diff --git a/week8/community_contributions/solisoma/price_is_right_fixed.ipynb b/week8/community_contributions/solisoma/price_is_right_fixed.ipynb
new file mode 100644
index 0000000..49ccc5b
--- /dev/null
+++ b/week8/community_contributions/solisoma/price_is_right_fixed.ipynb
@@ -0,0 +1,456 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# The Price is Right - Fixed Version\n",
+ "\n",
+ "This notebook fixes the issue where existing deals disappear from the table when the system makes new calls.\n",
+ "\n",
+ "**Key Fix**: The table now continuously shows current memory during updates, so existing deals remain visible while new ones are being searched.\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Imports\n",
+ "import sys\n",
+ "sys.path.append('../..')\n",
+ "\n",
+ "import logging\n",
+ "import queue\n",
+ "import threading\n",
+ "import time\n",
+ "import gradio as gr\n",
+ "from deal_agent_framework import DealAgentFramework\n",
+ "from agents.deals import Opportunity, Deal\n",
+ "from log_utils import reformat\n",
+ "import plotly.graph_objects as go\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Helper Functions\n",
+ "\n",
+ "class QueueHandler(logging.Handler):\n",
+ " def __init__(self, log_queue):\n",
+ " super().__init__()\n",
+ " self.log_queue = log_queue\n",
+ "\n",
+ " def emit(self, record):\n",
+ " self.log_queue.put(self.format(record))\n",
+ "\n",
+ "\n",
+ "def html_for(log_data):\n",
+ " \"\"\"Convert log data to HTML format for display\"\"\"\n",
+ " output = '
'.join(log_data[-18:])\n",
+ " return f\"\"\"\n",
+ "
\n",
+ " {output}\n",
+ "
\n",
+ " \"\"\"\n",
+ "\n",
+ "\n",
+ "def setup_logging(log_queue):\n",
+ " \"\"\"Setup logging to capture messages in a queue\"\"\"\n",
+ " handler = QueueHandler(log_queue)\n",
+ " formatter = logging.Formatter(\n",
+ " \"[%(asctime)s] %(message)s\",\n",
+ " datefmt=\"%Y-%m-%d %H:%M:%S %z\",\n",
+ " )\n",
+ " handler.setFormatter(formatter)\n",
+ " logger = logging.getLogger()\n",
+ " logger.addHandler(handler)\n",
+ " logger.setLevel(logging.INFO)\n",
+ "\n",
+ "\n",
+ "def get_plot():\n",
+ " \"\"\"Generate 3D visualization of vector database - handles empty database gracefully\"\"\"\n",
+ " try:\n",
+ " documents, vectors, colors = DealAgentFramework.get_plot_data(max_datapoints=1000)\n",
+ "\n",
+ " print(vectors, flush=True)\n",
+ " \n",
+ " # Check if we have any data\n",
+ " if len(vectors) == 0:\n",
+ " # Return placeholder plot if database is empty\n",
+ " fig = go.Figure()\n",
+ " fig.update_layout(\n",
+ " title='Vector Database Empty',\n",
+ " height=400,\n",
+ " annotations=[dict(\n",
+ " text=\"The vector database is empty.
Run the data loading notebook (day2.0) to populate it.\",\n",
+ " x=0.5,\n",
+ " y=0.5,\n",
+ " xref=\"paper\",\n",
+ " yref=\"paper\",\n",
+ " showarrow=False,\n",
+ " font=dict(size=14)\n",
+ " )]\n",
+ " )\n",
+ " return fig\n",
+ " \n",
+ " # Normal case: create 3D scatter plot\n",
+ " fig = go.Figure(data=[go.Scatter3d(\n",
+ " x=vectors[:, 0],\n",
+ " y=vectors[:, 1],\n",
+ " z=vectors[:, 2],\n",
+ " mode='markers',\n",
+ " marker=dict(size=2, color=colors, opacity=0.7),\n",
+ " )])\n",
+ " \n",
+ " fig.update_layout(\n",
+ " scene=dict(xaxis_title='x', \n",
+ " yaxis_title='y', \n",
+ " zaxis_title='z',\n",
+ " aspectmode='manual',\n",
+ " aspectratio=dict(x=2.2, y=2.2, z=1),\n",
+ " camera=dict(\n",
+ " eye=dict(x=1.6, y=1.6, z=0.8)\n",
+ " )),\n",
+ " height=400,\n",
+ " margin=dict(r=5, b=1, l=5, t=2)\n",
+ " )\n",
+ " return fig\n",
+ " except Exception as e:\n",
+ " # Handle any errors gracefully\n",
+ " fig = go.Figure()\n",
+ " fig.update_layout(\n",
+ " title='Error Loading Vector Database',\n",
+ " height=400,\n",
+ " annotations=[dict(\n",
+ " text=f\"Error: {str(e)}
Make sure the vector database is set up correctly.
