AI Stock Trading with Sharia Compliance
"""
import streamlit as st
import pandas as pd
import os
from dotenv import load_dotenv
# Import our custom tools
from tools.fetching import stock_fetcher, get_available_stocks
from tools.analysis import stock_analyzer
from tools.trading_decisions import trading_engine
from tools.sharia_compliance import sharia_checker
from tools.charting import chart_generator
# Load environment variables
load_dotenv()
# Page configuration
st.set_page_config(
page_title="AI Stock Trading & Sharia Compliance",
page_icon="📈",
layout="wide",
initial_sidebar_state="expanded"
)
class StockTradingApp:
def __init__(self):
self.initialize_session_state()
self.setup_sidebar()
def initialize_session_state(self):
if 'selected_country' not in st.session_state:
st.session_state.selected_country = 'USA'
if 'selected_stock' not in st.session_state:
st.session_state.selected_stock = None
if 'stock_data' not in st.session_state:
st.session_state.stock_data = {}
if 'chat_history' not in st.session_state:
st.session_state.chat_history = []
if 'current_page' not in st.session_state:
st.session_state.current_page = 'home'
def setup_sidebar(self):
with st.sidebar:
st.title("🏛️ Navigation")
page = st.radio(
"Select Page:",
["🏠 Home", "💬 Chat Interface", "📊 Dashboard"],
key="page_selector"
)
page_mapping = {
"🏠 Home": "home",
"💬 Chat Interface": "chat",
"📊 Dashboard": "dashboard"
}
st.session_state.current_page = page_mapping[page]
st.divider()
self.render_stock_selector()
st.divider()
self.show_api_status()
def render_stock_selector(self):
st.subheader("🌍 Stock Selection")
countries = ['USA', 'Egypt']
selected_country = st.selectbox(
"Select Country:",
countries,
index=countries.index(st.session_state.selected_country),
key="country_selector"
)
if selected_country != st.session_state.selected_country:
st.session_state.selected_country = selected_country
st.session_state.selected_stock = None
available_stocks = get_available_stocks(selected_country)
if available_stocks:
stock_names = list(available_stocks.keys())
current_index = 0
if st.session_state.selected_stock:
current_symbol = st.session_state.selected_stock
for i, (name, symbol) in enumerate(available_stocks.items()):
if symbol == current_symbol:
current_index = i
break
selected_stock_name = st.selectbox(
"Select Stock:",
stock_names,
index=current_index,
key="stock_selector"
)
selected_symbol = available_stocks[selected_stock_name]
if selected_symbol != st.session_state.selected_stock:
st.session_state.selected_stock = selected_symbol
st.session_state.stock_data = {}
st.session_state.chat_history = []
if st.session_state.selected_stock:
st.success(f"Selected: {selected_stock_name} ({selected_symbol})")
else:
st.error(f"No stocks available for {selected_country}")
def show_api_status(self):
st.subheader("API Used")
openai_key = os.getenv('OPENAI_API_KEY')
if openai_key:
st.success("✅ OpenAI Connected")
else:
st.error("❌ Not Connected")
def run(self):
st.title("🤖 AI Stock Trading")
st.markdown("*Intelligent stock analysis with Islamic finance compliance*")
if st.session_state.current_page == 'home':
self.render_home_page()
elif st.session_state.current_page == 'chat':
self.render_chat_page()
elif st.session_state.current_page == 'dashboard':
self.render_dashboard_page()
def render_home_page(self):
st.header("🏠 Welcome to AI Stock Trading Platform")
st.markdown("""
Get intelligent stock analysis with Islamic finance compliance checking.
Select a country and stock from the sidebar to begin.
