Updated Week 5 with November version
This commit is contained in:
146
week5/pro_implementation/ingest.py
Normal file
146
week5/pro_implementation/ingest.py
Normal file
@@ -0,0 +1,146 @@
|
||||
from pathlib import Path
|
||||
from openai import OpenAI
|
||||
from dotenv import load_dotenv
|
||||
from pydantic import BaseModel, Field
|
||||
from chromadb import PersistentClient
|
||||
from tqdm import tqdm
|
||||
from litellm import completion
|
||||
from multiprocessing import Pool
|
||||
from tenacity import retry, wait_exponential
|
||||
|
||||
|
||||
load_dotenv(override=True)
|
||||
|
||||
MODEL = "openai/gpt-4.1-nano"
|
||||
|
||||
DB_NAME = str(Path(__file__).parent.parent / "preprocessed_db")
|
||||
collection_name = "docs"
|
||||
embedding_model = "text-embedding-3-large"
|
||||
KNOWLEDGE_BASE_PATH = Path(__file__).parent.parent / "knowledge-base"
|
||||
AVERAGE_CHUNK_SIZE = 100
|
||||
wait = wait_exponential(multiplier=1, min=10, max=240)
|
||||
|
||||
|
||||
WORKERS = 3
|
||||
|
||||
openai = OpenAI()
|
||||
|
||||
|
||||
class Result(BaseModel):
|
||||
page_content: str
|
||||
metadata: dict
|
||||
|
||||
|
||||
class Chunk(BaseModel):
|
||||
headline: str = Field(
|
||||
description="A brief heading for this chunk, typically a few words, that is most likely to be surfaced in a query",
|
||||
)
|
||||
summary: str = Field(
|
||||
description="A few sentences summarizing the content of this chunk to answer common questions"
|
||||
)
|
||||
original_text: str = Field(
|
||||
description="The original text of this chunk from the provided document, exactly as is, not changed in any way"
|
||||
)
|
||||
|
||||
def as_result(self, document):
|
||||
metadata = {"source": document["source"], "type": document["type"]}
|
||||
return Result(
|
||||
page_content=self.headline + "\n\n" + self.summary + "\n\n" + self.original_text,
|
||||
metadata=metadata,
|
||||
)
|
||||
|
||||
|
||||
class Chunks(BaseModel):
|
||||
chunks: list[Chunk]
|
||||
|
||||
|
||||
def fetch_documents():
|
||||
"""A homemade version of the LangChain DirectoryLoader"""
|
||||
|
||||
documents = []
|
||||
|
||||
for folder in KNOWLEDGE_BASE_PATH.iterdir():
|
||||
doc_type = folder.name
|
||||
for file in folder.rglob("*.md"):
|
||||
with open(file, "r", encoding="utf-8") as f:
|
||||
documents.append({"type": doc_type, "source": file.as_posix(), "text": f.read()})
|
||||
|
||||
print(f"Loaded {len(documents)} documents")
|
||||
return documents
|
||||
|
||||
|
||||
def make_prompt(document):
|
||||
how_many = (len(document["text"]) // AVERAGE_CHUNK_SIZE) + 1
|
||||
return f"""
|
||||
You take a document and you split the document into overlapping chunks for a KnowledgeBase.
|
||||
|
||||
The document is from the shared drive of a company called Insurellm.
|
||||
The document is of type: {document["type"]}
|
||||
The document has been retrieved from: {document["source"]}
|
||||
|
||||
A chatbot will use these chunks to answer questions about the company.
|
||||
You should divide up the document as you see fit, being sure that the entire document is returned across the chunks - don't leave anything out.
|
||||
This document should probably be split into at least {how_many} chunks, but you can have more or less as appropriate, ensuring that there are individual chunks to answer specific questions.
|
||||
There should be overlap between the chunks as appropriate; typically about 25% overlap or about 50 words, so you have the same text in multiple chunks for best retrieval results.
|
||||
|
||||
For each chunk, you should provide a headline, a summary, and the original text of the chunk.
|
||||
Together your chunks should represent the entire document with overlap.
|
||||
|
||||
Here is the document:
|
||||
|
||||
{document["text"]}
|
||||
|
||||
Respond with the chunks.
|
||||
"""
|
||||
|
||||
|
||||
def make_messages(document):
|
||||
return [
|
||||
{"role": "user", "content": make_prompt(document)},
|
||||
]
|
||||
|
||||
|
||||
@retry(wait=wait)
|
||||
def process_document(document):
|
||||
messages = make_messages(document)
|
||||
response = completion(model=MODEL, messages=messages, response_format=Chunks)
|
||||
reply = response.choices[0].message.content
|
||||
doc_as_chunks = Chunks.model_validate_json(reply).chunks
|
||||
return [chunk.as_result(document) for chunk in doc_as_chunks]
|
||||
|
||||
|
||||
def create_chunks(documents):
|
||||
"""
|
||||
Create chunks using a number of workers in parallel.
|
||||
If you get a rate limit error, set the WORKERS to 1.
|
||||
"""
|
||||
chunks = []
|
||||
with Pool(processes=WORKERS) as pool:
|
||||
for result in tqdm(pool.imap_unordered(process_document, documents), total=len(documents)):
|
||||
chunks.extend(result)
|
||||
return chunks
|
||||
|
||||
|
||||
def create_embeddings(chunks):
|
||||
chroma = PersistentClient(path=DB_NAME)
|
||||
if collection_name in [c.name for c in chroma.list_collections()]:
|
||||
chroma.delete_collection(collection_name)
|
||||
|
||||
texts = [chunk.page_content for chunk in chunks]
|
||||
emb = openai.embeddings.create(model=embedding_model, input=texts).data
|
||||
vectors = [e.embedding for e in emb]
|
||||
|
||||
collection = chroma.get_or_create_collection(collection_name)
|
||||
|
||||
ids = [str(i) for i in range(len(chunks))]
|
||||
metas = [chunk.metadata for chunk in chunks]
|
||||
|
||||
collection.add(ids=ids, embeddings=vectors, documents=texts, metadatas=metas)
|
||||
print(f"Vectorstore created with {collection.count()} documents")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
documents = fetch_documents()
|
||||
chunks = create_chunks(documents)
|
||||
create_embeddings(chunks)
|
||||
print("Ingestion complete")
|
||||
Reference in New Issue
Block a user