Run day2.0 notebook to populate it.\",\n",
+ " x=0.5,\n",
+ " y=0.5,\n",
+ " xref=\"paper\",\n",
+ " yref=\"paper\",\n",
+ " showarrow=False,\n",
+ " font=dict(size=12)\n",
+ " )]\n",
+ " )\n",
+ " return fig\n",
+ "\n",
+ "\n",
+ "def create_opportunity_from_dict(data: dict) -> Opportunity:\n",
+ " \"\"\"Helper function to create Opportunity from dictionary - uses Deal and Opportunity classes\"\"\"\n",
+ " deal = Deal(**data['deal']) if isinstance(data['deal'], dict) else data['deal']\n",
+ " return Opportunity(deal=deal, estimate=data['estimate'], discount=data['discount'])\n",
+ "\n",
+ "\n",
+ "def validate_opportunities(opportunities) -> list:\n",
+ " \"\"\"Validate and ensure all items are Opportunity instances - uses Opportunity class\"\"\"\n",
+ " validated = []\n",
+ " for opp in opportunities:\n",
+ " if not isinstance(opp, Opportunity):\n",
+ " if isinstance(opp, dict):\n",
+ " opp = create_opportunity_from_dict(opp)\n",
+ " else:\n",
+ " continue\n",
+ " validated.append(opp)\n",
+ " return validated\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Main App Class\n",
+ "\n",
+ "class App:\n",
+ "\n",
+ " def __init__(self): \n",
+ " self.agent_framework = None\n",
+ "\n",
+ " def get_agent_framework(self):\n",
+ " \"\"\"Get or initialize the agent framework\"\"\"\n",
+ " if not self.agent_framework:\n",
+ " self.agent_framework = DealAgentFramework()\n",
+ " self.agent_framework.init_agents_as_needed()\n",
+ " return self.agent_framework\n",
+ "\n",
+ " def table_for(self, opps):\n",
+ " \"\"\"Convert opportunities to table format - uses Opportunity and Deal classes\"\"\"\n",
+ " # Validate opportunities are Opportunity instances\n",
+ " validated_opps = validate_opportunities(opps)\n",
+ " return [[opp.deal.product_description, f\"${opp.deal.price:.2f}\", f\"${opp.estimate:.2f}\", f\"${opp.discount:.2f}\", opp.deal.url] \n",
+ " for opp in validated_opps \n",
+ " if isinstance(opp, Opportunity)]\n",
+ "\n",
+ " def update_output(self, log_data, log_queue, result_queue):\n",
+ " \"\"\"Keep showing current memory during updates - fixes disappearing table issue\"\"\"\n",
+ " framework = self.get_agent_framework()\n",
+ " current_table = self.table_for(framework.memory)\n",
+ " \n",
+ " while True:\n",
+ " try:\n",
+ " message = log_queue.get_nowait()\n",
+ " log_data.append(reformat(message))\n",
+ " # Always refresh table from current memory during updates\n",
+ " current_table = self.table_for(framework.memory)\n",
+ " yield log_data, html_for(log_data), current_table\n",
+ " except queue.Empty:\n",
+ " try:\n",
+ " # When result is ready, update with final result\n",
+ " final_result = result_queue.get_nowait()\n",
+ " yield log_data, html_for(log_data), final_result\n",
+ " return\n",
+ " except queue.Empty:\n",
+ " # Continue showing current memory while waiting\n",
+ " current_table = self.table_for(framework.memory)\n",
+ " yield log_data, html_for(log_data), current_table\n",
+ " time.sleep(0.1)\n",
+ "\n",
+ " def do_run(self):\n",
+ " \"\"\"Run framework and return updated table\"\"\"\n",
+ " framework = self.get_agent_framework()\n",
+ " new_opportunities = framework.run()\n",
+ " return self.table_for(new_opportunities)\n",
+ "\n",
+ " def run_with_logging(self, initial_log_data):\n",
+ " \"\"\"Run agent framework with logging in a separate thread\"\"\"\n",