**Key Features:**
- 📊 Real-time stock analysis with advanced indicators
- 🤖 AI-powered trading recommendations
- ☪️ Sharia compliance assessment
- 💬 Natural language chat interface
**Supported Markets:** 🇺🇸 USA | 🇪🇬 Egypt
*Disclaimer: For educational purposes only. Not financial advice.*
""")
if st.session_state.selected_stock:
st.divider()
st.subheader(f"📊 Quick Analysis: {st.session_state.selected_stock}")
with st.spinner("Loading quick analysis..."):
self.show_quick_analysis()
def show_quick_analysis(self):
symbol = st.session_state.selected_stock
country = st.session_state.selected_country
try:
data = stock_fetcher.fetch_stock_data(symbol, period="1mo")
stock_info = stock_fetcher.get_stock_info(symbol, country)
if not data.empty:
col1, col2, col3, col4 = st.columns(4)
current_price = data['Close'].iloc[-1]
price_change = data['Close'].iloc[-1] - data['Close'].iloc[-2] if len(data) > 1 else 0
price_change_pct = (price_change / data['Close'].iloc[-2] * 100) if len(data) > 1 else 0
with col1:
formatted_price = stock_fetcher.format_price_with_currency(current_price, country)
price_change_str = f"{price_change:+.2f} ({price_change_pct:+.1f}%)"
st.metric("Current Price", formatted_price, price_change_str)
with col2:
high_52w = stock_info.get('fifty_two_week_high', 0)
formatted_high = stock_fetcher.format_price_with_currency(high_52w, country)
st.metric("52W High", formatted_high)
with col3:
low_52w = stock_info.get('fifty_two_week_low', 0)
formatted_low = stock_fetcher.format_price_with_currency(low_52w, country)
st.metric("52W Low", formatted_low)
with col4:
market_cap = stock_info.get('market_cap', 0)
currency = stock_fetcher.get_market_currency(country)
if market_cap > 1e9:
if currency == 'EGP':
market_cap_str = f"{market_cap/1e9:.1f}B EGP"
else:
market_cap_str = f"${market_cap/1e9:.1f}B"
elif market_cap > 1e6:
if currency == 'EGP':
market_cap_str = f"{market_cap/1e6:.1f}M EGP"
else:
market_cap_str = f"${market_cap/1e6:.1f}M"
else:
if currency == 'EGP':
market_cap_str = f"{market_cap:,.0f} EGP"
else:
market_cap_str = f"${market_cap:,.0f}"
st.metric("Market Cap", market_cap_str)
st.info(f"**{stock_info.get('company_name', 'N/A')}** | "
f"Sector: {stock_info.get('sector', 'N/A')} | "
f"Industry: {stock_info.get('industry', 'N/A')}")
except Exception as e:
st.error(f"Error loading quick analysis: {str(e)}")
def load_stock_analysis(self, symbol: str):
try:
country = st.session_state.selected_country
data = stock_fetcher.fetch_stock_data(symbol, period="1y")
stock_info = stock_fetcher.get_stock_info(symbol, country)
analysis = stock_analyzer.analyze_stock(data)
trading_decision = trading_engine.get_trading_recommendation(symbol, analysis, stock_info)
sharia_compliance = sharia_checker.check_sharia_compliance(symbol, stock_info, analysis)
st.session_state.stock_data[symbol] = {
'data': data,
'stock_info': stock_info,
'analysis': analysis,
'trading_decision': trading_decision,
'sharia_compliance': sharia_compliance
}
except Exception as e:
st.error(f"Error loading analysis for {symbol}: {str(e)}")
def render_chat_page(self):
st.header("💬 AI Stock Analysis Chat")
if not st.session_state.selected_stock:
st.warning("⚠️ Please select a stock from the sidebar to start chatting.")
return
symbol = st.session_state.selected_stock
st.info(f"💬 Chatting about: **{symbol}**")
if symbol not in st.session_state.stock_data:
with st.spinner("Loading stock data and analysis..."):
self.load_stock_analysis(symbol)
self.render_chat_interface()
def render_chat_interface(self):
symbol = st.session_state.selected_stock
if st.session_state.chat_history:
for message in st.session_state.chat_history:
if message['role'] == 'user':
st.chat_message("user").write(message['content'])
else:
st.chat_message("assistant").write(message['content'])
else:
welcome_msg = f"""
👋 Hello! I'm your AI stock analysis assistant. I can help you with:
• **Technical Analysis** of {symbol}
• **Trading Recommendations** (Buy/Hold/Sell)
• **Sharia Compliance** assessment
• **Risk Analysis** and market insights
What would you like to know about {symbol}?
