Week 2: Technical Assistant - Salah (Bootcamp)
This commit is contained in:
2
week2/community-contributions/salah/v1/.env.example
Normal file
2
week2/community-contributions/salah/v1/.env.example
Normal file
@@ -0,0 +1,2 @@
|
||||
OPENAI_API_KEY=sk-or-v1-your-openrouter-api-key-here
|
||||
GEMINI_API_KEY=your-gemini-api-key-here
|
||||
20
week2/community-contributions/salah/v2/.env.example
Normal file
20
week2/community-contributions/salah/v2/.env.example
Normal file
@@ -0,0 +1,20 @@
|
||||
# API Keys - Required
|
||||
OPENAI_API_KEY=sk-or-v1-your-openrouter-api-key-here
|
||||
GEMINI_API_KEY=your-gemini-api-key-here
|
||||
|
||||
# Models - Optional (defaults provided)
|
||||
TEXT_MODEL=openai/gpt-4o-mini
|
||||
STT_MODEL=gemini-2.0-flash-exp
|
||||
TTS_MODEL=gemini-2.5-flash-preview-tts
|
||||
VOICE_NAME=Kore
|
||||
|
||||
# App Settings - Optional
|
||||
PORT=7862
|
||||
SYSTEM_PROMPT=You are a helpful assistant. Keep it simple and practical.
|
||||
|
||||
# Alternative Models You Can Try:
|
||||
# TEXT_MODEL=anthropic/claude-3.5-sonnet
|
||||
# TEXT_MODEL=google/gemini-pro-1.5
|
||||
# TEXT_MODEL=meta-llama/llama-3.1-8b-instruct
|
||||
# VOICE_NAME=Aoede
|
||||
# VOICE_NAME=Fenrir
|
||||
4
week2/community-contributions/salah/v2/requirements.txt
Normal file
4
week2/community-contributions/salah/v2/requirements.txt
Normal file
@@ -0,0 +1,4 @@
|
||||
openai>=1.3.0
|
||||
gradio>=4.0.0
|
||||
python-dotenv>=1.0.0
|
||||
google-genai>=0.3.0
|
||||
13
week2/community-contributions/salah/v2/run.py
Normal file
13
week2/community-contributions/salah/v2/run.py
Normal file
@@ -0,0 +1,13 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
import sys
|
||||
import os
|
||||
|
||||
# Add src to Python path
|
||||
sys.path.insert(0, os.path.join(os.path.dirname(__file__), 'src'))
|
||||
|
||||
# Now import and run
|
||||
from main import main
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
1
week2/community-contributions/salah/v2/src/__init__.py
Normal file
1
week2/community-contributions/salah/v2/src/__init__.py
Normal file
@@ -0,0 +1 @@
|
||||
# Create __init__.py files to make directories proper Python packages
|
||||
@@ -0,0 +1,25 @@
|
||||
import os
|
||||
from dotenv import load_dotenv
|
||||
|
||||
load_dotenv()
|
||||
|
||||
class Config:
|
||||
def __init__(self):
|
||||
self.openrouter_key = os.getenv('OPENAI_API_KEY')
|
||||
self.gemini_key = os.getenv('GEMINI_API_KEY')
|
||||
|
||||
# Models - all configurable via env
|
||||
self.text_model = os.getenv('TEXT_MODEL', "openai/gpt-4o-mini")
|
||||
self.stt_model = os.getenv('STT_MODEL', "gemini-2.0-flash-exp")
|
||||
self.tts_model = os.getenv('TTS_MODEL', "gemini-2.5-flash-preview-tts")
|
||||
self.voice_name = os.getenv('VOICE_NAME', 'Kore')
|
||||
|
||||
# App settings
|
||||
self.port = int(os.getenv('PORT', '7862'))
|
||||
self.system_prompt = os.getenv('SYSTEM_PROMPT', "You are a helpful assistant. Keep it simple and practical.")
