Add week6 contributions
This commit is contained in:
809
week6/community-contributions/09_part1_data_curation.ipynb
Normal file
809
week6/community-contributions/09_part1_data_curation.ipynb
Normal file
File diff suppressed because one or more lines are too long
837
week6/community-contributions/09_part2_tradml_vs_frontier.ipynb
Normal file
837
week6/community-contributions/09_part2_tradml_vs_frontier.ipynb
Normal file
File diff suppressed because one or more lines are too long
6908
week6/community-contributions/09_part3_e5embeddings_rag.ipynb
Normal file
6908
week6/community-contributions/09_part3_e5embeddings_rag.ipynb
Normal file
File diff suppressed because one or more lines are too long
519
week6/community-contributions/09_part4_ft_gpt4omini.ipynb
Normal file
519
week6/community-contributions/09_part4_ft_gpt4omini.ipynb
Normal file
File diff suppressed because one or more lines are too long
0
week6/community-contributions/helpers/__init__.py
Normal file
0
week6/community-contributions/helpers/__init__.py
Normal file
120
week6/community-contributions/helpers/items.py
Normal file
120
week6/community-contributions/helpers/items.py
Normal file
@@ -0,0 +1,120 @@
|
|||||||
|
from typing import Optional # A variable might be a certain type or None
|
||||||
|
from transformers import AutoTokenizer
|
||||||
|
import re
|
||||||
|
|
||||||
|
BASE_MODEL = "meta-llama/Meta-Llama-3.1-8B"
|
||||||
|
|
||||||
|
MIN_TOKENS = 150 # Minimum tokens required to accept an item
|
||||||
|
MAX_TOKENS = 160 # We limit to 160 tokens so that after adding prompt text, the total stays around 180 tokens.
|
||||||
|
|
||||||
|
MIN_CHARS = 300 # Reject items with less than 300 characters
|
||||||
|
CEILING_CHARS = MAX_TOKENS * 7 # Truncate long text to about 1120 characters (approx 160 tokens)
|
||||||
|
|
||||||
|
class Item:
|
||||||
|
"""
|
||||||
|
An Item is a cleaned, curated datapoint of a Product with a Price
|
||||||
|
"""
|
||||||
|
|
||||||
|
# Load tokenizer for the model
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, trust_remote_code=True)
|
||||||
|
|
||||||
|
# Define PRICE_LABEL and question for the training prompt
|
||||||
|
PRICE_LABEL = "Price is $"
|
||||||
|
QUESTION = "How much does this cost to the nearest dollar?"
|
||||||
|
|
||||||
|
# A list of useless phrases to remove to reduce noise for price prediction
|
||||||
|
REMOVALS = ['"Batteries Included?": "No"', '"Batteries Included?": "Yes"', '"Batteries Required?": "No"', '"Batteries Required?": "Yes"', "By Manufacturer", "Item", "Date First", "Package", ":", "Number of", "Best Sellers", "Number", "Product "]
|
||||||
|
|
||||||
|
# Attributes for each item
|
||||||
|
title: str
|
||||||
|
price: float
|
||||||
|
category: str
|
||||||
|
token_count: int = 0 # How many tokens in the final prompt
|
||||||
|
|
||||||
|
# Optional fields
|
||||||
|
details: Optional[str] # The value can be a string or can be None
|
||||||
|
prompt: Optional[str] = None
|
||||||
|
include = False # Whether to keep the item or not
|
||||||
|
|
||||||
|
def __init__(self, data, price):
|
||||||
|
self.title = data['title']
|
||||||
|
self.price = price
|
||||||
|
self.parse(data)
|
||||||
|
|
||||||
|
def scrub_details(self):
|
||||||
|
"""
|
||||||
|
Removes useless phrases from details, which often has repeated specs or boilerplate text.
