Merge branch 'main' of github.com:ed-donner/llm_engineering

This commit is contained in:
Edward Donner
2025-01-05 12:51:27 -05:00
11 changed files with 3268 additions and 1 deletions

View File

@@ -0,0 +1,130 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 13,
"id": "147ce61d-b10e-478e-8300-2fb3101f617c",
"metadata": {},
"outputs": [],
"source": [
"# imports\n",
"\n",
"import os\n",
"from dotenv import load_dotenv\n",
"from openai import OpenAI\n",
"import anthropic\n",
"from IPython.display import Markdown, display, update_display"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "2dab29c1-3a8d-45bc-9f45-407419449ba9",
"metadata": {},
"outputs": [],
"source": [
"import google.generativeai"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5fb5b749-d84b-4f8c-bfb9-2f5c4e8a2daa",
"metadata": {},
"outputs": [],
"source": [
"load_dotenv()\n",
"# openai_api_key = os.getenv('OPENAI_API_KEY')\n",
"# anthropic_api_key = os.getenv('ANTHROPIC_API_KEY')\n",
"google_api_key = os.getenv('GOOGLE_API_KEY')\n",
"\n",
"if google_api_key:\n",
" print(f\"Google API Key exists and begins {google_api_key[:8]}\")\n",
"else:\n",
" print(\"Google API Key not set\")"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "d34ee171-2647-47cf-9336-2d016480656f",
"metadata": {},
"outputs": [],
"source": [
"google.generativeai.configure()"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "856212a1-d07a-400b-9cef-a198e22f26ac",
"metadata": {},
"outputs": [],
"source": [
"system_message = \"You are an assistant that is great at telling jokes\"\n",
"user_prompt = \"Tell a light-hearted joke for an audience of Data Scientists\""
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "47289056-cc2b-4d2d-9e18-ecd65c0f3232",
"metadata": {},
"outputs": [],
"source": [
"prompts = [\n",
" {\"role\": \"system\", \"content\": system_message},\n",
" {\"role\": \"user\", \"content\": user_prompt}\n",
" ]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6d331aaf-162b-499e-af7e-5e097e84f1bd",
"metadata": {},
"outputs": [],
"source": [
"# The API for Gemini has a slightly different structure.\n",
"# I've heard that on some PCs, this Gemini code causes the Kernel to crash.\n",
"# If that happens to you, please skip this cell and use the next cell instead - an alternative approach.\n",
"\n",
"gemini = google.generativeai.GenerativeModel(\n",
" model_name='gemini-1.5-flash',\n",
" system_instruction=system_message\n",
")\n",
"response = gemini.generate_content(user_prompt)\n",
"print(response.text)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b727ee91-92b8-4d62-9a03-1b85a76b905c",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.11"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -0,0 +1,393 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "1b89f103-fc49-487e-930e-14abff8bfab1",
"metadata": {},
"outputs": [],
"source": [
"# imports\n",
"\n",
"import os\n",
"import requests\n",
"from bs4 import BeautifulSoup\n",
"from typing import List\n",
"from dotenv import load_dotenv\n",
"from openai import OpenAI\n",
"import google.generativeai\n",
"import anthropic"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "1a40e64b-14c6-4589-a671-6817f9cb09f0",
"metadata": {},
"outputs": [],
"source": [
"import gradio as gr"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "c0990b15-313d-4cf8-bc5b-fc14d263ba27",
"metadata": {},
"outputs": [],
"source": [
"# Load environment variables in a file called .env\n",
"\n",
"load_dotenv()\n",
"os.environ['GOOGLE_API_KEY'] = os.getenv('GOOGLE_API_KEY', 'your-key-if-not-using-env')"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "66a38e1f-db7e-4697-aa9c-a303f9828531",
"metadata": {},
"outputs": [],
"source": [
"google.generativeai.configure()"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "beb9606e-9be9-4f2e-adfe-4e41fb99566e",
"metadata": {},
"outputs": [],
"source": [
"# A generic system message - no more snarky adversarial AIs!\n",
"\n",
"system_message = \"You are a helpful assistant\""
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "19ab23bc-59cf-48a3-8651-f7b1c52874db",
"metadata": {},
"outputs": [],
"source": [
"def message_gemini(prompt):\n",
" messages = [\n",
" {\"role\": \"system\", \"content\": system_message},\n",
" {\"role\": \"user\", \"content\": prompt}\n",
" ]\n",
" gemini = google.generativeai.GenerativeModel(\n",
" model_name='gemini-1.5-flash',\n",
" system_instruction=system_message\n",
")\n",
" response = gemini.generate_content(prompt)\n",
" return response.text\n",
"\n",
"\n",
"# gemini = google.generativeai.GenerativeModel(\n",
"# model_name='gemini-1.5-flash',\n",
"# system_instruction=system_message\n",
"# )\n",
"# response = gemini.generate_content(user_prompt)\n",
"# print(response.text)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8fe3c66c-d25d-4627-a401-d84c7d6613e7",
"metadata": {},
"outputs": [],
"source": [
"message_gemini(\"What is today's date?\")\n",
"# message_gemini(\"tell me a funny machine learning joke\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b27027ed-4bff-493c-a41e-8318003e0387",
"metadata": {},
"outputs": [],
"source": [
"import google.generativeai as genai\n",
"for model in genai.list_models():\n",
" print(model.name)"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "2f82d61b-a7cd-4bee-994d-2e83d0a01bfc",
"metadata": {},
"outputs": [],
"source": [
"# here's a simple function\n",
"\n",
"def shout(text):\n",
" print(f\"Shout has been called with input {text}\")\n",
" return text.upper()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5941fe3f-aab9-47ba-b29f-d99aa3b40aed",
"metadata": {},
"outputs": [],
"source": [
"shout(\"hello\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d6470847-1cce-4bf0-8364-199504a5335f",
"metadata": {},
"outputs": [],
"source": [
"# Define this variable and then pass js=force_dark_mode when creating the Interface\n",
"\n",
"force_dark_mode = \"\"\"\n",
"function refresh() {\n",
" const url = new URL(window.location);\n",
" if (url.searchParams.get('__theme') !== 'dark') {\n",
" url.searchParams.set('__theme', 'dark');\n",
