Add week6 contributions
This commit is contained in:
120
week6/community-contributions/helpers/items.py
Normal file
120
week6/community-contributions/helpers/items.py
Normal file
@@ -0,0 +1,120 @@
|
||||
from typing import Optional # A variable might be a certain type or None
|
||||
from transformers import AutoTokenizer
|
||||
import re
|
||||
|
||||
BASE_MODEL = "meta-llama/Meta-Llama-3.1-8B"
|
||||
|
||||
MIN_TOKENS = 150 # Minimum tokens required to accept an item
|
||||
MAX_TOKENS = 160 # We limit to 160 tokens so that after adding prompt text, the total stays around 180 tokens.
|
||||
|
||||
MIN_CHARS = 300 # Reject items with less than 300 characters
|
||||
CEILING_CHARS = MAX_TOKENS * 7 # Truncate long text to about 1120 characters (approx 160 tokens)
|
||||
|
||||
class Item:
|
||||
"""
|
||||
An Item is a cleaned, curated datapoint of a Product with a Price
|
||||
"""
|
||||
|
||||
# Load tokenizer for the model
|
||||
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, trust_remote_code=True)
|
||||
|
||||
# Define PRICE_LABEL and question for the training prompt
|
||||
PRICE_LABEL = "Price is $"
|
||||
QUESTION = "How much does this cost to the nearest dollar?"
|
||||
|
||||
# A list of useless phrases to remove to reduce noise for price prediction
|
||||
REMOVALS = ['"Batteries Included?": "No"', '"Batteries Included?": "Yes"', '"Batteries Required?": "No"', '"Batteries Required?": "Yes"', "By Manufacturer", "Item", "Date First", "Package", ":", "Number of", "Best Sellers", "Number", "Product "]
|
||||
|
||||
# Attributes for each item
|
||||
title: str
|
||||
price: float
|
||||
category: str
|
||||
token_count: int = 0 # How many tokens in the final prompt
|
||||
|
||||
# Optional fields
|
||||
details: Optional[str] # The value can be a string or can be None
|
||||
prompt: Optional[str] = None
|
||||
include = False # Whether to keep the item or not
|
||||
|
||||
def __init__(self, data, price):
|
||||
self.title = data['title']
|
||||
self.price = price
|
||||
self.parse(data)
|
||||
|
||||
def scrub_details(self):
|
||||
"""
|
||||
Removes useless phrases from details, which often has repeated specs or boilerplate text.
|
||||
"""
|
||||
details = self.details
|
||||
for remove in self.REMOVALS:
|
||||
details = details.replace(remove, "")
|
||||
return details
|
||||
|
||||
def scrub(self, stuff):
|
||||
"""
|
||||
Clean up the provided text by removing unnecessary characters and whitespace
|
||||
Also remove words that are 7+ chars and contain numbers, as these are likely irrelevant product numbers
|
||||
"""
|
||||
stuff = re.sub(r'[:\[\]"{}【】\s]+', ' ', stuff).strip()
|
||||
stuff = stuff.replace(" ,", ",").replace(",,,",",").replace(",,",",")
|
||||
words = stuff.split(' ')
|
||||
select = [word for word in words if len(word)<7 or not any(char.isdigit() for char in word)]
|
||||
return " ".join(select)
|
||||
|
||||
def parse(self, data):
|
||||
"""
|
||||
Prepares the text, checks length, tokenizes it, and sets include = True if it’s valid.
|
||||
"""
|
||||
# Builds a full contents string by combining description, features, and cleaned details.
|
||||
contents = '\n'.join(data['description'])
|
||||
if contents:
|
||||
contents += '\n'
|
||||
features = '\n'.join(data['features'])
|
||||
if features:
|
||||
contents += features + '\n'
|
||||
self.details = data['details']
|
||||
if self.details:
|
||||
contents += self.scrub_details() + '\n'
|
||||
|
||||
# If content is long enough, trim it to max char limit before processing.
|
||||
if len(contents) > MIN_CHARS:
|
||||
contents = contents[:CEILING_CHARS]
|
||||
|
||||
# Clean and tokenize text, then check token count.
|
||||
text = f"{self.scrub(self.title)}\n{self.scrub(contents)}"
|
||||
tokens = self.tokenizer.encode(text, add_special_tokens=False)
|
||||
|
||||
if len(tokens) > MIN_TOKENS:
|
||||
# Truncate tokens, decode them back and create the training prompt
|
||||
tokens = tokens[:MAX_TOKENS]
|
||||
text = self.tokenizer.decode(tokens)
|
||||
self.make_prompt(text)
|
||||
|
||||
# Mark the item as valid and ready to be used in training
|
||||
self.include = True # Only items with MIN_TOKENS <= tokens <= MAX_TOKENS are kept
|
||||
|
||||
|
||||
def make_prompt(self, text):
|
||||
"""
|
||||
Builds the training prompt using the question, text, and price. Then counts the tokens.
|
||||
"""
|
||||
self.prompt = f"{self.QUESTION}\n\n{text}\n\n"
|
||||
self.prompt += f"{self.PRICE_LABEL }{str(round(self.price))}.00"
|
||||
self.token_count = len(self.tokenizer.encode(self.prompt, add_special_tokens=False))
|
||||
|
||||
def test_prompt(self):
|
||||
"""
|
||||
Returns the prompt without the actual price, useful for testing/inference.
|
||||
"""
|
||||
return self.prompt.split(self.PRICE_LABEL )[0] + self.PRICE_LABEL
|
||||
|
||||
def __repr__(self):
|
||||
"""
|
||||
Defines how the Item object looks when printed — it shows the title and price.
|
||||
"""
|
||||
return f"<{self.title} = ${self.price}>"
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user