|
||||||
|
"""
|
||||||
|
details = self.details
|
||||||
|
for remove in self.REMOVALS:
|
||||||
|
details = details.replace(remove, "")
|
||||||
|
return details
|
||||||
|
|
||||||
|
def scrub(self, stuff):
|
||||||
|
"""
|
||||||
|
Clean up the provided text by removing unnecessary characters and whitespace
|
||||||
|
Also remove words that are 7+ chars and contain numbers, as these are likely irrelevant product numbers
|
||||||
|
"""
|
||||||
|
stuff = re.sub(r'[:\[\]"{}【】\s]+', ' ', stuff).strip()
|
||||||
|
stuff = stuff.replace(" ,", ",").replace(",,,",",").replace(",,",",")
|
||||||
|
words = stuff.split(' ')
|
||||||
|
select = [word for word in words if len(word)<7 or not any(char.isdigit() for char in word)]
|
||||||
|
return " ".join(select)
|
||||||
|
|
||||||
|
def parse(self, data):
|
||||||
|
"""
|
||||||
|
Prepares the text, checks length, tokenizes it, and sets include = True if it’s valid.
|
||||||
|
"""
|
||||||
|
# Builds a full contents string by combining description, features, and cleaned details.
|
||||||
|
contents = '\n'.join(data['description'])
|
||||||
|
if contents:
|
||||||
|
contents += '\n'
|
||||||
|
features = '\n'.join(data['features'])
|
||||||
|
if features:
|
||||||
|
contents += features + '\n'
|
||||||
|
self.details = data['details']
|
||||||
|
if self.details:
|
||||||
|
contents += self.scrub_details() + '\n'
|
||||||
|
|
||||||
|
# If content is long enough, trim it to max char limit before processing.
|
||||||
|
if len(contents) > MIN_CHARS:
|
||||||
|
contents = contents[:CEILING_CHARS]
|
||||||
|
|
||||||
|
# Clean and tokenize text, then check token count.
|
||||||
|
text = f"{self.scrub(self.title)}\n{self.scrub(contents)}"
|
||||||
|
tokens = self.tokenizer.encode(text, add_special_tokens=False)
|
||||||
|
|
||||||
|
if len(tokens) > MIN_TOKENS:
|
||||||
|
# Truncate tokens, decode them back and create the training prompt
|
||||||
|
tokens = tokens[:MAX_TOKENS]
|
||||||
|
text = self.tokenizer.decode(tokens)
|
||||||
|
self.make_prompt(text)
|
||||||
|
|
||||||
|
# Mark the item as valid and ready to be used in training
|
||||||
|
self.include = True # Only items with MIN_TOKENS <= tokens <= MAX_TOKENS are kept
|
||||||
|
|
||||||
|
|
||||||
|
def make_prompt(self, text):
|
||||||
|
"""
|
||||||
|
Builds the training prompt using the question, text, and price. Then counts the tokens.
|
||||||
|
"""
|
||||||
|
self.prompt = f"{self.QUESTION}\n\n{text}\n\n"
|
||||||
|
self.prompt += f"{self.PRICE_LABEL }{str(round(self.price))}.00"
|
||||||
|
self.token_count = len(self.tokenizer.encode(self.prompt, add_special_tokens=False))
|
||||||
|
|
||||||
|
def test_prompt(self):
|
||||||
|
"""
|
||||||
|
Returns the prompt without the actual price, useful for testing/inference.
|
||||||
|
"""
|
||||||
|
return self.prompt.split(self.PRICE_LABEL )[0] + self.PRICE_LABEL
|
||||||
|
|
||||||
|
def __repr__(self):
|
||||||
|
"""
|
||||||
|
Defines how the Item object looks when printed — it shows the title and price.
|
||||||
|
"""
|
||||||
|
return f"<{self.title} = ${self.price}>"
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
106
week6/community-contributions/helpers/loaders.py
Normal file
106
week6/community-contributions/helpers/loaders.py
Normal file
@@ -0,0 +1,106 @@
|
|||||||
|
from datetime import datetime # Measure how long loading takes
|
||||||
|
from tqdm import tqdm # Shows a progress bar while processing data
|
||||||
|
from datasets import load_dataset # Load a dataset from Hugging Face Hub
|
||||||
|
from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor # For parallel processing (speed)
|
||||||
|
from items import Item
|
||||||
|
|
||||||
|
CHUNK_SIZE = 1000 # Process the dataset in chunks of 1000 datapoints at a time (for efficiency)
|
||||||
|
MIN_PRICE = 0.5
|
||||||
|
MAX_PRICE = 999.49
|
||||||
|
WORKER = 4 # Set the number of workers here
|
||||||
|
|
||||||
|
class ItemLoader:
|
||||||
|
|
||||||
|
def __init__(self, name):
|
||||||
|
"""
|
||||||
|
Initialize the loader with a dataset name.