" window.location.href = url.href;\n",
" }\n",
"}\n",
"\"\"\"\n",
"gr.Interface(fn=shout, inputs=\"textbox\", outputs=\"textbox\", flagging_mode=\"never\", js=force_dark_mode).launch()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "69715604-cc64-4563-967f-b5720462ac69",
"metadata": {},
"outputs": [],
"source": [
"gr.Interface(fn=shout, inputs=\"textbox\", outputs=\"textbox\", js=force_dark_mode).launch()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "dede1d8c-fb7a-456a-923b-e221eaa30bd9",
"metadata": {},
"outputs": [],
"source": [
"gr.Interface(fn=shout, inputs=\"textbox\", outputs=\"textbox\", flagging_mode=\"never\").launch(share=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "55ae11b9-e7af-449f-b737-48dd7dc1a5b2",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"view = gr.Interface(\n",
" fn=shout,\n",
" inputs=[gr.Textbox(label=\"Your message:\", lines=6)],\n",
" outputs=[gr.Textbox(label=\"Response:\", lines=8)],\n",
" flagging_mode=\"never\"\n",
")\n",
"view.launch()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "cba667cf-d270-426e-b940-a01083352ecb",
"metadata": {},
"outputs": [],
"source": [
"view = gr.Interface(\n",
" fn=message_gemini,\n",
" inputs=[gr.Textbox(label=\"Your message:\", lines=6)],\n",
" outputs=[gr.Textbox(label=\"Response:\", lines=8)],\n",
" flagging_mode=\"never\"\n",
")\n",
"view.launch()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b8bb7885-740f-41f0-95e3-dabe864cea14",
"metadata": {},
"outputs": [],
"source": [
"# Let's use Markdown\n",
"# Are you wondering why it makes any difference to set system_message when it's not referred to in the code below it?\n",
"# I'm taking advantage of system_message being a global variable, used back in the message_gpt function (go take a look)\n",
"# Not a great software engineering practice, but quite sommon during Jupyter Lab R&D!\n",
"\n",
"system_message = \"You are a helpful assistant that responds in markdown\"\n",
"\n",
"view = gr.Interface(\n",
" fn=message_gemini,\n",
" inputs=[gr.Textbox(label=\"Your message:\")],\n",
" outputs=[gr.Markdown(label=\"Response:\")],\n",
" flagging_mode=\"never\"\n",
")\n",
"view.launch()"
]
},
{
"cell_type": "code",
"execution_count": 29,
"id": "43d17b00-f4bc-45ad-a679-3112a170f5fb",
"metadata": {},
"outputs": [],
"source": [
"import google.generativeai as genai\n",
"\n",
"def stream_gemini(prompt):\n",
" gemini = genai.GenerativeModel(\n",
" model_name='gemini-1.5-flash',\n",
" safety_settings=None,\n",
" system_instruction=system_message\n",
" )\n",
"\n",
" response = gemini.generate_content(prompt, safety_settings=[\n",
" {\"category\": \"HARM_CATEGORY_DANGEROUS_CONTENT\", \"threshold\": \"BLOCK_NONE\"},\n",
" {\"category\": \"HARM_CATEGORY_SEXUALLY_EXPLICIT\", \"threshold\": \"BLOCK_NONE\"},\n",
" {\"category\": \"HARM_CATEGORY_HATE_SPEECH\", \"threshold\": \"BLOCK_NONE\"},\n",
" {\"category\": \"HARM_CATEGORY_HARASSMENT\", \"threshold\": \"BLOCK_NONE\"}], stream=True)\n",
" \n",
" result = \"\"\n",
" for chunk in response:\n",
" result += chunk.text\n",
" yield result\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "840f3d11-e66b-4b6b-9b98-70e0f02be9e6",
"metadata": {},
"outputs": [],
"source": [
"view = gr.Interface(\n",
" fn=stream_gemini,\n",
" inputs=[gr.Textbox(label=\"Your message:\")],\n",
" outputs=[gr.Markdown(label=\"Response:\")],\n",
" flagging_mode=\"never\"\n",
")\n",
"view.launch()"
]
},
{
"cell_type": "markdown",
"id": "ea8a0081-8d2e-4960-b479-7c1ef346f524",
"metadata": {},
"source": [
"# Building a company brochure generator\n",
"\n",
"Now you know how - it's simple!"
]
},
{
"cell_type": "code",
"execution_count": 32,
"id": "2d43360a-515e-4008-9eef-7a3c4e47cfba",
"metadata": {},
"outputs": [],
"source": [
"# A class to represent a Webpage\n",
"\n",
"class Website:\n",
" url: str\n",
" title: str\n",
" text: str\n",
"\n",
" def __init__(self, url):\n",
" self.url = url\n",
" response = requests.get(url)\n",
" self.body = response.content\n",
" soup = BeautifulSoup(self.body, 'html.parser')\n",
" self.title = soup.title.string if soup.title else \"No title found\"\n",
" for irrelevant in soup.body([\"script\", \"style\", \"img\", \"input\"]):\n",
" irrelevant.decompose()\n",
" self.text = soup.body.get_text(separator=\"\\n\", strip=True)\n",
"\n",
" def get_contents(self):\n",
" return f\"Webpage Title:\\n{self.title}\\nWebpage Contents:\\n{self.text}\\n\\n\""
]
},
{
"cell_type": "code",
"execution_count": 34,
"id": "08a07e55-b05d-4360-8e05-61dd39cc019b",
"metadata": {},
"outputs": [],
"source": [
"def stream_brochure(company_name, url, model, response_tone):\n",
" prompt = f\"Please generate a {response_tone} company brochure for {company_name}. Here is their landing page:\\n\"\n",
" prompt += Website(url).get_contents()\n",
" if model==\"GPT\":\n",
" result = stream_gpt(prompt)\n",
" elif model==\"Claude\":\n",
" result = stream_claude(prompt)\n",
" elif model==\"Gemini\":\n",
" result = stream_gemini(prompt)\n",
" else:\n",
" raise ValueError(\"Unknown model\")\n",
" yield from result"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d9554211-c832-4558-90c8-fceab95fd23c",
"metadata": {},
"outputs": [],
"source": [
"view = gr.Interface(\n",
" fn=stream_brochure,\n",
" inputs=[\n",
" gr.Textbox(label=\"Company name:\"),\n",
" gr.Textbox(label=\"Landing page URL including http:// or https://\"),\n",
" gr.Dropdown([\"GPT\", \"Claude\", \"Gemini\"], label=\"Select model\"),\n",
" gr.Dropdown([\"Informational\", \"Promotional\", \"Humorous\"], label=\"Select tone\")],\n",
" outputs=[gr.Markdown(label=\"Brochure:\")],\n",
" flagging_mode=\"never\"\n",
")\n",
"view.launch()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4d4e6efd-66e8-4388-bfc3-782bde4babfb",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.11"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -0,0 +1,310 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "75e2ef28-594f-4c18-9d22-c6b8cd40ead2",
"metadata": {},
"source": [
"# Day 3 - Conversational AI - aka Chatbot!"
