Merge pull request #569 from Rwothoromo/community-contributions-branch

Rwothoromo - Community contributions branch
This commit is contained in:
Ed Donner
2025-08-09 08:01:54 -04:00
committed by GitHub
3 changed files with 1201 additions and 0 deletions

View File

@@ -0,0 +1,484 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "d15d8294-3328-4e07-ad16-8a03e9bbfdb9",
"metadata": {},
"source": [
"# How to run a cell\n",
"\n",
"Press `Shift` + `Return` to run a Cell.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4e2a9393-7767-488e-a8bf-27c12dca35bd",
"metadata": {},
"outputs": [],
"source": [
"# imports\n",
"\n",
"import os, requests, time\n",
"from dotenv import load_dotenv\n",
"from bs4 import BeautifulSoup\n",
"from IPython.display import Markdown, display\n",
"from openai import OpenAI\n",
"\n",
"# Load environment variables in a file called .env\n",
"load_dotenv(override=True)\n",
"api_key = os.getenv('OPENAI_API_KEY')\n",
"\n",
"# Check the key\n",
"if not api_key:\n",
" print(\"No API key was found\")\n",
"else:\n",
" print(\"API key found and looks good so far!\")\n",
"\n",
"# Instantiate an OpenAI object\n",
"openai = OpenAI()"
]
},
{
"cell_type": "markdown",
"id": "442fc84b-0815-4f40-99ab-d9a5da6bda91",
"metadata": {},
"source": [
"# Make a test call to a Frontier model (Open AI) to get started:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a58394bf-1e45-46af-9bfd-01e24da6f49a",
"metadata": {},
"outputs": [],
"source": [
"message = \"Hello, GPT! Holla back to this space probe!\"\n",
"response = openai.chat.completions.create(model=\"gpt-4o-mini\", messages=[{\"role\":\"user\", \"content\":message}])\n",
"print(response.choices[0].message.content)"
]
},
{
"cell_type": "markdown",
"id": "2aa190e5-cb31-456a-96cc-db109919cd78",
"metadata": {},
"source": [
"## Summarization project"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c5e793b2-6775-426a-a139-4848291d0463",
"metadata": {},
"outputs": [],
"source": [
"# Some websites need proper headers when fetching them:\n",
"headers = {\n",
" \"User-Agent\": \"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/117.0.0.0 Safari/537.36\"\n",
"}\n",
"\n",
"\"\"\"\n",
"A class to represent a Webpage\n",
"\"\"\"\n",
"class Website:\n",
"\n",
" def __init__(self, url):\n",
" \"\"\"\n",
" Create this Website object from the given url using the BeautifulSoup library\n",
" \"\"\"\n",
" self.url = url\n",
" response = requests.get(url, headers=headers)\n",
" soup = BeautifulSoup(response.content, 'html.parser')\n",
" self.title = soup.title.string if soup.title else \"No title found\"\n",
" for irrelevant in soup.body([\"script\", \"style\", \"img\", \"input\"]):\n",
" irrelevant.decompose()\n",
" self.text = soup.body.get_text(separator=\"\\n\", strip=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2ef960cf-6dc2-4cda-afb3-b38be12f4c97",
"metadata": {},
"outputs": [],
"source": [
"# Summarize website content\n",
"website = Website(\"https://rwothoromo.wordpress.com/\")\n",
"# print(eli.title, \"\\n\", eli.text)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "abdb8417-c5dc-44bc-9bee-2e059d162699",
"metadata": {},
"outputs": [],
"source": [
"# A system prompt tells a model like GPT4o what task they are performing and what tone they should use\n",
"# A user prompt is the conversation starter that they should reply to\n",
"\n",
"system_prompt = \"You are an assistant that analyzes the contents of a given website, \\\n",
"and returns a brief summary, ignoring text that might be navigation-related. \\\n",
"Respond in markdown.\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f0275b1b-7cfe-4f9d-abfa-7650d378da0c",
"metadata": {},
"outputs": [],
"source": [
"# A function that writes a User Prompt that asks for summaries of websites:\n",
"\n",
"def user_prompt_for(website):\n",
" user_prompt = f\"You are looking at a website titled {website.title}\"\n",
" user_prompt += \"\\nThe contents of this website is as follows; \\\n",
"please provide a short summary of this website in markdown. \\\n",
"If it includes news or announcements, then summarize these too.\\n\\n\"\n",
" user_prompt += website.text\n",
" return user_prompt"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "26448ec4-5c00-4204-baec-7df91d11ff2e",
