Updated Week 5 with November version

This commit is contained in:
Edward Donner
2025-11-04 07:26:42 -05:00
parent 9132764523
commit e5c3fcab46
81 changed files with 9263 additions and 2725 deletions

View File

@@ -0,0 +1,67 @@
import os
import glob
from pathlib import Path
from langchain_community.document_loaders import DirectoryLoader, TextLoader
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_chroma import Chroma
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_openai import OpenAIEmbeddings
from dotenv import load_dotenv
MODEL = "gpt-4.1-nano"
DB_NAME = str(Path(__file__).parent.parent / "vector_db")
KNOWLEDGE_BASE = str(Path(__file__).parent.parent / "knowledge-base")
# embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
load_dotenv(override=True)
embeddings = OpenAIEmbeddings(model="text-embedding-3-large")
def fetch_documents():
folders = glob.glob(str(Path(KNOWLEDGE_BASE) / "*"))
documents = []
for folder in folders:
doc_type = os.path.basename(folder)
loader = DirectoryLoader(
folder, glob="**/*.md", loader_cls=TextLoader, loader_kwargs={"encoding": "utf-8"}
)
folder_docs = loader.load()
for doc in folder_docs:
doc.metadata["doc_type"] = doc_type
documents.append(doc)
return documents
def create_chunks(documents):
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=200)
chunks = text_splitter.split_documents(documents)
return chunks
def create_embeddings(chunks):
if os.path.exists(DB_NAME):
Chroma(persist_directory=DB_NAME, embedding_function=embeddings).delete_collection()
vectorstore = Chroma.from_documents(
documents=chunks, embedding=embeddings, persist_directory=DB_NAME
)
collection = vectorstore._collection
count = collection.count()
sample_embedding = collection.get(limit=1, include=["embeddings"])["embeddings"][0]
dimensions = len(sample_embedding)
print(f"There are {count:,} vectors with {dimensions:,} dimensions in the vector store")
return vectorstore
if __name__ == "__main__":
documents = fetch_documents()
chunks = create_chunks(documents)
create_embeddings(chunks)
print("Ingestion complete")