]
},
{
"cell_type": "code",
"execution_count": 40,
"id": "70e39cd8-ec79-4e3e-9c26-5659d42d0861",
"metadata": {},
"outputs": [],
"source": [
"# imports\n",
"\n",
"import os\n",
"import requests\n",
"from bs4 import BeautifulSoup\n",
"from typing import List\n",
"from dotenv import load_dotenv\n",
"from openai import OpenAI\n",
"import google.generativeai\n",
"# import anthropic\n",
"import gradio as gr"
]
},
{
"cell_type": "code",
"execution_count": 41,
"id": "231605aa-fccb-447e-89cf-8b187444536a",
"metadata": {},
"outputs": [],
"source": [
"# Load environment variables in a file called .env\n",
"\n",
"load_dotenv()\n",
"os.environ['GOOGLE_API_KEY'] = os.getenv('GOOGLE_API_KEY', 'your-key-if-not-using-env')"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "6541d58e-2297-4de1-b1f7-77da1b98b8bb",
"metadata": {},
"outputs": [],
"source": [
"google.generativeai.configure()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "e16839b5-c03b-4d9d-add6-87a0f6f37575",
"metadata": {},
"outputs": [],
"source": [
"system_message = \"You are a helpful assistant\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ba2123e7-77ed-43b4-8c37-03658fb42b78",
"metadata": {},
"outputs": [],
"source": [
"system_message = \"You are an assistant that is great at telling jokes\"\n",
"user_prompt = \"Tell a light-hearted joke for an audience of Data Scientists\"\n",
"\n",
"prompts = [\n",
" {\"role\": \"system\", \"content\": system_message},\n",
" {\"role\": \"user\", \"content\": user_prompt}\n",
" ]\n",
"\n",
"# The API for Gemini has a slightly different structure.\n",
"# I've heard that on some PCs, this Gemini code causes the Kernel to crash.\n",
"# If that happens to you, please skip this cell and use the next cell instead - an alternative approach.\n",
"\n",
"gemini = google.generativeai.GenerativeModel(\n",
" model_name='gemini-1.5-flash',\n",
" system_instruction=system_message\n",
")\n",
"response = gemini.generate_content(user_prompt)\n",
"print(response.text)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "7b933ff3",
"metadata": {},
"outputs": [],
"source": [
"import google.generativeai as genai\n",
"\n",
"model = genai.GenerativeModel('gemini-1.5-flash')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "91578b16",
"metadata": {},
"outputs": [],
"source": [
"chat = model.start_chat(history=[])\n",
"response = chat.send_message('Hello! My name is Shardul.')\n",
"print(response.text)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7c4bc38f",
"metadata": {},
"outputs": [],
"source": [
"response = chat.send_message('Can you tell something interesting about star wars?')\n",
"print(response.text)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "337bee91",
"metadata": {},
"outputs": [],
"source": [
"response = chat.send_message('Do you remember what my name is?')\n",
"print(response.text)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "bcaf4d95",
"metadata": {},
"outputs": [],
"source": [
"chat.history"
]
},
{
"cell_type": "markdown",
"id": "98e97227-f162-4d1a-a0b2-345ff248cbe7",
"metadata": {},
"source": [
"# Please read this! A change from the video:\n",
"\n",
"In the video, I explain how we now need to write a function called:\n",
"\n",
"`chat(message, history)`\n",
"\n",
"Which expects to receive `history` in a particular format, which we need to map to the OpenAI format before we call OpenAI:\n",
"\n",
"```\n",
"[\n",
" {\"role\": \"system\", \"content\": \"system message here\"},\n",
" {\"role\": \"user\", \"content\": \"first user prompt here\"},\n",
" {\"role\": \"assistant\", \"content\": \"the assistant's response\"},\n",
" {\"role\": \"user\", \"content\": \"the new user prompt\"},\n",
"]\n",
"```\n",
"\n",
"But Gradio has been upgraded! Now it will pass in `history` in the exact OpenAI format, perfect for us to send straight to OpenAI.\n",
"\n",
"So our work just got easier!\n",
"\n",
"We will write a function `chat(message, history)` where: \n",
"**message** is the prompt to use \n",
"**history** is the past conversation, in OpenAI format \n",
"\n",
"We will combine the system message, history and latest message, then call OpenAI."
