Merge pull request #702 from miraygurbuz/mgbz
Added week 1 contributions
This commit is contained in:
191
week1/community-contributions/day2_exercise_llama3.2.ipynb
Normal file
191
week1/community-contributions/day2_exercise_llama3.2.ipynb
Normal file
@@ -0,0 +1,191 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "786b2ed1-f82e-4ca4-8113-c4515b36e970",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"# Day 2 Exercise | Website Summarizer with Llama 3.2"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "b88bf233-29e0-4c01-a4da-8a16896a95e3",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"import requests\n",
|
||||||
|
"from bs4 import BeautifulSoup\n",
|
||||||
|
"from IPython.display import Markdown, display"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "f66f620e-ebf6-45d3-a710-2bb931cac841",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"### 1. Scraping info from website:"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "4e300303-02ac-4d60-9c8c-044a4627be9e",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"headers = {\n",
|
||||||
|
" \"User-Agent\": \"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/117.0.0.0 Safari/537.36\"\n",
|
||||||
|
"}\n",
|
||||||
|
"\n",
|
||||||
|
"class Website:\n",
|
||||||
|
"\n",
|
||||||
|
" def __init__(self, url):\n",
|
||||||
|
" \"\"\"\n",
|
||||||
|
" Create this Website object from the given url using the BeautifulSoup library\n",
|
||||||
|
" \"\"\"\n",
|
||||||
|
" self.url = url\n",
|
||||||
|
" response = requests.get(url, headers=headers)\n",
|
||||||
|
" soup = BeautifulSoup(response.content, 'html.parser')\n",
|
||||||
|
" self.title = soup.title.string if soup.title else \"No title found\"\n",
|
||||||
|
" for irrelevant in soup.body([\"script\", \"style\", \"img\", \"input\"]):\n",
|
||||||
|
" irrelevant.decompose()\n",
|
||||||
|
" self.text = soup.body.get_text(separator=\"\\n\", strip=True)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "137714b9-24eb-4541-8f24-507dbcd09279",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"ed = Website(\"https://edwarddonner.com\")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "77ba1b4b-fc4c-4e3c-bef7-c4d4281d8263",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"### 2. Ollama configuration:"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "97811fcb-1ceb-49a8-bfb9-2e610605c406",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"OLLAMA_API = \"http://localhost:11434/api/chat\"\n",
|
||||||
|
"HEADERS = {\"Content-Type\": \"application/json\"}\n",
|
||||||
|
"MODEL = \"llama3.2\""
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "392326b8-ad0f-4bc9-b055-6220f8bcc57c",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"def user_prompt_for(website):\n",
|
||||||
|
" user_prompt = f\"You are looking at a website titled {website.title}\"\n",
|
||||||
|
" user_prompt += \"\\nThe contents of this website is as follows; \\\n",
|
||||||
|
"please provide a short summary of this website in markdown. \\\n",
|
||||||
|
"If it includes news or announcements, then summarize these too.\\n\\n\"\n",
|
||||||
|
" user_prompt += website.text\n",
|
||||||
|
" return user_prompt\n",
|
||||||
|
"\n",
|
||||||
|
"system_prompt = \"You are an assistant that analyzes the contents of a website \\\n",
|
||||||
|
"and provides a short summary, ignoring text that might be navigation related. \\\n",
|
||||||
|
"Respond in markdown.\"\n",
|
||||||
|
"user_prompt = user_prompt_for(ed)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "8caa94ff-5ace-4f9b-b2f0-beb6ff550636",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"messages = [\n",
|
||||||
|
" {\"role\": \"system\", \"content\": system_prompt},\n",
|
||||||
|
" {\"role\": \"user\", \"content\": user_prompt}\n",
|
||||||
|
"]\n",
|
||||||
|
"\n",
|
||||||
|
"payload = {\n",
|
||||||
|
" \"model\": MODEL,\n",
|
||||||
|
" \"messages\": messages,\n",
|
||||||
|
" \"stream\": False\n",
|
||||||
|
"}"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "f5f856bc-0437-4607-9204-5390d2dfd8db",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"### 3. Get & display summary:"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "a7fd6f93-92ae-419f-b8b6-ee8214e0d93f",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"response = requests.post(OLLAMA_API, json=payload, headers=HEADERS)\n",
|
||||||
|
"summary = response.json()['message']['content']"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "78e4a433-b974-463f-82d0-b4696c63e0ab",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"def display_summary(summary_text: str):\n",
|
||||||
|
" cleaned = summary_text.encode('utf-8').decode('unicode_escape')\n",
|
||||||
|
" cleaned = cleaned.strip()\n",
|
||||||
|
" display(Markdown(cleaned))"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "dc408f1d-fe26-4bd6-859f-d18118f74ca6",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"display_summary(summary)"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "Python 3 (ipykernel)",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": "3.11.13"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 5