|
||||||
|
"""
|
||||||
|
self.name = name # Store the category name
|
||||||
|
self.dataset = None #Placeholder for the dataset (we load it later in load())
|
||||||
|
|
||||||
|
def process_chunk(self, chunk):
|
||||||
|
"""
|
||||||
|
Convert a chunk of datapoints into valid Item objects.
|
||||||
|
"""
|
||||||
|
batch = [] # Initialize the list to hold valid items
|
||||||
|
|
||||||
|
# Loop through each datapoint in the chunk
|
||||||
|
for datapoint in chunk:
|
||||||
|
try:
|
||||||
|
# Extract price from datapoint
|
||||||
|
price_str = datapoint['price']
|
||||||
|
if price_str:
|
||||||
|
price = float(price_str)
|
||||||
|
|
||||||
|
# Check if price is within valid range
|
||||||
|
if MIN_PRICE <= price <= MAX_PRICE:
|
||||||
|
item = Item(datapoint, price)
|
||||||
|
|
||||||
|
# Keep only valid items
|
||||||
|
if item.include:
|
||||||
|
batch.append(item)
|
||||||
|
except ValueError:
|
||||||
|
continue # Skip datapoints with invalid price format
|
||||||
|
return batch # Return the list of valid items
|
||||||
|
|
||||||
|
|
||||||
|
def load_in_parallel(self, workers):
|
||||||
|
"""
|
||||||
|
Split the dataset into chunks and process them in parallel.
|
||||||
|
"""
|
||||||
|
results = []
|
||||||
|
size = len(self.dataset)
|
||||||
|
chunk_count = (size // CHUNK_SIZE) + 1
|
||||||
|
|
||||||
|
# Build chunks directly here (no separate function)
|
||||||
|
chunks = [
|
||||||
|
self.dataset.select(range(i, min(i + CHUNK_SIZE, size)))
|
||||||
|
for i in range(0, size, CHUNK_SIZE)
|
||||||
|
]
|
||||||
|
|
||||||
|
# Process chunks in parallel using multiple CPU cores
|
||||||
|
with ProcessPoolExecutor(max_workers=workers) as pool:
|
||||||
|
for batch in tqdm(pool.map(self.process_chunk, chunks), total=chunk_count):
|
||||||
|
results.extend(batch)
|
||||||
|
|
||||||
|
# Add the category name to each result
|
||||||
|
for result in results:
|
||||||
|
result.category = self.name
|
||||||
|
|
||||||
|
return results
|
||||||
|
|
||||||
|
|
||||||
|
def load(self, workers=WORKER):
|
||||||
|
"""
|
||||||
|
Load and process the dataset, returning valid items.
|
||||||
|
"""
|
||||||
|
# Record start time
|
||||||
|
start = datetime.now()
|
||||||
|
|
||||||
|
# Print loading message
|
||||||
|
print(f"Loading dataset {self.name}", flush=True)
|
||||||
|
|
||||||
|
# Load dataset from Hugging Face (based on category name)
|
||||||
|
self.dataset = load_dataset(
|
||||||
|
"McAuley-Lab/Amazon-Reviews-2023",
|
||||||
|
f"raw_meta_{self.name}",
|
||||||
|
split="full",
|
||||||
|
trust_remote_code=True
|
||||||
|
)
|
||||||
|
|
||||||
|
# Process the dataset in parallel and collect valid items
|
||||||
|
results = self.load_in_parallel(workers)
|
||||||
|
|
||||||
|
# Record end time and print summary
|
||||||
|
finish = datetime.now()
|
||||||
|
print(
|
||||||
|
f"Completed {self.name} with {len(results):,} datapoints in {(finish-start).total_seconds()/60:.1f} mins",
|
||||||
|
flush=True
|
||||||
|
)
|
||||||
|
|
||||||
|
# Return the list of valid items
|
||||||
|
return results
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
84
week6/community-contributions/helpers/testing.py
Normal file
84
week6/community-contributions/helpers/testing.py
Normal file
@@ -0,0 +1,84 @@
|
|||||||
|
import math
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
|
GREEN = "\033[92m"
|
||||||
|