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "1eacc8a4-4b48-4358-9e06-ce0020041bc1",
"metadata": {},
"outputs": [],
"source": [
"def chat(message, history):\n",
" relevant_system_message = system_message\n",
" if 'belt' in message:\n",
" relevant_system_message += \" The store does not sell belts; if you are asked for belts, be sure to point out other items on sale.\"\n",
" \n",
" messages = [{\"role\": \"system\", \"content\": relevant_system_message}] + history + [{\"role\": \"user\", \"content\": message}]\n",
"\n",
" stream = gemini.generate_content(message, safety_settings=[\n",
" {\"category\": \"HARM_CATEGORY_DANGEROUS_CONTENT\", \"threshold\": \"BLOCK_NONE\"},\n",
" {\"category\": \"HARM_CATEGORY_SEXUALLY_EXPLICIT\", \"threshold\": \"BLOCK_NONE\"},\n",
" {\"category\": \"HARM_CATEGORY_HATE_SPEECH\", \"threshold\": \"BLOCK_NONE\"},\n",
" {\"category\": \"HARM_CATEGORY_HARASSMENT\", \"threshold\": \"BLOCK_NONE\"}], stream=True)\n",
"\n",
" response = \"\"\n",
" for chunk in stream:\n",
" print(chunk) # Print the chunk to understand its structure\n",
" # Adjust the following line based on the actual structure of the chunk\n",
" response += chunk.get('content', '') or ''\n",
" yield response"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f6e745e1",
"metadata": {},
"outputs": [],
"source": [
"chat_model = genai.GenerativeModel('gemini-1.5-flash')\n",
"chat = chat_model.start_chat()\n",
"\n",
"msg = \"what is gen ai\"\n",
"stream = chat.send_message(msg, stream=True)\n",
"# print(\"Response:\", stream.text)\n",
"for chunk in stream:\n",
" print(chunk.text)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "dce941ee",
"metadata": {},
"outputs": [],
"source": [
"import time\n",
"\n",
"chat = model.start_chat(history=[])\n",
"\n",
"# Transform Gradio history to Gemini format\n",
"def transform_history(history):\n",
" new_history = []\n",
" for chat in history:\n",
" new_history.append({\"parts\": [{\"text\": chat[0]}], \"role\": \"user\"})\n",
" new_history.append({\"parts\": [{\"text\": chat[1]}], \"role\": \"model\"})\n",
" return new_history\n",
"\n",
"def response(message, history):\n",
" global chat\n",
" # The history will be the same as in Gradio, the 'Undo' and 'Clear' buttons will work correctly.\n",
" chat.history = transform_history(history)\n",
" response = chat.send_message(message)\n",
" response.resolve()\n",
"\n",
" # Each character of the answer is displayed\n",
" for i in range(len(response.text)):\n",
" time.sleep(0.01)\n",
" yield response.text[: i+1]\n",
"\n",
"gr.ChatInterface(response,\n",
" textbox=gr.Textbox(placeholder=\"Question to Gemini\")).launch(debug=True)"
]
},
{
"cell_type": "markdown",
"id": "82a57ee0-b945-48a7-a024-01b56a5d4b3e",
"metadata": {},
"source": [
"<table style=\"margin: 0; text-align: left;\">\n",
" <tr>\n",
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
" <img src=\"../business.jpg\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
" </td>\n",
" <td>\n",
" <h2 style=\"color:#181;\">Business Applications</h2>\n",
" <span style=\"color:#181;\">Conversational Assistants are of course a hugely common use case for Gen AI, and the latest frontier models are remarkably good at nuanced conversation. And Gradio makes it easy to have a user interface. Another crucial skill we covered is how to use prompting to provide context, information and examples.\n",
"<br/><br/>\n",
"Consider how you could apply an AI Assistant to your business, and make yourself a prototype. Use the system prompt to give context on your business, and set the tone for the LLM.</span>\n",
" </td>\n",
" </tr>\n",
"</table>"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6dfb9e21-df67-4c2b-b952-5e7e7961b03d",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "llms",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.11"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -0,0 +1,762 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "ddfa9ae6-69fe-444a-b994-8c4c5970a7ec",
"metadata": {},
"source": [
"# Project - Airline AI Assistant\n",
"\n",
"We'll now bring together what we've learned to make an AI Customer Support assistant for an Airline"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8b50bbe2-c0b1-49c3-9a5c-1ba7efa2bcb4",
"metadata": {},
"outputs": [],
"source": [
"# imports\n",
"\n",
"import os\n",
"import json\n",
"from dotenv import load_dotenv\n",
"from openai import OpenAI\n",
"import gradio as gr"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "747e8786-9da8-4342-b6c9-f5f69c2e22ae",
"metadata": {},
"outputs": [],
"source": [
"# Initialization\n",
"\n",
"load_dotenv()\n",
"\n",
"openai_api_key = os.getenv('OPENAI_API_KEY')\n",
"if openai_api_key:\n",
" print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
"else:\n",
" print(\"OpenAI API Key not set\")\n",
" \n",
"MODEL = \"gpt-4o-mini\"\n",
"openai = OpenAI()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0a521d84-d07c-49ab-a0df-d6451499ed97",
"metadata": {},
"outputs": [],
"source": [
"system_message = \"You are a helpful assistant for an Airline called FlightAI. \"\n",
"system_message += \"Give short, courteous answers, no more than 1 sentence. \"\n",
"system_message += \"Always be accurate. If you don't know the answer, say so.\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "61a2a15d-b559-4844-b377-6bd5cb4949f6",
"metadata": {},
"outputs": [],
"source": [
"# This function looks rather simpler than the one from my video, because we're taking advantage of the latest Gradio updates\n",
"\n",
"def chat(message, history):\n",
" messages = [{\"role\": \"system\", \"content\": system_message}] + history + [{\"role\": \"user\", \"content\": message}]\n",
" response = openai.chat.completions.create(model=MODEL, messages=messages)\n",
" return response.choices[0].message.content\n",
"\n",
"gr.ChatInterface(fn=chat, type=\"messages\").launch()"
]
},
{
"cell_type": "markdown",
"id": "36bedabf-a0a7-4985-ad8e-07ed6a55a3a4",
"metadata": {},
"source": [
"## Tools\n",
"\n",
"Tools are an incredibly powerful feature provided by the frontier LLMs.\n",
"\n",
"With tools, you can write a function, and have the LLM call that function as part of its response.\n",
"\n",
"Sounds almost spooky.. we're giving it the power to run code on our machine?\n",
"\n",
"Well, kinda."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0696acb1-0b05-4dc2-80d5-771be04f1fb2",
"metadata": {},
"outputs": [],
"source": [
"# Let's start by making a useful function\n",
"\n",
"ticket_prices = {\"london\": \"$799\", \"paris\": \"$899\", \"tokyo\": \"$1400\", \"berlin\": \"$499\"}\n",
"\n",
"def get_ticket_price(destination_city):\n",
" print(f\"Tool get_ticket_price called for {destination_city}\")\n",
" city = destination_city.lower()\n",
" return ticket_prices.get(city, \"Unknown\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "80ca4e09-6287-4d3f-997d-fa6afbcf6c85",