"metadata": {},
"outputs": [],
"source": [
"print(user_prompt_for(website))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f25dcd35-0cd0-4235-9f64-ac37ed9eaaa5",
"metadata": {},
"outputs": [],
"source": [
"# The API from OpenAI expects to receive messages in a particular structure. Many of the other APIs share this structure:\n",
"messages = [\n",
" {\"role\": \"system\", \"content\": \"You are a snarky assistant\"}, # system message\n",
" {\"role\": \"user\", \"content\": \"What is 2 + 2?\"}, # user message\n",
"]\n",
"response = openai.chat.completions.create(model=\"gpt-4o-mini\", messages=messages)\n",
"print(response.choices[0].message.content)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0134dfa4-8299-48b5-b444-f2a8c3403c88",
"metadata": {},
"outputs": [],
"source": [
"# To build useful messages for GPT-4o-mini\n",
"\n",
"def messages_for(website):\n",
" return [\n",
" {\"role\": \"system\", \"content\": system_prompt},\n",
" {\"role\": \"user\", \"content\": user_prompt_for(website)}\n",
" ]\n",
"\n",
"messages_for(website)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "905b9919-aba7-45b5-ae65-81b3d1d78e34",
"metadata": {},
"outputs": [],
"source": [
"# Call the OpenAI API.\n",
"\n",
"url = \"https://rwothoromo.wordpress.com/\"\n",
"website = Website(url)\n",
"\n",
"def summarize(website):\n",
" response = openai.chat.completions.create(\n",
" model = \"gpt-4o-mini\",\n",
" messages = messages_for(website)\n",
" )\n",
" return response.choices[0].message.content"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "05e38d41-dfa4-4b20-9c96-c46ea75d9fb5",
"metadata": {},
"outputs": [],
"source": [
"summarize(website)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3d926d59-450e-4609-92ba-2d6f244f1342",
"metadata": {},
"outputs": [],
"source": [
"# A function to display this nicely in the Jupyter output, using markdown\n",
"\n",
"summary = summarize(website)\n",
"def display_summary(summary):\n",
" display(Markdown(summary))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3018853a-445f-41ff-9560-d925d1774b2f",
"metadata": {},
"outputs": [],
"source": [
"display_summary(summary)\n",
"# display_summary(summarize(Website(\"https://edwarddonner.com\")))\n",
"# display_summary(summarize(Website(\"https://cnn.com\")))\n",
"# display_summary(summarize(Website(\"https://anthropic.com\")))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5a904323-acd9-4c8e-9a17-70df76184590",
"metadata": {},
"outputs": [],
"source": [
"# Websites protected with CloudFront (and similar) or with JavaScript need a Selenium or Playwright implementation. They return 403\n",
"\n",
"# display_summary(summarize(Website(\"https://openai.com\")))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "139ad985",
"metadata": {},
"outputs": [],
"source": [
"# To generate the above summary, use selenium\n",
"\n",
"from selenium import webdriver\n",
"from selenium.webdriver.chrome.service import Service\n",
"from selenium.webdriver.common.by import By\n",
"from selenium.webdriver.support.ui import WebDriverWait\n",
"from selenium.webdriver.support import expected_conditions as EC\n",
"\n",
"class WebsiteSelenium:\n",
" def __init__(self, url):\n",
" self.url = url\n",
" self.title = \"No title found\"\n",
" self.text = \"\"\n",
"\n",
" # Configure Chrome options (headless mode is recommended for server environments)\n",
" chrome_options = webdriver.ChromeOptions()\n",
" chrome_options.add_argument(\"--headless\") # Run Chrome in headless mode (without a UI)\n",
" chrome_options.add_argument(\"--no-sandbox\") # Required for running as root in some environments\n",
" chrome_options.add_argument(\"--disable-dev-shm-usage\") # Overcomes limited resource problems\n",
"\n",
" # Path to your WebDriver executable (e.g., chromedriver)\n",
" # Make sure to replace this with the actual path to your chromedriver\n",
" # You might need to download it from: https://chromedriver.chromium.org/downloads and place it in a drivers dir\n",
" service = Service('./drivers/chromedriver-mac-x64/chromedriver')\n",
"\n",
" driver = None\n",
" try:\n",
" driver = webdriver.Chrome(service=service, options=chrome_options)\n",
" driver.get(url)\n",
"\n",
" # Wait for the page to load and dynamic content to render\n",