YELLOW = "\033[93m"
|
||||||
|
RED = "\033[91m"
|
||||||
|
RESET = "\033[0m"
|
||||||
|
COLOR_MAP = {"red":RED, "orange": YELLOW, "green": GREEN}
|
||||||
|
|
||||||
|
class Tester:
|
||||||
|
|
||||||
|
def __init__(self, predictor, data, title=None, size=250):
|
||||||
|
self.predictor = predictor
|
||||||
|
self.data = data
|
||||||
|
self.title = title or predictor.__name__.replace("_", " ").title()
|
||||||
|
self.size = size
|
||||||
|
self.guesses = []
|
||||||
|
self.truths = []
|
||||||
|
self.errors = []
|
||||||
|
self.sles = []
|
||||||
|
self.colors = []
|
||||||
|
|
||||||
|
def color_for(self, error, truth):
|
||||||
|
if error<40 or error/truth < 0.2:
|
||||||
|
return "green"
|
||||||
|
elif error<80 or error/truth < 0.4:
|
||||||
|
return "orange"
|
||||||
|
else:
|
||||||
|
return "red"
|
||||||
|
|
||||||
|
def run_datapoint(self, i):
|
||||||
|
datapoint = self.data[i]
|
||||||
|
guess = self.predictor(datapoint)
|
||||||
|
truth = datapoint["price"]
|
||||||
|
error = abs(guess - truth)
|
||||||
|
log_error = math.log(truth+1) - math.log(guess+1)
|
||||||
|
sle = log_error ** 2
|
||||||
|
color = self.color_for(error, truth)
|
||||||
|
title = datapoint["text"][:40] + "..." if len(datapoint["text"]) > 40 else datapoint["text"]
|
||||||
|
self.guesses.append(guess)
|
||||||
|
self.truths.append(truth)
|
||||||
|
self.errors.append(error)
|
||||||
|
self.sles.append(sle)
|
||||||
|
self.colors.append(color)
|
||||||
|
# print(f"{COLOR_MAP[color]}{i+1}: Guess: ${guess:,.2f} Truth: ${truth:,.2f} Error: ${error:,.2f} SLE: {sle:,.2f} Item: {title}{RESET}")
|
||||||
|
|
||||||
|
def chart(self, title):
|
||||||
|
max_error = max(self.errors)
|
||||||
|
plt.figure(figsize=(15, 6))
|
||||||
|
max_val = max(max(self.truths), max(self.guesses))
|
||||||
|
plt.plot([0, max_val], [0, max_val], color='deepskyblue', lw=2, alpha=0.6)
|
||||||
|
plt.scatter(self.truths, self.guesses, s=3, c=self.colors)
|
||||||
|
plt.xlabel('Ground Truth')
|
||||||
|
plt.ylabel('Model Estimate')
|
||||||
|
plt.xlim(0, max_val)
|
||||||
|
plt.ylim(0, max_val)
|
||||||
|
plt.title(title)
|
||||||
|
|
||||||
|
# Add color legend
|
||||||
|
from matplotlib.lines import Line2D
|
||||||
|
legend_elements = [
|
||||||
|
Line2D([0], [0], marker='o', color='w', label='Accurate (green)', markerfacecolor='green', markersize=8),
|
||||||
|
Line2D([0], [0], marker='o', color='w', label='Medium error (orange)', markerfacecolor='orange', markersize=8),
|
||||||
|
Line2D([0], [0], marker='o', color='w', label='High error (red)', markerfacecolor='red', markersize=8)
|
||||||
|
]
|
||||||
|
plt.legend(handles=legend_elements, loc='upper left')
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
def report(self):
|
||||||
|
average_error = sum(self.errors) / self.size
|
||||||
|
rmsle = math.sqrt(sum(self.sles) / self.size)
|
||||||
|
hits = sum(1 for color in self.colors if color=="green")
|
||||||
|
title = f"{self.title} Error=${average_error:,.2f} RMSLE={rmsle:,.2f} Hits={hits/self.size*100:.1f}%"
|
||||||
|
self.chart(title)
|
||||||
|
|
||||||
|
def run(self):
|
||||||
|
self.error = 0
|
||||||
|
for i in range(self.size):
|
||||||
|
self.run_datapoint(i)
|
||||||
|
self.report()
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def test(cls, function, data):
|
||||||
|
cls(function, data).run()
|
||||||
Reference in New Issue
Block a user