"metadata": {},
"outputs": [],
"source": [
"get_ticket_price(\"London\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4afceded-7178-4c05-8fa6-9f2085e6a344",
"metadata": {},
"outputs": [],
"source": [
"# There's a particular dictionary structure that's required to describe our function:\n",
"\n",
"price_function = {\n",
" \"name\": \"get_ticket_price\",\n",
" \"description\": \"Get the price of a return ticket to the destination city. Call this whenever you need to know the ticket price, for example when a customer asks 'How much is a ticket to this city'\",\n",
" \"parameters\": {\n",
" \"type\": \"object\",\n",
" \"properties\": {\n",
" \"destination_city\": {\n",
" \"type\": \"string\",\n",
" \"description\": \"The city that the customer wants to travel to\",\n",
" },\n",
" },\n",
" \"required\": [\"destination_city\"],\n",
" \"additionalProperties\": False\n",
" }\n",
"}"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "bdca8679-935f-4e7f-97e6-e71a4d4f228c",
"metadata": {},
"outputs": [],
"source": [
"# And this is included in a list of tools:\n",
"\n",
"tools = [{\"type\": \"function\", \"function\": price_function}]"
]
},
{
"cell_type": "markdown",
"id": "c3d3554f-b4e3-4ce7-af6f-68faa6dd2340",
"metadata": {},
"source": [
"## Getting OpenAI to use our Tool\n",
"\n",
"There's some fiddly stuff to allow OpenAI \"to call our tool\"\n",
"\n",
"What we actually do is give the LLM the opportunity to inform us that it wants us to run the tool.\n",
"\n",
"Here's how the new chat function looks:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ce9b0744-9c78-408d-b9df-9f6fd9ed78cf",
"metadata": {},
"outputs": [],
"source": [
"def chat(message, history):\n",
" messages = [{\"role\": \"system\", \"content\": system_message}] + history + [{\"role\": \"user\", \"content\": message}]\n",
" response = openai.chat.completions.create(model=MODEL, messages=messages, tools=tools)\n",
"\n",
" if response.choices[0].finish_reason==\"tool_calls\":\n",
" message = response.choices[0].message\n",
" response, city = handle_tool_call(message)\n",
" messages.append(message)\n",
" messages.append(response)\n",
" response = openai.chat.completions.create(model=MODEL, messages=messages)\n",
" \n",
" return response.choices[0].message.content"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b0992986-ea09-4912-a076-8e5603ee631f",
"metadata": {},
"outputs": [],
"source": [
"# We have to write that function handle_tool_call:\n",
"\n",
"def handle_tool_call(message):\n",
"\n",
" available_functions = {\n",
" \"get_ticket_price\": get_ticket_price,\n",
" }\n",
"\n",
" tool_call = message.tool_calls[0]\n",
" function_to_call = available_functions.get(tool_call.function.name)\n",
" arguments = json.loads(tool_call.function.arguments)\n",
" city = arguments.get('destination_city')\n",
" price = function_to_call(city)\n",
" response = {\n",
" \"role\": \"tool\",\n",
" \"content\": json.dumps({\"destination_city\": city,\"price\": price}),\n",
" \"tool_call_id\": tool_call.id\n",
" }\n",
" return response, city"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f4be8a71-b19e-4c2f-80df-f59ff2661f14",
"metadata": {},
"outputs": [],
"source": [
"gr.ChatInterface(fn=chat, type=\"messages\").launch()"
]
},
{
"cell_type": "markdown",
"id": "473e5b39-da8f-4db1-83ae-dbaca2e9531e",
"metadata": {},
"source": [
"# Let's go multi-modal!!\n",
"\n",
"We can use DALL-E-3, the image generation model behind GPT-4o, to make us some images\n",
"\n",
"Let's put this in a function called artist.\n",
"\n",
"### Price alert: each time I generate an image it costs about 4 cents - don't go crazy with images!"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2c27c4ba-8ed5-492f-add1-02ce9c81d34c",
"metadata": {},
"outputs": [],
"source": [
"# Some imports for handling images\n",
"\n",
"import base64\n",
"from io import BytesIO\n",
"from PIL import Image"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "773a9f11-557e-43c9-ad50-56cbec3a0f8f",
"metadata": {},
"outputs": [],
"source": [
"def artist(city):\n",
" image_response = openai.images.generate(\n",
" model=\"dall-e-3\",\n",
" prompt=f\"An image representing a vacation in {city}, showing tourist spots and everything unique about {city}, in a vibrant pop-art style\",\n",
" size=\"1024x1024\",\n",
" n=1,\n",
" response_format=\"b64_json\",\n",
" )\n",
" image_base64 = image_response.data[0].b64_json\n",
" image_data = base64.b64decode(image_base64)\n",
" return Image.open(BytesIO(image_data))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d877c453-e7fb-482a-88aa-1a03f976b9e9",
"metadata": {},
"outputs": [],
"source": [
"image = artist(\"New York City\")\n",
"display(image)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "728a12c5-adc3-415d-bb05-82beb73b079b",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"id": "f4975b87-19e9-4ade-a232-9b809ec75c9a",
"metadata": {},
"source": [
"## Audio (NOTE - Audio is optional for this course - feel free to skip Audio if it causes trouble!)\n",
"\n",
"And let's make a function talker that uses OpenAI's speech model to generate Audio\n",
"\n",
"### Troubleshooting Audio issues\n",
"\n",
"If you have any problems running this code below (like a FileNotFound error, or a warning of a missing package), you may need to install FFmpeg, a very popular audio utility.\n",
"\n",
"**For PC Users**\n",
"\n",
"Detailed instructions are [here](https://chatgpt.com/share/6724efee-6b0c-8012-ac5e-72e2e3885905) and summary instructions:\n",
"\n",
"1. Download FFmpeg from the official website: https://ffmpeg.org/download.html\n",
"\n",
"2. Extract the downloaded files to a location on your computer (e.g., `C:\\ffmpeg`)\n",
"\n",
"3. Add the FFmpeg bin folder to your system PATH:\n",
"- Right-click on 'This PC' or 'My Computer' and select 'Properties'\n",
"- Click on 'Advanced system settings'\n",
"- Click on 'Environment Variables'\n",
"- Under 'System variables', find and edit 'Path'\n",
"- Add a new entry with the path to your FFmpeg bin folder (e.g., `C:\\ffmpeg\\bin`)\n",
"- Restart your command prompt, and within Jupyter Lab do Kernel -> Restart kernel, to pick up the changes\n",
"\n",
"4. Open a new command prompt and run this to make sure it's installed OK\n",
"`ffmpeg -version`\n",
"\n",
"**For Mac Users**\n",
"\n",
"1. Install homebrew if you don't have it already by running this in a Terminal window and following any instructions: \n",
"`/bin/bash -c \"$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)\"`\n",
"\n",
"2. Then install FFmpeg with `brew install ffmpeg`\n",
"\n",
"3. Verify your installation with `ffmpeg -version` and if everything is good, within Jupyter Lab do Kernel -> Restart kernel to pick up the changes\n",
"\n",
"Message me or email me at ed@edwarddonner.com with any problems!"