" # You might need to adjust the wait condition based on the website\n",
" WebDriverWait(driver, 10).until(\n",
" EC.presence_of_element_located((By.TAG_NAME, \"body\"))\n",
" )\n",
" time.sleep(3) # Give more time for JavaScript to execute\n",
"\n",
" # Get the page source after dynamic content has loaded\n",
" soup = BeautifulSoup(driver.page_source, 'html.parser')\n",
"\n",
" self.title = soup.title.string if soup.title else \"No title found\"\n",
" for irrelevant in soup.body([\"script\", \"style\", \"img\", \"input\"]):\n",
" irrelevant.decompose()\n",
" self.text = soup.body.get_text(separator=\"\\n\", strip=True)\n",
"\n",
" except Exception as e:\n",
" print(f\"Error accessing {url} with Selenium: {e}\")\n",
" finally:\n",
" if driver:\n",
" driver.quit() # Always close the browser\n",
"\n",
"display_summary(summarize(WebsiteSelenium(\"https://openai.com\")))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "130d4572",
"metadata": {},
"outputs": [],
"source": [
"import asyncio\n",
"from playwright.async_api import async_playwright\n",
"import nest_asyncio\n",
"\n",
"# Apply nest_asyncio to allow asyncio.run in Jupyter\n",
"nest_asyncio.apply()\n",
"\n",
"class WebsitePlaywright:\n",
" def __init__(self, url):\n",
" self.url = url\n",
" self.title = \"No title found\"\n",
" self.text = \"\"\n",
" asyncio.run(self._fetch_content())\n",
"\n",
" async def _fetch_content(self):\n",
" async with async_playwright() as p:\n",
" browser = None\n",
" try:\n",
" browser = await p.chromium.launch(headless=True)\n",
" page = await browser.new_page()\n",
"\n",
" # Increase timeout for navigation and other operations\n",
" await page.goto(self.url, timeout=60000) # Wait up to 60 seconds for navigation\n",
" print(f\"Accessing {self.url} with Playwright - goto()\")\n",
"\n",
" # You might need to adjust or add more specific waits\n",
" await page.wait_for_load_state('domcontentloaded', timeout=60000) # Wait for basic HTML\n",
" # await page.wait_for_load_state('networkidle', timeout=60000) # Wait for network activity to settle\n",
" await page.wait_for_selector('div.duration-short', timeout=60000) # instead of networkidle\n",
" await page.wait_for_selector('body', timeout=60000) # Wait for the body to be present\n",
" await asyncio.sleep(5) # Give a bit more time for final rendering\n",
"\n",
" content = await page.content()\n",
" soup = BeautifulSoup(content, 'html.parser')\n",
"\n",
" self.title = soup.title.string if soup.title else \"No title found\"\n",
" for irrelevant in soup.body([\"script\", \"style\", \"img\", \"input\"]):\n",
" irrelevant.decompose()\n",
" self.text = soup.body.get_text(separator=\"\\n\", strip=True)\n",
" print(f\"Accessed {self.url} with Playwright\")\n",
"\n",
" except Exception as e:\n",
" print(f\"Error accessing {self.url} with Playwright: {e}\")\n",
" finally:\n",
" if browser:\n",
" await browser.close()\n",
"\n",
"display_summary(summarize(WebsitePlaywright(\"https://openai.com/\")))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "00743dac-0e70-45b7-879a-d7293a6f68a6",
"metadata": {},
"outputs": [],
"source": [
"# Step 1: Create your prompts\n",
"\n",
"system_prompt = \"You are a professional assistant. Review this conversation and provide a comprehensive summary. Also, suggest how much better the converation could have gone:\"\n",
"user_prompt = \"\"\"\n",
"\n",
"Dear Email Contact,\n",
"\n",
"I hope this message finds you well.\n",
"I would like to share that I have proficiency in front-end design tools, particularly Figma, react and Angular. At this stage, I am keenly interested in finding opportunities to apply these skills professionally.\n",
"\n",
"If you are aware of any companies, projects, or platforms seeking enterprise in front-end design, I would be grateful for any advice or recommendations you might kindly provide.\n",
"\n",
"Thank you very much for your time and consideration.\n",
"\n",
"Hello Job Seeker,\n",
"\n",
"I hope you are doing well.\n",
"\n",
"The last role (3 months gig) I saw was looking for a junior PHP Developer. Does your CV include that?\n",
"\n",
"Hello Email Contact,\n",
"Thank you for your feedback.\n",
"Yes my CV has PHP as one of my skill set. Can I share it with you?\n",
"\n",