|
||||
|
||||
def validate(self):
|
||||
if not self.openrouter_key:
|
||||
raise Exception("Missing OPENAI_API_KEY")
|
||||
if not self.gemini_key:
|
||||
raise Exception("Missing GEMINI_API_KEY")
|
||||
@@ -0,0 +1,23 @@
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
class AIClient(ABC):
|
||||
@abstractmethod
|
||||
def chat(self, messages):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def analyze_code(self, code, language):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def generate_linkedin_post(self, topic, tone="professional"):
|
||||
pass
|
||||
|
||||
class AudioService(ABC):
|
||||
@abstractmethod
|
||||
def speech_to_text(self, audio_file):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def text_to_speech(self, text):
|
||||
pass
|
||||
32
week2/community-contributions/salah/v2/src/main.py
Normal file
32
week2/community-contributions/salah/v2/src/main.py
Normal file
@@ -0,0 +1,32 @@
|
||||
from config.settings import Config
|
||||
from services.openrouter_client import OpenRouterClient
|
||||
from services.gemini_audio_service import GeminiAudioService
|
||||
from services.conversation_manager import ConversationManager
|
||||
from ui.gradio_interface import AssistantUI
|
||||
|
||||
def main():
|
||||
print("Starting AI Assistant...")
|
||||
|
||||
# Load config
|
||||
config = Config()
|
||||
config.validate()
|
||||
|
||||
# Setup services
|
||||
ai_client = OpenRouterClient(config.openrouter_key, config.text_model)
|
||||
audio_service = GeminiAudioService(
|
||||
config.gemini_key,
|
||||
config.stt_model,
|
||||
config.tts_model,
|
||||
config.voice_name
|
||||
)
|
||||
conversation = ConversationManager(config.system_prompt)
|
||||
|
||||
# Create UI
|
||||
ui = AssistantUI(ai_client, audio_service, conversation)
|
||||
app = ui.create_interface()
|
||||
|
||||
print(f"Launching on port {config.port}...")
|
||||
app.launch(server_port=config.port)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -0,0 +1,6 @@
|
||||
from dataclasses import dataclass
|
||||
|
||||
@dataclass
|
||||
class Message:
|
||||
role: str
|
||||
content: str
|
||||
@@ -0,0 +1,35 @@
|
||||
from models.message import Message
|
||||
|
||||
class ConversationManager:
|
||||
def __init__(self, system_prompt):
|
||||
self.system_prompt = system_prompt
|
||||
self.messages = []
|
||||
|
||||
def add_user_message(self, content):
|
||||
print(f"[Conversation] Adding user message: {content[:100]}...")
|
||||
print(f"[Conversation] Message length: {len(content)} chars")
|
||||
self.messages.append(Message("user", content))
|
||||
print(f"[Conversation] Total messages: {len(self.messages)}")
|
||||
|
||||
def add_assistant_message(self, content):
|
||||
print(f"[Conversation] Adding assistant message: {content[:100]}...")
|
||||
print(f"[Conversation] Message length: {len(content)} chars")
|
||||
self.messages.append(Message("assistant", content))
|
||||
print(f"[Conversation] Total messages: {len(self.messages)}")
|
||||
|
||||
def get_api_messages(self):
|
||||
# Convert to format expected by APIs
|
||||
api_messages = [{"role": "system", "content": self.system_prompt}]
|
||||
for msg in self.messages:
|
||||
api_messages.append({"role": msg.role, "content": msg.content})
|
||||
|
||||
# Calculate total context size
|
||||
total_chars = sum(len(msg["content"]) for msg in api_messages)
|
||||
estimated_tokens = total_chars // 4 # Rough estimate
|
||||
|
||||
print(f"[Conversation] API messages prepared:")
|
||||
print(f" - Total messages: {len(api_messages)} (including system)")
|
||||
print(f" - Total characters: {total_chars}")
|
||||
print(f" - Estimated tokens: {estimated_tokens}")
|
||||
|
||||
return api_messages
|
||||
@@ -0,0 +1,124 @@
|
||||
from google import genai
|
||||
from google.genai import types
|
||||
import tempfile
|
||||
import wave
|
||||
from interfaces.ai_client import AudioService
|
||||
|
||||
class GeminiAudioService(AudioService):
|
||||
def __init__(self, api_key, stt_model, tts_model, voice_name):
|
||||
self.client = genai.Client(api_key=api_key)
|
||||
self.stt_model = stt_model
|
||||
self.tts_model = tts_model
|
||||
self.voice_name = voice_name
|
||||
|
||||
def speech_to_text(self, audio_file):
|
||||
print(f"[Gemini STT] Processing audio file: {audio_file}")
|
||||
print(f"[Gemini STT] Model: {self.stt_model}")
|
||||
|
||||
try:
|
||||
# Get file size for logging
|
||||
import os
|
||||
file_size = os.path.getsize(audio_file)
|
||||
print(f"[Gemini STT] Audio file size: {file_size} bytes")
|
||||
|
||||
print("[Gemini STT] Uploading to Gemini...")