+ " log_queue = queue.Queue()\n",
+ " result_queue = queue.Queue()\n",
+ " setup_logging(log_queue)\n",
+ " \n",
+ " def worker():\n",
+ " result = self.do_run()\n",
+ " result_queue.put(result)\n",
+ " \n",
+ " thread = threading.Thread(target=worker)\n",
+ " thread.start()\n",
+ " \n",
+ " for log_data, output, final_result in self.update_output(initial_log_data, log_queue, result_queue):\n",
+ " yield log_data, output, final_result\n",
+ "\n",
+ " def do_select(self, selected_index: gr.SelectData):\n",
+ " \"\"\"Handle deal selection - send alert\"\"\"\n",
+ " framework = self.get_agent_framework()\n",
+ " opportunities = framework.memory\n",
+ " row = selected_index.index[0]\n",
+ " if row < len(opportunities):\n",
+ " opportunity = opportunities[row]\n",
+ " framework.planner.messenger.alert(opportunity)\n",
+ " return f\"Alert sent for: {opportunity.deal.product_description[:50]}...\"\n",
+ " return \"No opportunity found at that index\"\n",
+ "\n",
+ " def load_initial(self):\n",
+ " \"\"\"Load initial state with existing deals - uses Opportunity and Deal classes\"\"\"\n",
+ " framework = self.get_agent_framework()\n",
+ " # Ensure memory contains Opportunity instances\n",
+ " opportunities = validate_opportunities(framework.memory)\n",
+ " initial_table = self.table_for(opportunities)\n",
+ " return [], \"\", initial_table\n",
+ "\n",
+ " def run(self):\n",
+ " \"\"\"Launch the Gradio interface\"\"\"\n",
+ " with gr.Blocks(title=\"The Price is Right\", fill_width=True) as ui:\n",
+ " \n",
+ " log_data = gr.State([])\n",
+ " \n",
+ " with gr.Row():\n",
+ " gr.Markdown('The Price is Right - Autonomous Agent Framework that hunts for deals
')\n",
+ " with gr.Row():\n",
+ " gr.Markdown('A proprietary fine-tuned LLM deployed on Modal and a RAG pipeline with a frontier model collaborate to send push notifications with great online deals.
')\n",
+ " with gr.Row():\n",
+ " opportunities_dataframe = gr.Dataframe(\n",
+ " headers=[\"Deals found so far\", \"Price\", \"Estimate\", \"Discount\", \"URL\"],\n",
+ " wrap=True,\n",
+ " column_widths=[6, 1, 1, 1, 3],\n",
+ " row_count=10,\n",
+ " col_count=5,\n",
+ " max_height=400,\n",
+ " )\n",
+ " with gr.Row():\n",
+ " with gr.Column(scale=1):\n",
+ " logs = gr.HTML()\n",
+ " with gr.Column(scale=1):\n",
+ " plot = gr.Plot(value=get_plot(), show_label=False)\n",
+ " \n",
+ " # Initial load - show existing deals\n",
+ " ui.load(self.load_initial, inputs=[], outputs=[log_data, logs, opportunities_dataframe])\n",
+ "\n",
+ " # Timer that runs every 5 minutes (300 seconds)\n",
+ " timer = gr.Timer(value=300, active=True)\n",
+ " timer.tick(self.run_with_logging, inputs=[log_data], outputs=[log_data, logs, opportunities_dataframe])\n",
+ "\n",
+ " # Selection handler\n",
+ " selection_feedback = gr.Textbox(visible=False)\n",
+ " opportunities_dataframe.select(self.do_select, inputs=[], outputs=[selection_feedback])\n",
+ " \n",
+ " ui.launch(share=False, inbrowser=True)\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[2025-10-30 12:15:06 +0100] [Agents] [INFO] HTTP Request: GET https://api.gradio.app/pkg-version \"HTTP/1.1 200 OK\"\n",
+ "[2025-10-30 12:15:06 +0100] [Agents] [INFO] HTTP Request: GET https://api.gradio.app/pkg-version \"HTTP/1.1 200 OK\"\n",
+ "* Running on local URL: http://127.0.0.1:7862\n",