"Email Contact: They said \"It's late. Interviews were on Monday\"\n",
"\n",
"Hello Email Contact\n",
"\n",
"Thanks for the update. When you hear of any opportunity please let me know.\n",
"\n",
"Email Contact: For now, check out https://refactory.academy/courses/refactory-apprenticeship/\n",
"\"\"\"\n",
"\n",
"# Step 2: Make the messages list\n",
"\n",
"messages = [\n",
" {\"role\": \"system\", \"content\": system_prompt},\n",
" {\"role\": \"user\", \"content\": user_prompt},\n",
"]\n",
"\n",
"# Step 3: Call OpenAI\n",
"\n",
"response = openai.chat.completions.create(\n",
" model = \"gpt-4o-mini\",\n",
" messages = messages\n",
")\n",
"\n",
"# Step 4: print the result\n",
"\n",
"print(response.choices[0].message.content)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4b583226-9b13-4990-863a-86517a5ccfec",
"metadata": {},
"outputs": [],
"source": [
"# To perform summaries using a model running locally\n",
"import ollama\n",
"\n",
"# OLLAMA_API = \"http://localhost:11434/api/chat\"\n",
"# HEADERS = {\"Content-Type\": \"application/json\"}\n",
"MODEL = \"llama3.2\"\n",
"\n",
"def summarize_with_local_model(url):\n",
" website = Website(url)\n",
" messages = messages_for(website)\n",
" response = ollama.chat(\n",
" model=MODEL,\n",
" messages=messages,\n",
" stream=False # just get the results, don't stream them\n",
" )\n",
" return response['message']['content']\n",
"\n",
"display(Markdown(summarize_with_local_model(\"https://rwothoromo.wordpress.com/\")))"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -0,0 +1,477 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "a98030af-fcd1-4d63-a36e-38ba053498fa",
"metadata": {},
"source": [
"# A full business solution\n",
"\n",
"## Now we will take our project from Day 1 to the next level\n",
"\n",
"### BUSINESS CHALLENGE:\n",
"\n",
"Create a product that builds a Brochure for a company to be used for prospective clients, investors and potential recruits.\n",
"\n",
"We will be provided a company name and their primary website.\n",
"\n",
"See the end of this notebook for examples of real-world business applications.\n",
"\n",
"And remember: I'm always available if you have problems or ideas! Please do reach out."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d5b08506-dc8b-4443-9201-5f1848161363",
"metadata": {},
"outputs": [],
"source": [
"# imports\n",
"# If these fail, please check you're running from an 'activated' environment with (llms) in the command prompt\n",
"\n",
"import os\n",
"import requests\n",
"import json\n",
"from typing import List\n",
"from dotenv import load_dotenv\n",
"from bs4 import BeautifulSoup\n",
"from IPython.display import Markdown, display, update_display\n",
"from openai import OpenAI"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "fc5d8880-f2ee-4c06-af16-ecbc0262af61",
"metadata": {},
"outputs": [],
"source": [
"# Initialize and constants\n",
"\n",
"load_dotenv(override=True)\n",
"api_key = os.getenv('OPENAI_API_KEY')\n",
"\n",
"if api_key and api_key.startswith('sk-proj-') and len(api_key)>10:\n",
" print(\"API key looks good so far\")\n",
"else:\n",
" print(\"There might be a problem with your API key? Please visit the troubleshooting notebook!\")\n",
" \n",
"MODEL = 'gpt-4o-mini'\n",
"openai = OpenAI()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "106dd65e-90af-4ca8-86b6-23a41840645b",
"metadata": {},
"outputs": [],
"source": [
"# A class to represent a Webpage\n",
"\n",
"# Some websites need you to use proper headers when fetching them:\n",
"headers = {\n",
" \"User-Agent\": \"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/117.0.0.0 Safari/537.36\"\n",
"}\n",
"\n",
"class Website:\n",
" \"\"\"\n",
" A utility class to represent a Website that we have scraped, now with links\n",
" \"\"\"\n",
"\n",
" def __init__(self, url):\n",
" self.url = url\n",
" response = requests.get(url, headers=headers)\n",
" self.body = response.content\n",
" soup = BeautifulSoup(self.body, 'html.parser')\n",
" self.title = soup.title.string if soup.title else \"No title found\"\n",
" if soup.body:\n",
" for irrelevant in soup.body([\"script\", \"style\", \"img\", \"input\"]):\n",
" irrelevant.decompose()\n",
" self.text = soup.body.get_text(separator=\"\\n\", strip=True)\n",
" else:\n",