|
||||
uploaded_file = self.client.files.upload(file=audio_file)
|
||||
print(f"[Gemini STT] File uploaded: {uploaded_file.name}")
|
||||
|
||||
print("[Gemini STT] Transcribing...")
|
||||
response = self.client.models.generate_content(
|
||||
model=self.stt_model,
|
||||
contents=["Transcribe the speech in this audio file. Return only the spoken words, nothing else.", uploaded_file]
|
||||
)
|
||||
|
||||
text = response.text.strip()
|
||||
print(f"[Gemini STT] Transcription length: {len(text)} chars")
|
||||
print(f"[Gemini STT] Transcription: {text[:100]}...")
|
||||
|
||||
# Print usage information if available
|
||||
if hasattr(response, 'usage_metadata'):
|
||||
usage = response.usage_metadata
|
||||
input_tokens = usage.prompt_token_count
|
||||
output_tokens = usage.candidates_token_count
|
||||
total_tokens = usage.total_token_count
|
||||
|
||||
# Audio input cost: $3.00/1M tokens, text output: $2.50/1M tokens
|
||||
cost = (input_tokens * 3.00 + output_tokens * 2.50) / 1_000_000
|
||||
|
||||
print(f"[Gemini STT] Token usage:")
|
||||
print(f" - Input tokens (audio): {input_tokens}")
|
||||
print(f" - Output tokens (text): {output_tokens}")
|
||||
print(f" - Total tokens: {total_tokens}")
|
||||
print(f" - Estimated cost: ${cost:.6f}")
|
||||
|
||||
print("[Gemini STT] Success")
|
||||
return text
|
||||
|
||||
except Exception as e:
|
||||
print(f"[Gemini STT] Error: {e}")
|
||||
return None
|
||||
|
||||
def text_to_speech(self, text):
|
||||
print(f"[Gemini TTS] Converting text to speech")
|
||||
print(f"[Gemini TTS] Model: {self.tts_model}, Voice: {self.voice_name}")
|
||||
print(f"[Gemini TTS] Input text length: {len(text)} chars")
|
||||
|
||||
try:
|
||||
# Keep it short for TTS
|
||||
text_to_speak = text[:500] if len(text) > 500 else text
|
||||
if len(text) > 500:
|
||||
print(f"[Gemini TTS] Text truncated to 500 chars")
|
||||
|
||||
print(f"[Gemini TTS] Text preview: {text_to_speak[:100]}...")
|
||||
print("[Gemini TTS] Generating audio...")
|
||||
|
||||
response = self.client.models.generate_content(
|
||||
model=self.tts_model,
|
||||
contents=f"Say: {text_to_speak}",
|
||||
config=types.GenerateContentConfig(
|
||||
response_modalities=["AUDIO"],
|
||||
speech_config=types.SpeechConfig(
|
||||
voice_config=types.VoiceConfig(
|
||||
prebuilt_voice_config=types.PrebuiltVoiceConfig(
|
||||
voice_name=self.voice_name,
|
||||
)
|
||||
)
|
||||
),
|
||||
)
|
||||
)
|
||||
|
||||
pcm_data = response.candidates[0].content.parts[0].inline_data.data
|
||||
print(f"[Gemini TTS] Raw PCM data size: {len(pcm_data)} bytes")
|
||||
|
||||
# Print usage information if available
|
||||
if hasattr(response, 'usage_metadata'):
|
||||
usage = response.usage_metadata
|
||||
input_tokens = usage.prompt_token_count
|
||||
output_tokens = usage.candidates_token_count
|
||||
total_tokens = usage.total_token_count
|
||||
|
||||
# Text input: $0.30/1M tokens, audio output: $10.00/1M tokens
|
||||
cost = (input_tokens * 0.30 + output_tokens * 10.00) / 1_000_000
|
||||
|
||||
print(f"[Gemini TTS] Token usage:")
|
||||
print(f" - Input tokens (text): {input_tokens}")
|
||||
print(f" - Output tokens (audio): {output_tokens}")
|
||||
print(f" - Total tokens: {total_tokens}")
|
||||