]
},
{
"cell_type": "markdown",
"id": "4cc90e80-c96e-4dd4-b9d6-386fe2b7e797",
"metadata": {},
"source": [
"## To check you now have ffmpeg and can access it here\n",
"\n",
"Excecute the next cell to see if you get a version number. (Putting an exclamation mark before something in Jupyter Lab tells it to run it as a terminal command rather than python code).\n",
"\n",
"If this doesn't work, you may need to actually save and close down your Jupyter lab, and start it again from a new Terminal window (Mac) or Anaconda prompt (PC), remembering to activate the llms environment. This ensures you pick up ffmpeg.\n",
"\n",
"And if that doesn't work, please contact me!"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7b3be0fb-1d34-4693-ab6f-dbff190afcd7",
"metadata": {},
"outputs": [],
"source": [
"!ffmpeg -version\n",
"!ffprobe -version\n",
"!ffplay -version"
]
},
{
"cell_type": "markdown",
"id": "d91d3f8f-e505-4e3c-a87c-9e42ed823db6",
"metadata": {},
"source": [
"# For Mac users - and possibly many PC users too\n",
"\n",
"This version should work fine for you. It might work for Windows users too, but you might get a Permissions error writing to a temp file. If so, see the next section!\n",
"\n",
"As always, if you have problems, please contact me! (You could also comment out the audio talker() in the later code if you're less interested in audio generation)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ffbfe93b-5e86-4e68-ba71-b301cd5230db",
"metadata": {},
"outputs": [],
"source": [
"from pydub import AudioSegment\n",
"from pydub.playback import play\n",
"\n",
"def talker(message):\n",
" response = openai.audio.speech.create(\n",
" model=\"tts-1\",\n",
" voice=\"onyx\", # Also, try replacing onyx with alloy\n",
" input=message\n",
" )\n",
" \n",
" audio_stream = BytesIO(response.content)\n",
" audio = AudioSegment.from_file(audio_stream, format=\"mp3\")\n",
" play(audio)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b88d775d-d357-4292-a1ad-5dc5ed567281",
"metadata": {},
"outputs": [],
"source": [
"talker(\"Well, hi there\")"
]
},
{
"cell_type": "markdown",
"id": "ad89a9bd-bb1e-4bbb-a49a-83af5f500c24",
"metadata": {},
"source": [
"# For Windows users (or any Mac users with problems above)\n",
"\n",
"## First try the Mac version above, but if you get a permissions error writing to a temp file, then this code should work instead.\n",
"\n",
"A collaboration between students Mark M. and Patrick H. and Claude got this resolved!\n",
"\n",
"Below are 4 variations - hopefully one of them will work on your PC. If not, message me please!\n",
"\n",
"And for Mac people - all 3 of the below work on my Mac too - please try these if the Mac version gave you problems.\n",
"\n",
"## PC Variation 1"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d104b96a-02ca-4159-82fe-88e0452aa479",
"metadata": {},
"outputs": [],
"source": [
"import base64\n",
"from io import BytesIO\n",
"from PIL import Image\n",
"from IPython.display import Audio, display\n",
"\n",
"def talker(message):\n",
" response = openai.audio.speech.create(\n",
" model=\"tts-1\",\n",
" voice=\"onyx\",\n",
" input=message)\n",
"\n",
" audio_stream = BytesIO(response.content)\n",
" output_filename = \"output_audio.mp3\"\n",
" with open(output_filename, \"wb\") as f:\n",
" f.write(audio_stream.read())\n",
"\n",
" # Play the generated audio\n",
" display(Audio(output_filename, autoplay=True))\n",
"\n",
"talker(\"Well, hi there\")"
]
},
{
"cell_type": "markdown",
"id": "3a5d11f4-bbd3-43a1-904d-f684eb5f3e3a",
"metadata": {},
"source": [
"## PC Variation 2"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d59c8ebd-79c5-498a-bdf2-3a1c50d91aa0",
"metadata": {},
"outputs": [],
"source": [
"import tempfile\n",
"import subprocess\n",
"from io import BytesIO\n",
"from pydub import AudioSegment\n",
"import time\n",
"\n",
"def play_audio(audio_segment):\n",
" temp_dir = tempfile.gettempdir()\n",
" temp_path = os.path.join(temp_dir, \"temp_audio.wav\")\n",
" try:\n",
" audio_segment.export(temp_path, format=\"wav\")\n",
" time.sleep(3) # Student Dominic found that this was needed. You could also try commenting out to see if not needed on your PC\n",
" subprocess.call([\n",
" \"ffplay\",\n",
" \"-nodisp\",\n",
" \"-autoexit\",\n",
" \"-hide_banner\",\n",
" temp_path\n",
" ], stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)\n",
" finally:\n",
" try:\n",
" os.remove(temp_path)\n",
" except Exception:\n",
" pass\n",
" \n",
"def talker(message):\n",
" response = openai.audio.speech.create(\n",
" model=\"tts-1\",\n",
" voice=\"onyx\", # Also, try replacing onyx with alloy\n",
" input=message\n",
" )\n",
" audio_stream = BytesIO(response.content)\n",
" audio = AudioSegment.from_file(audio_stream, format=\"mp3\")\n",
" play_audio(audio)\n",
"\n",
"talker(\"Well hi there\")"
]
},
{
"cell_type": "markdown",
"id": "96f90e35-f71e-468e-afea-07b98f74dbcf",
"metadata": {},
"source": [
"## PC Variation 3"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8597c7f8-7b50-44ad-9b31-db12375cd57b",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"from pydub import AudioSegment\n",
"from pydub.playback import play\n",
"from io import BytesIO\n",
"\n",
"def talker(message):\n",
" # Set a custom directory for temporary files on Windows\n",
" custom_temp_dir = os.path.expanduser(\"~/Documents/temp_audio\")\n",
" os.environ['TEMP'] = custom_temp_dir # You can also use 'TMP' if necessary\n",
" \n",
" # Create the folder if it doesn't exist\n",
" if not os.path.exists(custom_temp_dir):\n",
" os.makedirs(custom_temp_dir)\n",
" \n",
" response = openai.audio.speech.create(\n",
" model=\"tts-1\",\n",
" voice=\"onyx\", # Also, try replacing onyx with alloy\n",
" input=message\n",
" )\n",
" \n",
" audio_stream = BytesIO(response.content)\n",
" audio = AudioSegment.from_file(audio_stream, format=\"mp3\")\n",
"\n",
" play(audio)\n",
"\n",
"talker(\"Well hi there\")"
]
},
{
"cell_type": "markdown",
"id": "e821224c-b069-4f9b-9535-c15fdb0e411c",
"metadata": {},
"source": [
"## PC Variation 4\n",
"\n",
"### Let's try a completely different sound library\n",
"\n",
"First run the next cell to install a new library, then try the cell below it."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "69d3c0d9-afcc-49e3-b829-9c9869d8b472",
"metadata": {},
"outputs": [],
"source": [
"!pip install simpleaudio"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "28f9cc99-36b7-4554-b3f4-f2012f614a13",
"metadata": {},
"outputs": [],
"source": [
"from pydub import AudioSegment\n",
"from io import BytesIO\n",
"import tempfile\n",
"import os\n",
"import simpleaudio as sa\n",
"\n",
"def talker(message):\n",
" response = openai.audio.speech.create(\n",
" model=\"tts-1\",\n",
" voice=\"onyx\", # Also, try replacing onyx with alloy\n",
" input=message\n",
" )\n",
" \n",
" audio_stream = BytesIO(response.content)\n",
" audio = AudioSegment.from_file(audio_stream, format=\"mp3\")\n",
"\n",
" # Create a temporary file in a folder where you have write permissions\n",
" with tempfile.NamedTemporaryFile(suffix=\".wav\", delete=False, dir=os.path.expanduser(\"~/Documents\")) as temp_audio_file:\n",
" temp_file_name = temp_audio_file.name\n",
" audio.export(temp_file_name, format=\"wav\")\n",
" \n",
" # Load and play audio using simpleaudio\n",
" wave_obj = sa.WaveObject.from_wave_file(temp_file_name)\n",
" play_obj = wave_obj.play()\n",
" play_obj.wait_done() # Wait for playback to finish\n",
"\n",
" # Clean up the temporary file afterward\n",
" os.remove(temp_file_name)\n",
" \n",
"talker(\"Well hi there\")"
]
},
{
"cell_type": "markdown",
"id": "7986176b-cd04-495f-a47f-e057b0e462ed",
"metadata": {},
"source": [
"## PC Users - if none of those 4 variations worked!\n",
"\n",
"Please get in touch with me. I'm sorry this is causing problems! We'll figure it out.\n",
"\n",
"Alternatively: playing audio from your PC isn't super-critical for this course, and you can feel free to focus on image generation and skip audio for now, or come back to it later."