" self.text = \"\"\n",
" links = [link.get('href') for link in soup.find_all('a')]\n",
" self.links = [link for link in links if link]\n",
"\n",
" def get_contents(self):\n",
" return f\"Webpage Title:\\n{self.title}\\nWebpage Contents:\\n{self.text}\\n\\n\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e30d8128-933b-44cc-81c8-ab4c9d86589a",
"metadata": {},
"outputs": [],
"source": [
"ed = Website(\"https://edwarddonner.com\")\n",
"ed.links"
]
},
{
"cell_type": "markdown",
"id": "1771af9c-717a-4fca-bbbe-8a95893312c3",
"metadata": {},
"source": [
"## First step: Have GPT-4o-mini figure out which links are relevant\n",
"\n",
"### Use a call to gpt-4o-mini to read the links on a webpage, and respond in structured JSON. \n",
"It should decide which links are relevant, and replace relative links such as \"/about\" with \"https://company.com/about\". \n",
"We will use \"one shot prompting\" in which we provide an example of how it should respond in the prompt.\n",
"\n",
"This is an excellent use case for an LLM, because it requires nuanced understanding. Imagine trying to code this without LLMs by parsing and analyzing the webpage - it would be very hard!\n",
"\n",
"Sidenote: there is a more advanced technique called \"Structured Outputs\" in which we require the model to respond according to a spec. We cover this technique in Week 8 during our autonomous Agentic AI project."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6957b079-0d96-45f7-a26a-3487510e9b35",
"metadata": {},
"outputs": [],
"source": [
"link_system_prompt = \"You are provided with a list of links found on a webpage. \\\n",
"You are able to decide which of the links would be most relevant to include in a brochure about the company, \\\n",
"such as links to an About page, or a Company page, or Careers/Jobs pages.\\n\"\n",
"link_system_prompt += \"You should respond in JSON as in this example:\"\n",
"link_system_prompt += \"\"\"\n",
"{\n",
" \"links\": [\n",
" {\"type\": \"about page\", \"url\": \"https://full.url/goes/here/about\"},\n",
" {\"type\": \"careers page\", \"url\": \"https://another.full.url/careers\"}\n",
" ]\n",
"}\n",
"\"\"\"\n",
"link_system_prompt += \"And this example:\"\n",
"link_system_prompt += \"\"\"\n",
"{\n",
" \"links\": [\n",
" {\"type\": \"for-you page\", \"url\": \"https://full.url/goes/here/services\"},\n",
" {\"type\": \"speak-to-a-human page\", \"url\": \"https://another.full.url/contact-us\"}\n",
" ]\n",
"}\n",
"\"\"\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b97e4068-97ed-4120-beae-c42105e4d59a",
"metadata": {},
"outputs": [],
"source": [
"print(link_system_prompt)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8e1f601b-2eaf-499d-b6b8-c99050c9d6b3",
"metadata": {},
"outputs": [],
"source": [
"def get_links_user_prompt(website):\n",
" user_prompt = f\"Here is the list of links on the website of {website.url} - \"\n",
" user_prompt += \"please decide which of these are relevant web links for a brochure about the company, respond with the full https URL in JSON format. \\\n",
"Do not include Terms of Service, Privacy, email links.\\n\"\n",
" user_prompt += \"Links (some might be relative links):\\n\"\n",
" user_prompt += \"\\n\".join(website.links)\n",
" return user_prompt"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6bcbfa78-6395-4685-b92c-22d592050fd7",
"metadata": {},
"outputs": [],
"source": [
"print(get_links_user_prompt(ed))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a29aca19-ca13-471c-a4b4-5abbfa813f69",
"metadata": {},
"outputs": [],
"source": [
"def get_links(url):\n",
" website = Website(url)\n",
" response = openai.chat.completions.create(\n",
" model=MODEL,\n",
" messages=[\n",
" {\"role\": \"system\", \"content\": link_system_prompt},\n",
" {\"role\": \"user\", \"content\": get_links_user_prompt(website)}\n",
" ],\n",
" response_format={\"type\": \"json_object\"}\n",
" )\n",
" result = response.choices[0].message.content\n",
" return json.loads(result)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "74a827a0-2782-4ae5-b210-4a242a8b4cc2",
"metadata": {},
"outputs": [],
"source": [
"# Anthropic has made their site harder to scrape, so I'm using HuggingFace..\n",
"\n",
"# anthropic = Website(\"https://anthropic.com\")\n",
"# anthropic.links\n",