print(f" - Estimated cost: ${cost:.6f}")
|
||||
|
||||
# Create WAV file
|
||||
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".wav")
|
||||
with wave.open(temp_file.name, 'wb') as wav_file:
|
||||
wav_file.setnchannels(1)
|
||||
wav_file.setsampwidth(2)
|
||||
wav_file.setframerate(24000)
|
||||
wav_file.writeframes(pcm_data)
|
||||
|
||||
temp_file.close()
|
||||
print(f"[Gemini TTS] WAV file created: {temp_file.name}")
|
||||
print("[Gemini TTS] Success")
|
||||
return temp_file.name
|
||||
|
||||
except Exception as e:
|
||||
print(f"[Gemini TTS] Error: {e}")
|
||||
return None
|
||||
@@ -0,0 +1,91 @@
|
||||
from openai import OpenAI
|
||||
from interfaces.ai_client import AIClient
|
||||
|
||||
class OpenRouterClient(AIClient):
|
||||
def __init__(self, api_key, model):
|
||||
self.client = OpenAI(
|
||||
api_key=api_key,
|
||||
base_url="https://openrouter.ai/api/v1"
|
||||
)
|
||||
self.model = model
|
||||
|
||||
def chat(self, messages):
|
||||
print(f"[OpenRouter] Calling {self.model}")
|
||||
print(f"[OpenRouter] Messages count: {len(messages)}")
|
||||
|
||||
# Calculate input tokens estimate (rough)
|
||||
total_chars = sum(len(msg.get('content', '')) for msg in messages)
|
||||
estimated_tokens = total_chars // 4 # Rough estimate
|
||||
print(f"[OpenRouter] Estimated input tokens: {estimated_tokens}")
|
||||
|
||||
try:
|
||||
response = self.client.chat.completions.create(
|
||||
model=self.model,
|
||||
messages=messages,
|
||||
extra_body={
|
||||
"usage": {
|
||||
"include": True
|
||||
}
|
||||
}
|
||||
)
|
||||
|
||||
content = response.choices[0].message.content
|
||||
print(f"[OpenRouter] Response length: {len(content)} chars")
|
||||
print(f"[OpenRouter] Response preview: {content[:100]}...")
|
||||
|
||||
# Print usage information if available
|
||||
if hasattr(response, 'usage') and response.usage:
|
||||
usage = response.usage
|
||||
print(f"[OpenRouter] Token usage:")
|
||||
print(f" - Prompt tokens: {usage.prompt_tokens}")
|
||||
print(f" - Completion tokens: {usage.completion_tokens}")
|
||||
print(f" - Total tokens: {usage.total_tokens}")
|
||||
|
||||
# Try to get cost information
|
||||
if hasattr(usage, 'cost') and usage.cost:
|
||||
print(f" - Cost: ${usage.cost:.6f}")
|
||||
else:
|
||||
# Rough cost estimate for GPT-4o-mini ($0.15/1M input, $0.60/1M output)
|
||||
estimated_cost = (usage.prompt_tokens * 0.15 + usage.completion_tokens * 0.60) / 1_000_000
|
||||
print(f" - Estimated cost: ${estimated_cost:.6f}")
|
||||
|
||||
print(f"[OpenRouter] Success")
|
||||
return content
|
||||
|
||||
except Exception as e:
|
||||
print(f"[OpenRouter] Error: {str(e)}")
|
||||
return f"Error: {str(e)}"
|
||||
|
||||
def analyze_code(self, code, language):
|
||||
print(f"[OpenRouter] Code analysis request - Language: {language}")
|
||||
print(f"[OpenRouter] Code length: {len(code)} chars, {len(code.splitlines())} lines")
|
||||
|
||||
prompt = f"Analyze this {language} code for bugs and improvements:\n\n```{language}\n{code}\n```"
|
||||
messages = [{"role": "user", "content": prompt}]
|
||||
return self.chat(messages)
|
||||
|
||||
def generate_linkedin_post(self, topic, tone="professional"):
|
||||
print(f"[OpenRouter] LinkedIn post request - Topic: {topic[:50]}...")