]
},
{
"cell_type": "markdown",
"id": "1d48876d-c4fa-46a8-a04f-f9fadf61fb0d",
"metadata": {},
"source": [
"# Our Agent Framework\n",
"\n",
"The term 'Agentic AI' and Agentization is an umbrella term that refers to a number of techniques, such as:\n",
"\n",
"1. Breaking a complex problem into smaller steps, with multiple LLMs carrying out specialized tasks\n",
"2. The ability for LLMs to use Tools to give them additional capabilities\n",
"3. The 'Agent Environment' which allows Agents to collaborate\n",
"4. An LLM can act as the Planner, dividing bigger tasks into smaller ones for the specialists\n",
"5. The concept of an Agent having autonomy / agency, beyond just responding to a prompt - such as Memory\n",
"\n",
"We're showing 1 and 2 here, and to a lesser extent 3 and 5. In week 8 we will do the lot!"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ba820c95-02f5-499e-8f3c-8727ee0a6c0c",
"metadata": {},
"outputs": [],
"source": [
"def chat(history):\n",
" messages = [{\"role\": \"system\", \"content\": system_message}] + history\n",
" response = openai.chat.completions.create(model=MODEL, messages=messages, tools=tools)\n",
" image = None\n",
" \n",
" if response.choices[0].finish_reason==\"tool_calls\":\n",
" message = response.choices[0].message\n",
" response, city = handle_tool_call(message)\n",
" messages.append(message)\n",
" messages.append(response)\n",
" image = artist(city)\n",
" response = openai.chat.completions.create(model=MODEL, messages=messages)\n",
" \n",
" reply = response.choices[0].message.content\n",
" history += [{\"role\":\"assistant\", \"content\":reply}]\n",
"\n",
" # Comment out or delete the next line if you'd rather skip Audio for now..\n",
" talker(reply)\n",
" \n",
" return history, image"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f38d0d27-33bf-4992-a2e5-5dbed973cde7",
"metadata": {},
"outputs": [],
"source": [
"# More involved Gradio code as we're not using the preset Chat interface!\n",
"# Passing in inbrowser=True in the last line will cause a Gradio window to pop up immediately.\n",
"\n",
"with gr.Blocks() as ui:\n",
" with gr.Row():\n",
" chatbot = gr.Chatbot(height=500, type=\"messages\")\n",
" image_output = gr.Image(height=500)\n",
" with gr.Row():\n",
" entry = gr.Textbox(label=\"Chat with our AI Assistant:\")\n",
" with gr.Row():\n",
" clear = gr.Button(\"Clear\")\n",
"\n",
" def do_entry(message, history):\n",
" history += [{\"role\":\"user\", \"content\":message}]\n",
" return \"\", history\n",
"\n",
" entry.submit(do_entry, inputs=[entry, chatbot], outputs=[entry, chatbot]).then(\n",
" chat, inputs=chatbot, outputs=[chatbot, image_output]\n",
" )\n",
" clear.click(lambda: None, inputs=None, outputs=chatbot, queue=False)\n",
"\n",
"ui.launch(inbrowser=True)"
]
},
{
"cell_type": "markdown",
"id": "226643d2-73e4-4252-935d-86b8019e278a",
"metadata": {},
"source": [
"# Exercises and Business Applications\n",
"\n",
"Add in more tools - perhaps to simulate actually booking a flight. A student has done this and provided their example in the community contributions folder.\n",
"\n",
"Next: take this and apply it to your business. Make a multi-modal AI assistant with tools that could carry out an activity for your work. A customer support assistant? New employee onboarding assistant? So many possibilities! Also, see the week2 end of week Exercise in the separate Notebook."