"# get_links(\"https://anthropic.com\")\n",
"huggingface = Website(\"https://huggingface.co\")\n",
"huggingface.links"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d3d583e2-dcc4-40cc-9b28-1e8dbf402924",
"metadata": {},
"outputs": [],
"source": [
"get_links(\"https://huggingface.co\")"
]
},
{
"cell_type": "markdown",
"id": "0d74128e-dfb6-47ec-9549-288b621c838c",
"metadata": {},
"source": [
"## Second step: make the brochure!\n",
"\n",
"Assemble all the details into another prompt to GPT4-o"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "85a5b6e2-e7ef-44a9-bc7f-59ede71037b5",
"metadata": {},
"outputs": [],
"source": [
"def get_all_details(url):\n",
" result = \"Landing page:\\n\"\n",
" result += Website(url).get_contents()\n",
" links = get_links(url)\n",
" print(\"Found links:\", links)\n",
" for link in links[\"links\"]:\n",
" result += f\"\\n\\n{link['type']}\\n\"\n",
" result += Website(link[\"url\"]).get_contents()\n",
" return result"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5099bd14-076d-4745-baf3-dac08d8e5ab2",
"metadata": {},
"outputs": [],
"source": [
"print(get_all_details(\"https://huggingface.co\"))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9b863a55-f86c-4e3f-8a79-94e24c1a8cf2",
"metadata": {},
"outputs": [],
"source": [
"# system_prompt = \"You are an assistant that analyzes the contents of several relevant pages from a company website \\\n",
"# and creates a short brochure about the company for prospective customers, investors and recruits. Respond in markdown.\\\n",
"# Include details of company culture, customers and careers/jobs if you have the information.\"\n",
"\n",
"# Or uncomment the lines below for a more humorous brochure - this demonstrates how easy it is to incorporate 'tone':\n",
"\n",
"system_prompt = \"You are an assistant that analyzes the contents of several relevant pages from a company website \\\n",
"and creates a short humorous, entertaining, jokey brochure about the company for prospective customers, investors and recruits. Respond in markdown.\\\n",
"Include details of company culture, customers and careers/jobs if you have the information.\"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6ab83d92-d36b-4ce0-8bcc-5bb4c2f8ff23",
"metadata": {},
"outputs": [],
"source": [
"def get_brochure_user_prompt(company_name, url):\n",
" user_prompt = f\"You are looking at a company called: {company_name}\\n\"\n",
" user_prompt += f\"Here are the contents of its landing page and other relevant pages; use this information to build a short brochure of the company in markdown.\\n\"\n",
" user_prompt += f\"Keep the details brief or concise, factoring in that they would be printed on a simple hand-out flyer.\\n\"\n",
" user_prompt += get_all_details(url)\n",
" user_prompt = user_prompt[:5_000] # Truncate if more than 5,000 characters\n",
" return user_prompt"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "cd909e0b-1312-4ce2-a553-821e795d7572",
"metadata": {},
"outputs": [],
"source": [
"get_brochure_user_prompt(\"HuggingFace\", \"https://huggingface.co\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e44de579-4a1a-4e6a-a510-20ea3e4b8d46",
"metadata": {},
"outputs": [],
"source": [
"def create_brochure(company_name, url):\n",
" response = openai.chat.completions.create(\n",
" model=MODEL,\n",
" messages=[\n",
" {\"role\": \"system\", \"content\": system_prompt},\n",
" {\"role\": \"user\", \"content\": get_brochure_user_prompt(company_name, url)}\n",
" ],\n",
" )\n",
" result = response.choices[0].message.content\n",
" # display(Markdown(result))\n",
" # print(result)\n",
" return result"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0029e063-0c07-4712-82d9-536ec3579e80",
"metadata": {},
"outputs": [],
"source": [
"def translate_brochure(brochure, language):\n",
" system_prompt_for_language = \"You're an expert in \" + language + \". Translate the brochure!\"\n",
" response = openai.chat.completions.create(\n",
" model=MODEL,\n",
" messages=[\n",
" {\"role\": \"system\", \"content\": system_prompt_for_language},\n",
" {\"role\": \"user\", \"content\": brochure}\n",
" ],\n",
" )\n",
" result = response.choices[0].message.content\n",
" display(Markdown(result))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e093444a-9407-42ae-924a-145730591a39",