|
||||||
|
}
|
||||||
@@ -0,0 +1,309 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "fe12c203-e6a6-452c-a655-afb8a03a4ff5",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"# Week 1 Exercise | Study Guide Generation with Llama 3.2"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "c1070317-3ed9-4659-abe3-828943230e03",
|
||||||
|
"metadata": {
|
||||||
|
"editable": false,
|
||||||
|
"slideshow": {
|
||||||
|
"slide_type": ""
|
||||||
|
},
|
||||||
|
"tags": []
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"import requests\n",
|
||||||
|
"import json\n",
|
||||||
|
"import re\n",
|
||||||
|
"from bs4 import BeautifulSoup\n",
|
||||||
|
"from IPython.display import Markdown, display, update_display\n",
|
||||||
|
"from openai import OpenAI"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "4a456906-915a-4bfd-bb9d-57e505c5093f",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"openai = OpenAI(base_url='http://localhost:11434/v1', api_key='ollama')\n",
|
||||||
|
"MODEL = 'llama3.2'"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "5cd638a2-ab65-41cf-97bb-673c3ec117c4",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"### 1. Web Scraper"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "504f3bce-f922-46a9-844a-b13d47507b8a",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"headers = {\n",
|
||||||
|
" \"User-Agent\": \"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/117.0.0.0 Safari/537.36\"\n",
|
||||||
|
"}\n",
|
||||||
|
"\n",
|
||||||
|
"class Website:\n",
|
||||||
|
"\n",
|
||||||
|
" def __init__(self, url):\n",
|
||||||
|
" self.url = url\n",
|
||||||
|
" response = requests.get(url, headers=headers)\n",
|
||||||
|
" self.body = response.content\n",
|
||||||
|
" soup = BeautifulSoup(self.body, 'html.parser')\n",
|
||||||
|
" self.title = soup.title.string if soup.title else \"No title found\"\n",
|
||||||
|
" if soup.body:\n",
|
||||||
|
" for irrelevant in soup.body([\"script\", \"style\", \"img\", \"input\"]):\n",
|
||||||
|
" irrelevant.decompose()\n",
|
||||||
|
" self.text = soup.body.get_text(separator=\"\\n\", strip=True)\n",
|
||||||
|
" else:\n",
|
||||||
|
" self.text = \"\"\n",
|
||||||
|
" links = [link.get('href') for link in soup.find_all('a')]\n",
|
||||||
|
" self.links = [link for link in links if link]\n",
|
||||||
|
"\n",
|
||||||
|
" def get_contents(self):\n",
|
||||||
|
" return f\"Webpage Title:\\n{self.title}\\nWebpage Contents:\\n{self.text}\\n\\n\""
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "2bbf43c5-774d-4d4e-91ff-772781fdfeaf",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"### 2. Curriculum Extraction"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "3f0d0137-52b0-47a8-81a8-11a90a010798",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"curriculum_system_prompt = \"\"\"You are provided with the text content of a webpage. \n",
|
||||||
|
"Your task is to design a student-friendly curriculum from this content. \n",
|
||||||
|
"Break down the material into clear modules or lessons, each with a title and a short description. \n",
|
||||||
|
"Focus on organizing the information in a logical order, as if preparing a study plan.\n",
|
||||||
|
"\n",
|
||||||
|
"You should respond in JSON as in this example:\n",
|
||||||
|
"{\n",
|
||||||
|
" \"curriculum\": [\n",
|
||||||
|
" {\n",
|
||||||
|
" \"module\": \"Introduction to Machine Learning\",\n",
|
||||||
|
" \"description\": \"Basic concepts and history of machine learning, why it matters, and common applications.\"\n",
|
||||||
|
" },\n",
|
||||||
|
" {\n",
|
||||||
|
" \"module\": \"Supervised Learning\",\n",
|
||||||
|
" \"description\": \"Learn about labeled data, classification, and regression methods.\"\n",
|
||||||
|
" },\n",
|
||||||
|
" {\n",
|
||||||
|
" \"module\": \"Unsupervised Learning\",\n",
|
||||||
|
" \"description\": \"Understand clustering, dimensionality reduction, and when to use unsupervised approaches.\"\n",
|
||||||
|
" }\n",
|
||||||
|
" ]\n",
|
||||||
|
"}\n",
|
||||||
|
"\"\"\""
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "d89a0be8-0254-43b5-ab9a-6224069a1246",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"def get_curriculum_user_prompt(website):\n",
|
||||||
|
" user_prompt = f\"Here is the text content of the website at {website.url}:\\n\\n\"\n",
|
||||||
|
" user_prompt += website.text\n",
|
||||||
|
" user_prompt += \"\\n\\nPlease create a student-friendly curriculum from this content. \"\n",
|
||||||
|
" user_prompt += \"Break it down into clear modules or lessons, each with a title and a short description. \"\n",
|
||||||
|
" user_prompt += \"Return your response in JSON format\"\n",
|
||||||
|
" return user_prompt"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "da74104c-81a3-4d12-a377-e202ddfe57bc",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"def get_curriculum(website):\n",
|
||||||
|
