week1 exercise solution - mathxpert

This commit is contained in:
Ransford Okpoti
2025-10-18 18:59:19 +00:00
parent 80c148e941
commit ddc36ca5f6

View File

@@ -0,0 +1,220 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "fe12c203-e6a6-452c-a655-afb8a03a4ff5",
"metadata": {},
"source": [
"# End of week 1 exercise\n",
"\n",
"## Dynamically pick an LLM provider to let MathXpert answer your math questions."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c1070317-3ed9-4659-abe3-828943230e03",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"from enum import StrEnum\n",
"from getpass import getpass\n",
"\n",
"from dotenv import load_dotenv\n",
"from openai import OpenAI\n",
"import ipywidgets as widgets\n",
"from IPython.display import display, clear_output, Markdown, Latex\n",
"\n",
"load_dotenv()"
]
},
{
"cell_type": "markdown",
"id": "f169118a-645e-44e1-9a98-4f561adfbb08",
"metadata": {},
"source": [
"## Free Cloud Providers\n",
"\n",
"Grab your free API Keys from these generous sites:\n",
"\n",
"- https://openrouter.ai/\n",
"- https://ollama.com/"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4a456906-915a-4bfd-bb9d-57e505c5093f",
"metadata": {},
"outputs": [],
"source": [
"class Provider(StrEnum):\n",
" OLLAMA = 'Ollama'\n",
" OPENROUTER = 'OpenRouter'\n",
"\n",
"models: dict[Provider, str] = {\n",
" Provider.OLLAMA: 'gpt-oss:120b-cloud',\n",
" Provider.OPENROUTER: 'qwen/qwen3-4b:free'\n",
"}\n",
"\n",
"def get_api_key(env_name: str) -> str:\n",
" '''Gets the value from the environment, otherwise ask the user for it if not set'''\n",
" key = os.environ.get(env_name)\n",
" if not key:\n",
" key = getpass(f'Enter {env_name}:').strip()\n",
"\n",
" if key:\n",
" print(f'✅ {env_name} provided')\n",
" else:\n",
" print(f'❌ {env_name} provided')\n",
" return key\n",
"\n",
"\n",
"providers: dict[Provider, OpenAI] = {}\n",
"\n",
"if api_key := get_api_key('OLLAMA_API_KEY'):\n",
" providers[Provider.OLLAMA] = OpenAI(base_url='https://ollama.com/v1', api_key=api_key)\n",
"\n",
"if api_key := get_api_key('OPENROUTER_API_KEY'):\n",
" providers[Provider.OPENROUTER] = OpenAI(base_url='https://openrouter.ai/api/v1', api_key=api_key)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a8d7923c-5f28-4c30-8556-342d7c8497c1",
"metadata": {},
"outputs": [],
"source": [
"def get_messages(question: str) -> list[dict[str, str]]:\n",
" \"\"\"Generate messages for the chat models.\"\"\"\n",
"\n",
" system_prompt = '''\n",
" You are MathXpert, an expert Mathematician who makes math fun to learn by relating concepts to real \n",
" practical usage to whip up the interest in learners.\n",
" \n",
" Explain step-by-step thoroughly how to solve a math problem. Respond in **LaTex**'\n",
" '''\n",
"\n",
" return [\n",
" {'role': 'system', 'content': system_prompt },\n",
" {'role': 'user', 'content': question},\n",
" ]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ef72c85e",
"metadata": {},
"outputs": [],
"source": [
"get_messages('Explain how to solve a differentiation problem')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "aae1579b-7a02-459d-81c6-0f775d2a1410",
"metadata": {},
"outputs": [],
"source": [
"selected_provider, client = next(iter(providers.items()))\n",
"\n",
"def on_provider_change(change):\n",
" global selected_provider, client\n",
"\n",
" selected_provider = change['new']\n",
" client = providers.get(selected_provider)\n",
"\n",
"\n",
"provider_selector = widgets.Dropdown(\n",
" options=list(providers.keys()),\n",
" description='Select an LLM provider:',\n",
" style={'description_width': 'initial'},\n",
")\n",
"\n",
"provider_selector.observe(on_provider_change, names='value')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8f7c8ea8-4082-4ad0-8751-3301adcf6538",
"metadata": {},
"outputs": [],
"source": [
"handle = display(None, display_id=True)\n",
"\n",
"def ask(client: OpenAI, model: str, question: str):\n",
" try:\n",
" prompt = get_messages(question=question)\n",
" response = client.chat.completions.create(\n",
" model=model,\n",
" messages=prompt,\n",
" stream=True,\n",
" )\n",
" \n",
" output = ''\n",
" for chunk in response:\n",
" output += chunk.choices[0].delta.content or ''\n",
" \n",
" handle.update(Latex(output))\n",
" except Exception as e:\n",
" clear_output(wait=True) \n",
" print(f'🔥 An error occurred: {e}')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "09bc9a11-adb4-4a9c-9c77-73b2b5a665cf",
"metadata": {},
"outputs": [],
"source": [
"display(provider_selector)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e01069b2-fd2c-446f-b385-09c1d9624225",
"metadata": {},
"outputs": [],
"source": [
"input_label = \"Ask your question (Type 'q' to quit): \"\n",
"question = input(input_label)\n",
"\n",
"while question.strip().lower() not in ['quit', 'q']:\n",
" clear_output(wait=True)\n",
" print(selected_provider, models[selected_provider])\n",
" model = models[selected_provider]\n",
" ask(client, model, question)\n",
"\n",
" question = input(input_label)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.12"
}
},
"nbformat": 4,
"nbformat_minor": 5
}