+ "[2025-10-30 12:15:07 +0100] [Agents] [INFO] HTTP Request: GET http://127.0.0.1:7862/gradio_api/startup-events \"HTTP/1.1 200 OK\"\n",
+ "[2025-10-30 12:15:07 +0100] [Agents] [INFO] HTTP Request: GET http://127.0.0.1:7862/gradio_api/startup-events \"HTTP/1.1 200 OK\"\n",
+ "[2025-10-30 12:15:07 +0100] [Agents] [INFO] HTTP Request: HEAD http://127.0.0.1:7862/ \"HTTP/1.1 200 OK\"\n",
+ "[2025-10-30 12:15:07 +0100] [Agents] [INFO] HTTP Request: HEAD http://127.0.0.1:7862/ \"HTTP/1.1 200 OK\"\n",
+ "* To create a public link, set `share=True` in `launch()`.\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ ""
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[2025-10-30 12:15:10 +0100] [Agents] [INFO] \u001b[44m\u001b[37m[Agent Framework] Initializing Agent Framework\u001b[0m\n",
+ "[2025-10-30 12:15:10 +0100] [Agents] [INFO] \u001b[44m\u001b[37m[Agent Framework] Initializing Agent Framework\u001b[0m\n",
+ "[2025-10-30 12:15:10 +0100] [Agents] [INFO] \u001b[44m\u001b[37m[Agent Framework] Initializing Agent Framework\u001b[0m\n",
+ "[2025-10-30 12:15:10 +0100] [Agents] [INFO] \u001b[40m\u001b[32m[Planning Agent] Planning Agent is initializing\u001b[0m\n",
+ "[2025-10-30 12:15:10 +0100] [Agents] [INFO] \u001b[40m\u001b[32m[Planning Agent] Planning Agent is initializing\u001b[0m\n",
+ "[2025-10-30 12:15:10 +0100] [Agents] [INFO] \u001b[40m\u001b[32m[Planning Agent] Planning Agent is initializing\u001b[0m\n",
+ "[2025-10-30 12:15:10 +0100] [Agents] [INFO] \u001b[40m\u001b[36m[Scanner Agent] Scanner Agent is initializing\u001b[0m\n",
+ "[2025-10-30 12:15:10 +0100] [Agents] [INFO] \u001b[40m\u001b[36m[Scanner Agent] Scanner Agent is initializing\u001b[0m\n",
+ "[2025-10-30 12:15:10 +0100] [Agents] [INFO] \u001b[40m\u001b[36m[Scanner Agent] Scanner Agent is initializing\u001b[0m\n",
+ "[2025-10-30 12:15:11 +0100] [Agents] [INFO] \u001b[40m\u001b[36m[Scanner Agent] Scanner Agent is ready\u001b[0m\n",
+ "[2025-10-30 12:15:11 +0100] [Agents] [INFO] \u001b[40m\u001b[36m[Scanner Agent] Scanner Agent is ready\u001b[0m\n",
+ "[2025-10-30 12:15:11 +0100] [Agents] [INFO] \u001b[40m\u001b[36m[Scanner Agent] Scanner Agent is ready\u001b[0m\n",
+ "[2025-10-30 12:15:11 +0100] [Agents] [INFO] \u001b[40m\u001b[33m[Ensemble Agent] Initializing Ensemble Agent\u001b[0m\n",
+ "[2025-10-30 12:15:11 +0100] [Agents] [INFO] \u001b[40m\u001b[33m[Ensemble Agent] Initializing Ensemble Agent\u001b[0m\n",
+ "[2025-10-30 12:15:11 +0100] [Agents] [INFO] \u001b[40m\u001b[33m[Ensemble Agent] Initializing Ensemble Agent\u001b[0m\n",
+ "[2025-10-30 12:15:11 +0100] [Agents] [INFO] \u001b[40m\u001b[31m[Specialist Agent] Specialist Agent is initializing - connecting to modal\u001b[0m\n",
+ "[2025-10-30 12:15:11 +0100] [Agents] [INFO] \u001b[40m\u001b[31m[Specialist Agent] Specialist Agent is initializing - connecting to modal\u001b[0m\n",
+ "[2025-10-30 12:15:11 +0100] [Agents] [INFO] \u001b[40m\u001b[31m[Specialist Agent] Specialist Agent is initializing - connecting to modal\u001b[0m\n",
+ "[2025-10-30 12:15:11 +0100] [Agents] [INFO] \u001b[40m\u001b[31m[Specialist Agent] Specialist Agent is ready\u001b[0m\n",
+ "[2025-10-30 12:15:11 +0100] [Agents] [INFO] \u001b[40m\u001b[31m[Specialist Agent] Specialist Agent is ready\u001b[0m\n",
+ "[2025-10-30 12:15:11 +0100] [Agents] [INFO] \u001b[40m\u001b[31m[Specialist Agent] Specialist Agent is ready\u001b[0m\n",