"""
st.chat_message("assistant").write(welcome_msg)
user_input = st.chat_input("Ask me anything about this stock...")
if user_input:
st.session_state.chat_history.append({'role': 'user', 'content': user_input})
with st.spinner("Analyzing..."):
ai_response = self.generate_ai_response(user_input, symbol)
st.session_state.chat_history.append({'role': 'assistant', 'content': ai_response})
st.rerun()
st.subheader("🚀 Quick Actions")
col1, col2, col3, col4 = st.columns(4)
with col1:
if st.button("📊 Get Analysis"):
self.add_analysis_to_chat(symbol)
st.rerun()
with col2:
if st.button("💰 Trading Rec"):
self.add_trading_to_chat(symbol)
st.rerun()
with col3:
if st.button("☪️ Sharia Check"):
self.add_sharia_to_chat(symbol)
st.rerun()
with col4:
if st.button("🎯 Price Target"):
self.add_target_to_chat(symbol)
st.rerun()
def generate_ai_response(self, user_input: str, symbol: str) -> str:
try:
from openai import OpenAI
client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'))
# Check if user is asking about Sharia compliance
sharia_keywords = ['sharia', 'halal', 'haram', 'islamic', 'muslim', 'compliant', 'permissible', 'forbidden']
is_sharia_query = any(keyword in user_input.lower() for keyword in sharia_keywords)
stock_data = st.session_state.stock_data.get(symbol, {})
analysis = stock_data.get('analysis', {})
trading_decision = stock_data.get('trading_decision', {})
stock_info = stock_data.get('stock_info', {})
country = st.session_state.selected_country
# Format price with proper currency
current_price = analysis.get('current_price', 0)
formatted_price = stock_fetcher.format_price_with_currency(current_price, country)
# Base context without Sharia info
context = f"""
You are analyzing {symbol} ({stock_info.get('company_name', 'N/A')}).
Current Price: {formatted_price}
Return: {analysis.get('total_return_pct', 0):.2f}%
Recommendation: {trading_decision.get('recommendation', 'N/A')}
Sector: {stock_info.get('sector', 'N/A')}
User Question: {user_input}
Provide helpful analysis based on the available data.
"""
# Add Sharia context only if user asks about it
if is_sharia_query:
# Load Sharia compliance if not already loaded
if symbol not in st.session_state.stock_data or 'sharia_compliance' not in st.session_state.stock_data[symbol]:
with st.spinner("Loading Sharia compliance analysis..."):
self.load_stock_analysis(symbol)
sharia_compliance = st.session_state.stock_data.get(symbol, {}).get('sharia_compliance', {})
context += f"""
SHARIA COMPLIANCE ANALYSIS:
Ruling: {sharia_compliance.get('ruling', 'N/A')}
Confidence: {sharia_compliance.get('confidence', 0)*100:.0f}%
Reasoning: {sharia_compliance.get('reasoning', 'N/A')}
Focus your response on Islamic finance principles and Sharia compliance.
"""
response = client.chat.completions.create(
model="gpt-4o-mini",
messages=[
{"role": "system", "content": "You are a financial advisor and Islamic finance expert."},
{"role": "user", "content": context}
],
temperature=0.7,
max_tokens=400
)
return response.choices[0].message.content
except Exception as e:
return f"Sorry, I'm having trouble right now. Error: {str(e)}"
def add_analysis_to_chat(self, symbol: str):
stock_data = st.session_state.stock_data.get(symbol, {})
analysis = stock_data.get('analysis', {})
if analysis:
summary = stock_analyzer.get_analysis_summary(analysis)
st.session_state.chat_history.append({
'role': 'assistant',
'content': f"📊 **Analysis Summary for {symbol}:**\n\n{summary}"
})
def add_trading_to_chat(self, symbol: str):
stock_data = st.session_state.stock_data.get(symbol, {})
trading_decision = stock_data.get('trading_decision', {})
stock_info = stock_data.get('stock_info', {})
country = st.session_state.selected_country
if trading_decision:
rec = trading_decision.get('recommendation', 'HOLD')
conf = trading_decision.get('confidence', 0)
# Handle confidence as percentage if it's already 0-100, or as decimal if 0-1
if conf <= 1.0:
conf_pct = conf * 100
else:
conf_pct = conf
reason = trading_decision.get('reasoning', 'No reasoning available')
price_target = trading_decision.get('price_target')
stop_loss = trading_decision.get('stop_loss')
time_horizon = trading_decision.get('time_horizon', 'medium')
risk_level = trading_decision.get('risk_level', 'medium')
# Clean reasoning - remove JSON artifacts
if reason.startswith('```json') or reason.startswith('{'):
# Extract readable content from malformed JSON
if 'reasoning' in reason:
try:
import re
reasoning_match = re.search(r'"reasoning"\s*:\s*"([^"]+)"', reason)
if reasoning_match:
reason = reasoning_match.group(1)
else:
reason = "Technical analysis suggests this recommendation based on current market conditions."
except:
reason = "Technical analysis suggests this recommendation based on current market conditions."