|
||||
print(f"[OpenRouter] Tone: {tone}")
|
||||
|
||||
tone_styles = {
|
||||
"professional": "formal, informative, and industry-focused",
|
||||
"casual": "friendly, approachable, and conversational",
|
||||
"inspirational": "motivating, uplifting, and thought-provoking",
|
||||
"educational": "informative, teaching-focused, and valuable"
|
||||
}
|
||||
|
||||
style = tone_styles.get(tone, "professional and engaging")
|
||||
|
||||
prompt = f"""Create a LinkedIn post about: {topic}
|
||||
|
||||
Make it {style}. Include:
|
||||
- Hook that grabs attention
|
||||
- 2-3 key insights or takeaways
|
||||
- Call to action or question for engagement
|
||||
- Relevant hashtags (3-5)
|
||||
|
||||
Keep it under 300 words and format for LinkedIn readability."""
|
||||
|
||||
messages = [{"role": "user", "content": prompt}]
|
||||
return self.chat(messages)
|
||||
@@ -0,0 +1,194 @@
|
||||
import gradio as gr
|
||||
|
||||
class AssistantUI:
|
||||
def __init__(self, ai_client, audio_service, conversation_manager):
|
||||
self.ai_client = ai_client
|
||||
self.audio_service = audio_service
|
||||
self.conversation = conversation_manager
|
||||
self.display_history = []
|
||||
|
||||
def handle_text_message(self, message):
|
||||
if not message.strip():
|
||||
return self.display_history, ""
|
||||
|
||||
# Add user message
|
||||
self.conversation.add_user_message(message)
|
||||
self.display_history.append({"role": "user", "content": message})
|
||||
|
||||
# Get AI response
|
||||
api_messages = self.conversation.get_api_messages()
|
||||
response = self.ai_client.chat(api_messages)
|
||||
|
||||
# Check if response is an error
|
||||
is_error = response.startswith("Error:")
|
||||
|
||||
if is_error:
|
||||
print(f"AI Client Error: {response}")
|
||||
# Show error in chat but don't add to conversation history
|
||||
self.display_history.append({"role": "assistant", "content": response})
|
||||
return self.display_history, ""
|
||||
|
||||
# Add successful response to conversation
|
||||
self.conversation.add_assistant_message(response)
|
||||
self.display_history.append({"role": "assistant", "content": response})
|
||||
|
||||
return self.display_history, ""
|
||||
|
||||
def handle_voice_message(self, audio_file):
|
||||
if not audio_file:
|
||||
return self.display_history, None
|
||||
|
||||
# Transcribe audio
|
||||
text = self.audio_service.speech_to_text(audio_file)
|
||||
if not text:
|
||||
return self.display_history, None
|
||||
|
||||
# Add transcribed message to display
|
||||
self.display_history.append({
|
||||
"role": "user",
|
||||
"content": {"path": audio_file, "alt_text": f"Voice: {text}"}
|
||||
})
|
||||
|
||||
# Process as text message
|
||||
self.conversation.add_user_message(text)
|
||||
api_messages = self.conversation.get_api_messages()
|
||||
response = self.ai_client.chat(api_messages)
|
||||
|
||||
# Check if response is an error
|
||||
is_error = response.startswith("Error:")
|
||||
|
||||
if is_error:
|
||||
print(f"AI Client Error: {response}")
|
||||
# Show error in chat but don't convert to speech
|
||||
self.display_history.append({"role": "assistant", "content": response})
|
||||
return self.display_history, None
|
||||
|
||||
self.conversation.add_assistant_message(response)
|
||||
|
||||
# Generate audio response only for successful responses
|
||||
audio_response = self.audio_service.text_to_speech(response)
|
||||
|
||||
if audio_response:
|
||||
self.display_history.append({
|
||||
"role": "assistant",
|
||||
"content": {"path": audio_response, "alt_text": response[:100] + "..."}
|
||||
})
|
||||
else:
|
||||
self.display_history.append({"role": "assistant", "content": response})
|
||||
|
||||
return self.display_history, None
|
||||
|
||||