+ "[2025-10-30 12:15:11 +0100] [Agents] [INFO] \u001b[40m\u001b[34m[Frontier Agent] Initializing Frontier Agent\u001b[0m\n",
+ "[2025-10-30 12:15:11 +0100] [Agents] [INFO] \u001b[40m\u001b[34m[Frontier Agent] Initializing Frontier Agent\u001b[0m\n",
+ "[2025-10-30 12:15:11 +0100] [Agents] [INFO] \u001b[40m\u001b[34m[Frontier Agent] Initializing Frontier Agent\u001b[0m\n",
+ "[2025-10-30 12:15:11 +0100] [Agents] [INFO] \u001b[40m\u001b[34m[Frontier Agent] Frontier Agent is set up with DeepSeek\u001b[0m\n",
+ "[2025-10-30 12:15:11 +0100] [Agents] [INFO] \u001b[40m\u001b[34m[Frontier Agent] Frontier Agent is set up with DeepSeek\u001b[0m\n",
+ "[2025-10-30 12:15:11 +0100] [Agents] [INFO] \u001b[40m\u001b[34m[Frontier Agent] Frontier Agent is set up with DeepSeek\u001b[0m\n",
+ "[2025-10-30 12:15:11 +0100] [Agents] [INFO] Use pytorch device_name: cpu\n",
+ "[2025-10-30 12:15:11 +0100] [Agents] [INFO] Use pytorch device_name: cpu\n",
+ "[2025-10-30 12:15:11 +0100] [Agents] [INFO] Use pytorch device_name: cpu\n",
+ "[2025-10-30 12:15:11 +0100] [Agents] [INFO] Load pretrained SentenceTransformer: sentence-transformers/all-MiniLM-L6-v2\n",
+ "[2025-10-30 12:15:11 +0100] [Agents] [INFO] Load pretrained SentenceTransformer: sentence-transformers/all-MiniLM-L6-v2\n",
+ "[2025-10-30 12:15:11 +0100] [Agents] [INFO] Load pretrained SentenceTransformer: sentence-transformers/all-MiniLM-L6-v2\n",
+ "[2025-10-30 12:15:17 +0100] [Agents] [INFO] \u001b[40m\u001b[34m[Frontier Agent] Frontier Agent is ready\u001b[0m\n",
+ "[2025-10-30 12:15:17 +0100] [Agents] [INFO] \u001b[40m\u001b[34m[Frontier Agent] Frontier Agent is ready\u001b[0m\n",
+ "[2025-10-30 12:15:17 +0100] [Agents] [INFO] \u001b[40m\u001b[34m[Frontier Agent] Frontier Agent is ready\u001b[0m\n",
+ "[2025-10-30 12:15:17 +0100] [Agents] [INFO] \u001b[40m\u001b[35m[Random Forest Agent] Random Forest Agent is initializing\u001b[0m\n",
+ "[2025-10-30 12:15:17 +0100] [Agents] [INFO] \u001b[40m\u001b[35m[Random Forest Agent] Random Forest Agent is initializing\u001b[0m\n",
+ "[2025-10-30 12:15:17 +0100] [Agents] [INFO] \u001b[40m\u001b[35m[Random Forest Agent] Random Forest Agent is initializing\u001b[0m\n",
+ "[2025-10-30 12:15:17 +0100] [Agents] [INFO] Use pytorch device_name: cpu\n",
+ "[2025-10-30 12:15:17 +0100] [Agents] [INFO] Use pytorch device_name: cpu\n",
+ "[2025-10-30 12:15:17 +0100] [Agents] [INFO] Use pytorch device_name: cpu\n",
+ "[2025-10-30 12:15:17 +0100] [Agents] [INFO] Load pretrained SentenceTransformer: sentence-transformers/all-MiniLM-L6-v2\n",
+ "[2025-10-30 12:15:17 +0100] [Agents] [INFO] Load pretrained SentenceTransformer: sentence-transformers/all-MiniLM-L6-v2\n",
+ "[2025-10-30 12:15:17 +0100] [Agents] [INFO] Load pretrained SentenceTransformer: sentence-transformers/all-MiniLM-L6-v2\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Traceback (most recent call last):\n",
+ " File \"c:\\Users\\hp\\projects\\gen-ai\\llm_engineering\\.venv\\Lib\\site-packages\\gradio\\queueing.py\", line 745, in process_events\n",
+ " response = await route_utils.call_process_api(\n",
+ " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
+ " File \"c:\\Users\\hp\\projects\\gen-ai\\llm_engineering\\.venv\\Lib\\site-packages\\gradio\\route_utils.py\", line 354, in call_process_api\n",
+ " output = await app.get_blocks().process_api(\n",
+ " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