" stream = openai.chat.completions.create(\n",
|
||||||
|
" model=MODEL,\n",
|
||||||
|
" messages=[\n",
|
||||||
|
" {\"role\": \"system\", \"content\": curriculum_system_prompt},\n",
|
||||||
|
" {\"role\": \"user\", \"content\": get_curriculum_user_prompt(website)}\n",
|
||||||
|
" ],\n",
|
||||||
|
" stream=True\n",
|
||||||
|
" )\n",
|
||||||
|
" response_text = \"\"\n",
|
||||||
|
" display_handle = display(Markdown(\"\"), display_id=True)\n",
|
||||||
|
" for chunk in stream:\n",
|
||||||
|
" delta = chunk.choices[0].delta.content or ''\n",
|
||||||
|
" response_text += delta\n",
|
||||||
|
" update_display(Markdown(response_text), display_id=display_handle.display_id)\n",
|
||||||
|
" try:\n",
|
||||||
|
" json_text = re.search(r\"\\{.*\\}\", response_text, re.DOTALL).group()\n",
|
||||||
|
" curriculum_json = json.loads(json_text)\n",
|
||||||
|
" except Exception as e:\n",
|
||||||
|
" print(\"Failed to parse JSON:\", e)\n",
|
||||||
|
" curriculum_json = {\"error\": \"JSON parse failed\", \"raw\": response_text}\n",
|
||||||
|
"\n",
|
||||||
|
" return curriculum_json"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "df68eafc-e529-400c-a61b-0140c38909a3",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"### 3. Study Guide"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "5b3db9d4-5edd-4a0c-8d5c-45ea455d8eb0",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"guide_system_prompt = \"\"\"You are an educational assistant. \n",
|
||||||
|
"You are given a curriculum JSON with modules and descriptions.\n",
|
||||||
|
"Your task is to create a student-friendly study guide based on this curriculum.\n",
|
||||||
|
"- Organize the guide step by step, with clear headings, tips, and examples where appropriate.\n",
|
||||||
|
"- Make it engaging and easy to follow.\n",
|
||||||
|
"- Adapt the content according to the student's level, language, and tone.\n",
|
||||||
|
"- Always respond in markdown format suitable for a student guide.\n",
|
||||||
|
"\"\"\""
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "16f85360-6f06-4bb3-878a-5f3b8d8f20d7",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"def get_study_guide_user_prompt(curriculum_json, student_level=\"beginner\", language=\"English\", tone=\"friendly\"):\n",
|
||||||
|
" return f\"\"\"\n",
|
||||||
|
" Student Level: {student_level}\n",
|
||||||
|
" Language: {language}\n",
|
||||||
|
" Tone: {tone}\n",
|
||||||
|
" \n",
|
||||||
|
" Here is the curriculum JSON:\n",
|
||||||
|
" \n",
|
||||||
|
" {json.dumps(curriculum_json, indent=2)}\n",
|
||||||
|
" \n",
|
||||||
|
" Please convert it into a study guide for the student.\n",
|
||||||
|
" \"\"\""
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "bc9b949d-df2b-475c-9a84-597a47ed6e85",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"def stream_study_guide(curriculum_json, student_level=\"beginner\", language=\"English\", tone=\"friendly\"):\n",
|
||||||
|
" \n",
|
||||||
|
" user_prompt = get_study_guide_user_prompt(curriculum_json, student_level, language, tone)\n",
|
||||||
|
" stream = openai.chat.completions.create(\n",
|
||||||
|
" model=MODEL,\n",
|
||||||
|
" messages=[\n",
|
||||||
|
" {\"role\": \"system\", \"content\": guide_system_prompt},\n",
|
||||||
|
" {\"role\": \"user\", \"content\": user_prompt}\n",
|
||||||
|
" ],\n",
|
||||||
|
" stream=True\n",
|
||||||
|
" )\n",
|
||||||
|
"\n",
|
||||||
|
" response_text = \"\"\n",
|
||||||
|
" display_handle = display(Markdown(\"\"), display_id=True)\n",
|
||||||
|
" for chunk in stream:\n",
|
||||||
|
" delta = chunk.choices[0].delta.content or ''\n",
|
||||||
|
" response_text += delta\n",
|
||||||
|
" update_display(Markdown(response_text), display_id=display_handle.display_id)\n",
|
||||||
|
" \n",
|
||||||
|
" return response_text"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "8c289b7c-c991-45b5-adc3-7468af393e50",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"page = Website(\"https://en.wikipedia.org/wiki/Rock_and_roll\")\n",
|
||||||
|
"curriculum_json = get_curriculum(page)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "6c697d63-2230-4e04-a28b-c0e8fc85753e",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"study_guide_text = stream_study_guide(\n",
|
||||||
|
" curriculum_json,\n",
|
||||||
|
" student_level=\"beginner\",\n",
|
||||||
|
" language=\"English\",\n",
|
||||||
|
" tone=\"friendly\"\n",
|
||||||
|
")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "c0960f87-fd29-4ae3-8405-f4fde1f50f89",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"study_guide_text = stream_study_guide(\n",
|
||||||
|
" curriculum_json,\n",
|
||||||
|
" student_level=\"advanced\",\n",
|
||||||
|
" language=\"English\",\n",
|
||||||
|
" tone=\"professional, detailed\"\n",
|
||||||
|
")"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "Python 3 (ipykernel)",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": "3.11.13"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 5
|
||||||
|
}
|
||||||
Reference in New Issue
Block a user