"metadata": {},
"outputs": [],
"source": [
"create_brochure(\"HuggingFace\", \"https://huggingface.co\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f8371bf5-c4c0-4e52-9a2a-066d994b0510",
"metadata": {},
"outputs": [],
"source": [
"brochure = create_brochure(\"Paint and Sip Uganda\", \"https://paintandsipuganda.com/\")\n",
"# translate_brochure(brochure, \"Spanish\")\n",
"translate_brochure(brochure, \"Swahili\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "34e03db6-61d0-4fc5-bf66-4f679b9befde",
"metadata": {},
"outputs": [],
"source": [
"create_brochure(\"Wabeh\", \"https://wabeh.com/\")"
]
},
{
"cell_type": "markdown",
"id": "61eaaab7-0b47-4b29-82d4-75d474ad8d18",
"metadata": {},
"source": [
"## Finally - a minor improvement\n",
"\n",
"With a small adjustment, we can change this so that the results stream back from OpenAI,\n",
"with the familiar typewriter animation"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "51db0e49-f261-4137-aabe-92dd601f7725",
"metadata": {},
"outputs": [],
"source": [
"def stream_brochure(company_name, url):\n",
" stream = openai.chat.completions.create(\n",
" model=MODEL,\n",
" messages=[\n",
" {\"role\": \"system\", \"content\": system_prompt},\n",
" {\"role\": \"user\", \"content\": get_brochure_user_prompt(company_name, url)}\n",
" ],\n",
" stream=True\n",
" )\n",
" \n",
" response = \"\"\n",
" display_handle = display(Markdown(\"\"), display_id=True)\n",
" for chunk in stream:\n",
" response += chunk.choices[0].delta.content or ''\n",
" response = response.replace(\"```\",\"\").replace(\"markdown\", \"\")\n",
" update_display(Markdown(response), display_id=display_handle.display_id)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "56bf0ae3-ee9d-4a72-9cd6-edcac67ceb6d",
"metadata": {},
"outputs": [],
"source": [
"stream_brochure(\"HuggingFace\", \"https://huggingface.co\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "fdb3f8d8-a3eb-41c8-b1aa-9f60686a653b",
"metadata": {},
"outputs": [],
"source": [
"# Try changing the system prompt to the humorous version when you make the Brochure for Hugging Face:\n",
"\n",
"stream_brochure(\"HuggingFace\", \"https://huggingface.co\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -0,0 +1,240 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "fe12c203-e6a6-452c-a655-afb8a03a4ff5",
"metadata": {},
"source": [
"# End of week 1 exercise\n",
"\n",
"To demonstrate your familiarity with OpenAI API, and also Ollama, build a tool that takes a technical question, \n",
"and responds with an explanation. This is a tool that you will be able to use yourself during the course!"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c1070317-3ed9-4659-abe3-828943230e03",
"metadata": {},
"outputs": [],
"source": [
"# imports\n",
"\n",
"import re, requests, ollama\n",
"from bs4 import BeautifulSoup\n",
"from IPython.display import Markdown, display, update_display\n",
"from openai import OpenAI"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4a456906-915a-4bfd-bb9d-57e505c5093f",
"metadata": {},
"outputs": [],
"source": [
"# constants\n",
"\n",
"MODEL_GPT = 'gpt-4o-mini'\n",
"MODEL_LLAMA = 'llama3.2'"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a8d7923c-5f28-4c30-8556-342d7c8497c1",
"metadata": {},
"outputs": [],
"source": [
"# set up environment\n",
"\n",
"headers = {\n",
" \"User-Agent\": \"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/117.0.0.0 Safari/537.36\"\n",
"}\n",
"\n",
"class Website:\n",
"\n",
" def __init__(self, url):\n",
" \"\"\"\n",
" Create this Website object from the given url using the BeautifulSoup library\n",
" \"\"\"\n",
" self.url = url\n",
" response = requests.get(url, headers=headers)\n",
" soup = BeautifulSoup(response.content, 'html.parser')\n",
" self.title = soup.title.string if soup.title else \"No title found\"\n",
" for irrelevant in soup.body([\"script\", \"style\", \"img\", \"input\"]):\n",
" irrelevant.decompose()\n",
" self.text = soup.body.get_text(separator=\"\\n\", strip=True)\n",
"\n",
"openai = OpenAI()\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3f0d0137-52b0-47a8-81a8-11a90a010798",
"metadata": {},
"outputs": [],
"source": [
"# here is the question; type over this to ask something new\n",