# Format the message professionally
message_parts = [
f"💰 **Trading Recommendation: {rec}**",
f"📊 **Confidence Level:** {conf_pct:.0f}%",
f"⏱️ **Time Horizon:** {time_horizon.title()}-term",
f"⚠️ **Risk Level:** {risk_level.title()}",
"",
f"**Analysis:**",
reason
]
# Add price targets if available
if price_target:
formatted_target = stock_fetcher.format_price_with_currency(price_target, country)
message_parts.append(f"🎯 **Price Target:** {formatted_target}")
if stop_loss:
formatted_stop = stock_fetcher.format_price_with_currency(stop_loss, country)
message_parts.append(f"🛡️ **Stop Loss:** {formatted_stop}")
message_parts.append("")
message_parts.append("*This is not financial advice. Please do your own research and consult with a financial advisor.*")
message = "\n".join(message_parts)
st.session_state.chat_history.append({'role': 'assistant', 'content': message})
def add_sharia_to_chat(self, symbol: str):
stock_data = st.session_state.stock_data.get(symbol, {})
sharia_compliance = stock_data.get('sharia_compliance', {})
if sharia_compliance:
summary = sharia_checker.get_compliance_summary(sharia_compliance)
st.session_state.chat_history.append({
'role': 'assistant',
'content': f"☪️ **Sharia Compliance:**\n\n{summary}"
})
def add_target_to_chat(self, symbol: str):
stock_data = st.session_state.stock_data.get(symbol, {})
trading_decision = stock_data.get('trading_decision', {})
analysis = stock_data.get('analysis', {})
current = analysis.get('current_price', 0)
target = trading_decision.get('price_target')
stop = trading_decision.get('stop_loss')
message = f"🎯 **Current Price:** ${current:.2f}\n"
if target:
upside = ((target - current) / current) * 100
message += f"**Target:** ${target:.2f} ({upside:+.1f}%)\n"
if stop:
downside = ((stop - current) / current) * 100
message += f"**Stop Loss:** ${stop:.2f} ({downside:+.1f}%)"
st.session_state.chat_history.append({'role': 'assistant', 'content': message})
def render_dashboard_page(self):
st.header("📊 Dashboard")
if not st.session_state.selected_stock:
st.warning("⚠️ Please select a stock from the sidebar.")
return
symbol = st.session_state.selected_stock
country = st.session_state.selected_country
if symbol not in st.session_state.stock_data:
with st.spinner("Loading analysis..."):
self.load_stock_analysis(symbol)
stock_data = st.session_state.stock_data.get(symbol, {})
if not stock_data:
st.error("Failed to load data.")
return
analysis = stock_data.get('analysis', {})
trading_decision = stock_data.get('trading_decision', {})
sharia_compliance = stock_data.get('sharia_compliance', {})
data = stock_data.get('data')
# KPIs at the top
col1, col2, col3, col4, col5 = st.columns(5)
with col1:
current_price = data['Close'].iloc[-1]
formatted_price = stock_fetcher.format_price_with_currency(current_price, country)
st.metric("💰 Current Price", formatted_price)
with col2:
total_return = analysis.get('total_return_pct', 0)
st.metric("Total Return", f"{total_return:.2f}%")
with col3:
rec = trading_decision.get('recommendation', 'HOLD')
conf = trading_decision.get('confidence', 0) * 100
st.metric("Recommendation", rec, f"{conf:.0f}% confidence")
with col4:
ruling = sharia_compliance.get('ruling', 'UNCERTAIN')
sharia_conf = sharia_compliance.get('confidence', 0) * 100
st.metric("Sharia Status", ruling, f"{sharia_conf:.0f}% confidence")
with col5:
volatility = analysis.get('volatility_annualized', 0)
st.metric("Volatility", f"{volatility:.1f}%")
st.divider()
# Charts section
# First row: Risk Analysis and Trading Signals
col1, col2 = st.columns(2)
with col1:
risk_fig = chart_generator.create_risk_analysis_chart(analysis, symbol)
st.plotly_chart(risk_fig, use_container_width=True)
with col2:
signals_fig = chart_generator.create_trading_signals_chart(data, analysis, trading_decision, symbol)
st.plotly_chart(signals_fig, use_container_width=True)
# Second row: Price Chart (full width)
price_fig = chart_generator.create_price_chart(data, symbol, analysis)
st.plotly_chart(price_fig, use_container_width=True)
def main():
app = StockTradingApp()
app.run()
if __name__ == "__main__":
main()