def analyze_code(self, code, language):
|
||||
if not code.strip():
|
||||
return self.display_history
|
||||
|
||||
result = self.ai_client.analyze_code(code, language)
|
||||
|
||||
# Check for errors
|
||||
is_error = result.startswith("Error:")
|
||||
|
||||
if is_error:
|
||||
print(f"Code Analysis Error: {result}")
|
||||
self.display_history.append({"role": "user", "content": f"Code analysis ({language})"})
|
||||
self.display_history.append({"role": "assistant", "content": result})
|
||||
return self.display_history
|
||||
|
||||
# Add to conversation only if successful
|
||||
self.conversation.add_user_message(f"Analyze {language} code")
|
||||
self.conversation.add_assistant_message(result)
|
||||
|
||||
# Add to display
|
||||
self.display_history.append({"role": "user", "content": f"Code analysis ({language})"})
|
||||
self.display_history.append({"role": "assistant", "content": result})
|
||||
|
||||
return self.display_history
|
||||
|
||||
def generate_linkedin_post(self, topic, tone):
|
||||
if not topic.strip():
|
||||
return self.display_history
|
||||
|
||||
result = self.ai_client.generate_linkedin_post(topic, tone)
|
||||
|
||||
# Check for errors
|
||||
is_error = result.startswith("Error:")
|
||||
|
||||
if is_error:
|
||||
print(f"LinkedIn Post Generation Error: {result}")
|
||||
self.display_history.append({"role": "user", "content": f"LinkedIn post ({tone}): {topic}"})
|
||||
self.display_history.append({"role": "assistant", "content": result})
|
||||
return self.display_history
|
||||
|
||||
# Add to conversation only if successful
|
||||
self.conversation.add_user_message(f"Generate LinkedIn post about: {topic}")
|
||||
self.conversation.add_assistant_message(result)
|
||||
|
||||
# Add to display
|
||||
self.display_history.append({"role": "user", "content": f"LinkedIn post ({tone}): {topic}"})
|
||||
self.display_history.append({"role": "assistant", "content": result})
|
||||
|
||||
return self.display_history
|
||||
|
||||
def create_interface(self):
|
||||
with gr.Blocks() as app:
|
||||
gr.Markdown("# AI Assistant")
|
||||
gr.Markdown("Chat with text or voice")
|
||||
|
||||
# Main chat
|
||||
chat = gr.Chatbot(type="messages", height=500)
|
||||
|
||||
# Input area
|
||||
with gr.Row():
|
||||
msg = gr.Textbox(
|
||||
label="Message",
|
||||
placeholder="Type or record...",
|
||||
scale=9,
|
||||
container=False
|
||||
)
|
||||
mic = gr.Audio(
|
||||
sources=["microphone"],
|
||||
type="filepath",
|
||||
label="Record",
|
||||
scale=1
|
||||
)
|
||||
|
||||
# Wire up events
|
||||
msg.submit(self.handle_text_message, msg, [chat, msg])
|
||||
mic.stop_recording(self.handle_voice_message, mic, [chat, mic])
|
||||
|
||||
# Code analysis tool
|
||||
with gr.Accordion("Code Analysis", open=False):
|
||||
code_input = gr.Textbox(label="Code", lines=8)
|
||||
lang_select = gr.Dropdown(
|
||||
choices=["python", "javascript", "java"],
|
||||
value="python",
|
||||
label="Language"
|
||||
)
|
||||
analyze_btn = gr.Button("Analyze")
|
||||
|
||||
analyze_btn.click(
|
||||
self.analyze_code,
|
||||
[code_input, lang_select],
|
||||
chat
|
||||
)
|
||||
|
||||
# LinkedIn post generator
|
||||
with gr.Accordion("LinkedIn Post Generator", open=False):
|
||||
topic_input = gr.Textbox(
|
||||
label="Topic",
|
||||
placeholder="What do you want to post about?",
|
||||
lines=2
|
||||
)
|
||||
tone_select = gr.Dropdown(
|
||||
choices=["professional", "casual", "inspirational", "educational"],
|
||||
value="professional",
|
||||
label="Tone"
|
||||
)
|
||||
generate_btn = gr.Button("Generate Post")
|
||||
|
||||
generate_btn.click(
|
||||
self.generate_linkedin_post,
|
||||
[topic_input, tone_select],
|
||||
chat
|
||||
)
|
||||
|
||||
return app
|
||||
Reference in New Issue
Block a user