"\n",
"# question = \"\"\"\n",
"# Please explain what this code does and why:\n",
"# yield from {book.get(\"author\") for book in books if book.get(\"author\")}\n",
"# \"\"\"\n",
"\n",
"# question = \"\"\"\n",
"# Please explain what this code does and why:\n",
"# yield from {book.get(\"author\") for book in books if book.get(\"author\")}\n",
"# Popular dev site https://projecteuler.net/\n",
"# \"\"\"\n",
"\n",
"# question = \"\"\"\n",
"# Who is Blessed Goodteam (https://www.linkedin.com/in/blessed-goodteam-49b3ab30a)? \\\n",
"# How relevant is her work at Paint and Sip Uganda (https://paintandsipuganda.com/). \\\n",
"# What can we learn from her?\n",
"# \"\"\"\n",
"\n",
"question = \"\"\"\n",
"How good at Software Development is Elijah Rwothoromo? \\\n",
"He has a Wordpress site https://rwothoromo.wordpress.com/. \\\n",
"He also has a LinkedIn profile https://www.linkedin.com/in/rwothoromoelaijah/. \\\n",
"What can we learn from him?\n",
"\"\"\"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e14fd3a1-0aca-4794-a0e0-57458e111fc9",
"metadata": {},
"outputs": [],
"source": [
"# Process URLs in the question to improve the prompt\n",
"\n",
"# Extract all URLs from the question string using regular expressions\n",
"urls = re.findall(r'https?://[^\\s)]+', question)\n",
"# print(urls)\n",
"\n",
"if len(urls) > 0:\n",
" \n",
" # Fetch the content for each URL using the Website class\n",
" scraped_content = []\n",
" for url in urls:\n",
" print(f\"Scraping: {url}\")\n",
" try:\n",
" site = Website(url)\n",
" content = f\"Content from {url}:\\n---\\n{site.text}\\n---\\n\" # delimiter ---\n",
" scraped_content.append(content)\n",
" except Exception as e:\n",
" print(f\"Could not scrape {url}: {e}\")\n",
" scraped_content.append(f\"Could not retrieve content from {url}.\\n\")\n",
" \n",
" # Combine all the scraped text into one string\n",
" all_scraped_text = \"\\n\".join(scraped_content)\n",
" \n",
" # Update the question with the scraped content\n",
" updated_question = f\"\"\"\n",
" Based on the following information, please answer the user's original question.\n",
" \n",
" --- TEXT FROM WEBSITES ---\n",
" {all_scraped_text}\n",
" --- END TEXT FROM WEBSITES ---\n",
" \n",
" --- ORIGINAL QUESTION ---\n",
" {question}\n",
" \"\"\"\n",
"else:\n",
" updated_question = question\n",
"\n",
"# print(updated_question)\n",
"\n",
"# system prompt to be more accurate for AI to just analyze the provided text.\n",
"system_prompt = \"You are an expert assistant. \\\n",
"Analyze the user's question and the provided text from relevant websites to synthesize a comprehensive answer in markdown format.\\\n",
"Provide a short summary, ignoring text that might be navigation-related.\"\n",
"\n",
"# Create the messages list with the newly updated prompt\n",
"messages = [\n",
" {\"role\": \"system\", \"content\": system_prompt},\n",
" {\"role\": \"user\", \"content\": updated_question},\n",
"]\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "60ce7000-a4a5-4cce-a261-e75ef45063b4",
"metadata": {},
"outputs": [],
"source": [
"# Get gpt-4o-mini to answer, with streaming\n",
"\n",
"def get_gpt_response(question):\n",
" stream = openai.chat.completions.create(\n",
" model=MODEL_GPT,\n",
" messages=messages,\n",
" stream=True\n",
" )\n",
" \n",
" response = \"\"\n",
" display_handle = display(Markdown(\"\"), display_id=True)\n",
" for chunk in stream:\n",
" response += chunk.choices[0].delta.content or ''\n",
" response = response.replace(\"```\",\"\").replace(\"markdown\", \"\")\n",
" update_display(Markdown(response), display_id=display_handle.display_id)\n",
"\n",
"get_gpt_response(question)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8f7c8ea8-4082-4ad0-8751-3301adcf6538",
"metadata": {},
"outputs": [],
"source": [
"# Get Llama 3.2 to answer\n",
"\n",
"def get_llama_response(question):\n",
" response = ollama.chat(\n",
" model=MODEL_LLAMA,\n",
" messages=messages,\n",
" stream=False # just get the results, don't stream them\n",
" )\n",
" return response['message']['content']\n",
"\n",
"display(Markdown(get_llama_response(question)))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "157d5bb3-bed7-4fbd-9a5d-f2a14aaac869",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}