+ " File \"c:\\Users\\hp\\projects\\gen-ai\\llm_engineering\\.venv\\Lib\\site-packages\\gradio\\blocks.py\", line 2116, in process_api\n",
+ " result = await self.call_function(\n",
+ " ^^^^^^^^^^^^^^^^^^^^^^^^^\n",
+ " File \"c:\\Users\\hp\\projects\\gen-ai\\llm_engineering\\.venv\\Lib\\site-packages\\gradio\\blocks.py\", line 1623, in call_function\n",
+ " prediction = await anyio.to_thread.run_sync( # type: ignore\n",
+ " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
+ " File \"c:\\Users\\hp\\projects\\gen-ai\\llm_engineering\\.venv\\Lib\\site-packages\\anyio\\to_thread.py\", line 56, in run_sync\n",
+ " return await get_async_backend().run_sync_in_worker_thread(\n",
+ " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
+ " File \"c:\\Users\\hp\\projects\\gen-ai\\llm_engineering\\.venv\\Lib\\site-packages\\anyio\\_backends\\_asyncio.py\", line 2485, in run_sync_in_worker_thread\n",
+ " return await future\n",
+ " ^^^^^^^^^^^^\n",
+ " File \"c:\\Users\\hp\\projects\\gen-ai\\llm_engineering\\.venv\\Lib\\site-packages\\anyio\\_backends\\_asyncio.py\", line 976, in run\n",
+ " result = context.run(func, *args)\n",
+ " ^^^^^^^^^^^^^^^^^^^^^^^^\n",
+ " File \"c:\\Users\\hp\\projects\\gen-ai\\llm_engineering\\.venv\\Lib\\site-packages\\gradio\\utils.py\", line 915, in wrapper\n",
+ " response = f(*args, **kwargs)\n",
+ " ^^^^^^^^^^^^^^^^^^\n",
+ " File \"C:\\Users\\hp\\AppData\\Local\\Temp\\ipykernel_560\\1866679463.py\", line 82, in load_initial\n",
+ " framework = self.get_agent_framework()\n",
+ " ^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
+ " File \"C:\\Users\\hp\\AppData\\Local\\Temp\\ipykernel_560\\1866679463.py\", line 12, in get_agent_framework\n",
+ " self.agent_framework.init_agents_as_needed()\n",
+ " File \"c:\\Users\\hp\\projects\\gen-ai\\llm_engineering\\week8\\community_contributions\\solisoma\\../..\\deal_agent_framework.py\", line 54, in init_agents_as_needed\n",
+ " self.log(\"Agent Framework is ready\")\n",
+ " ^^^^^^^^^^^^^^^^^^^^^^\n",
+ " File \"c:\\Users\\hp\\projects\\gen-ai\\llm_engineering\\week8\\community_contributions\\solisoma\\../..\\agents\\planning_agent.py\", line 21, in __init__\n",
+ " self.ensemble = EnsembleAgent(collection)\n",
+ " ^^^^^^^^^^^^^^^^^^^^^^^^^\n",
+ " File \"c:\\Users\\hp\\projects\\gen-ai\\llm_engineering\\week8\\community_contributions\\solisoma\\../..\\agents\\ensemble_agent.py\", line 23, in __init__\n",
+ " self.random_forest = RandomForestAgent()\n",
+ " ^^^^^^^^^^^^^^^^^^^\n",
+ " File \"c:\\Users\\hp\\projects\\gen-ai\\llm_engineering\\week8\\community_contributions\\solisoma\\../..\\agents\\random_forest_agent.py\", line 24, in __init__\n",
+ " self.model = joblib.load('random_forest_model.pkl')\n",
+ " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
+ " File \"c:\\Users\\hp\\projects\\gen-ai\\llm_engineering\\.venv\\Lib\\site-packages\\joblib\\numpy_pickle.py\", line 735, in load\n",
+ " with open(filename, \"rb\") as f:\n",
+ " ^^^^^^^^^^^^^^^^^^^^\n",
+ "FileNotFoundError: [Errno 2] No such file or directory: 'random_forest_model.pkl'\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Run the application\n",
+ "app = App()\n",
+ "app.run()\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": ".venv",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.12.12"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}