]
},
{
"cell_type": "markdown",
"id": "7e795560-1867-42db-a256-a23b844e6fbe",
"metadata": {},
"source": [
"<table style=\"margin: 0; text-align: left;\">\n",
" <tr>\n",
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
" <img src=\"../thankyou.jpg\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
" </td>\n",
" <td>\n",
" <h2 style=\"color:#090;\">I have a special request for you</h2>\n",
" <span style=\"color:#090;\">\n",
" My editor tells me that it makes a HUGE difference when students rate this course on Udemy - it's one of the main ways that Udemy decides whether to show it to others. If you're able to take a minute to rate this, I'd be so very grateful! And regardless - always please reach out to me at ed@edwarddonner.com if I can help at any point.\n",
" </span>\n",
" </td>\n",
" </tr>\n",
"</table>"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.11"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -0,0 +1,444 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Code tested in google colab with T4 GPU"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "bK-WkZmI_L4S"
},
"outputs": [],
"source": [
"!pip install -q requests torch bitsandbytes transformers sentencepiece accelerate openai httpx==0.27.2"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Anm0jUBC_dQF"
},
"outputs": [],
"source": [
"import os\n",
"import requests\n",
"from IPython.display import Markdown, display, update_display\n",
"from openai import OpenAI\n",
"from google.colab import drive\n",
"from huggingface_hub import login\n",
"from google.colab import userdata\n",
"from transformers import AutoTokenizer, AutoModelForCausalLM, TextStreamer, BitsAndBytesConfig\n",
"import torch\n",
"import json"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "GsKyLRam_hpi"
},
"outputs": [],
"source": [
"LLAMA = \"meta-llama/Meta-Llama-3.1-8B-Instruct\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "AWo-zjJJAIIF"
},
"outputs": [],
"source": [
"hf_token = userdata.get('HF_TOKEN')\n",
"login(hf_token, add_to_git_credential=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "TSeMKC4S7Ip6"
},
"outputs": [],
"source": [
"# Utility Functions ::\n",
"\n",
"def get_tokenizer(model_name):\n",
" \"\"\"\n",
" Args:\n",
" model_name: LLM model name\n",
"\n",
" Returns:\n",
" Tokenizer\n",
" \"\"\"\n",
" tokenizer = AutoTokenizer.from_pretrained(model_name)\n",
" tokenizer.pad_token = tokenizer.eos_token\n",
"\n",
" return tokenizer\n",
"\n",
"\n",
"def get_model(model_name):\n",
" \"\"\"\n",
" Args:\n",
" model_name: LLM model name\n",
"\n",
" Returns:\n",
" Model\n",
" \"\"\"\n",
" quant_config = BitsAndBytesConfig(\n",
" load_in_4bit=True,\n",
" bnb_4bit_use_double_quant=True,\n",
" bnb_4bit_compute_dtype=torch.bfloat16,\n",
" bnb_4bit_quant_type=\"nf4\"\n",
" )\n",
"\n",
" model = AutoModelForCausalLM.from_pretrained(model_name, device_map=\"auto\", quantization_config=quant_config)\n",
"\n",
" return model\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "O_mUtibSJFWt"
},
"outputs": [],
"source": [
"tokenizer = get_tokenizer(LLAMA)\n",
"model = get_model(LLAMA)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Mc0RE4XM_2hW"
},
"outputs": [],
"source": [
"\n",
"def parse_response(inputs, outputs):\n",
" \"\"\"\n",
" Args:\n",
" inputs: Input Tokens, pt tensors\n",
" outputs: Model generated output token\n",
"\n",
" Returns:\n",
" response\n",
" \"\"\"\n",
" full_input =(tokenizer.batch_decode(inputs, skip_special_tokens=True)[0])\n",
" full_outputs=tokenizer.batch_decode(outputs, skip_special_tokens=True)\n",
" response = full_outputs[0][len(full_input):]\n",
"\n",
" return response\n",
"\n",
"# Tools Functions:\n",
"\n",
"def get_tools_response(tools_params):\n",
" function_name = tools_params['name']\n",
" arguments = tools_params['arguments']\n",
" location = arguments['location']\n",
"\n",
" if function_name == 'get_current_temperature':\n",
" response = get_current_temperature(location)\n",
" return response\n",
" elif function_name == 'get_current_wind_speed':\n",
" response = get_current_wind_speed(location)\n",
" return response\n",
"\n",
"\n",
"def get_current_temperature(location: str) -> float:\n",
" \"\"\"\n",
" Get the current temperature at a location.\n",
"\n",
" Args:\n",
" location: The location to get the temperature for, in the format \"City, Country\"\n",
" Returns:\n",
" The current temperature at the specified location in the specified units, as a float.\n",
" \"\"\"\n",
" if location == \"Bangalore, India\": \n",
" return 22 # for testing purpose, please replace with your logic\n",
"\n",
"\n",
"def get_current_wind_speed(location: str) -> str:\n",
" \"\"\"\n",
" Get the current wind speed at a given location.\n",
"\n",
" Args:\n",
" location: The location to get the wind speed for, in the format \"City, Country\"\n",
" Returns:\n",
" The current wind speed at the given location in the specified units, as a string.\n",
" \"\"\"\n",
" return 6 # for testing purpose, please replace with your logic\n",
"\n",
"\n",
"def get_llm_response(message):\n",
"\n",
" messages = [\n",
" {\"role\": \"system\", \"content\": \"\"\"\n",
" You are an helpful assistant that responds to weather and wind queries. Please provide accurate answers.\n",
" Follow instructions:\n",
" 1. Please provide courteous answers.\n",
" 2. If you do not know the answer say so.\n",
" 3. Do not provide any explanations or suggestions.\n",
" 4. Provide the response in no more than 1 sentence.\n",
" \"\"\"\n",
" },\n",
" ]\n",
" message = {\"role\": \"user\", \"content\": message}\n",
"\n",
" messages.append(message)\n",
"\n",
"\n",
" inputs = tokenizer.apply_chat_template(messages, tools=[get_current_temperature, get_current_wind_speed], add_generation_prompt=True, return_tensors=\"pt\").to(\"cuda\")\n",
"\n",
" #streamer = TextStreamer(tokenizer) # include to check the output of model, only for debug\n",
" outputs = model.generate(inputs, max_new_tokens=2000 )#, streamer=streamer ) # , include to check the output of model, only for debug\n",
"\n",
" model_response = parse_response(inputs, outputs)\n",
"\n",
" tool_call = json.loads(model_response.replace(\"parameters\", \"arguments\"))\n",
" messages.append({\"role\": \"assistant\", \"tool_calls\": [{\"type\": \"function\", \"function\": tool_call}]})\n",
"\n",
" response = get_tools_response(tool_call)\n",
"\n",
" messages.append({\"role\": \"tool\", \"name\": tool_call[\"name\"], \"content\": response})\n",
"\n",
" inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors=\"pt\").to(\"cuda\")\n",
" outputs = model.generate(inputs, max_new_tokens=200)\n",
"\n",
" response = parse_response(inputs, outputs)\n",
"\n",
" return response\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "AKGLvmnsCrnk",
"outputId": "f3e5448a-76a5-47a6-a5e8-491ef25b27c2"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.\n",
"Setting `pad_token_id` to `eos_token_id`:128001 for open-end generation.\n",
"The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.\n",
"Setting `pad_token_id` to `eos_token_id`:128001 for open-end generation.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"{\"name\": \"get_current_wind_speed\", \"parameters\": {\"location\": \"Bangalore, India\"}}\n",
"6\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.\n",
"Setting `pad_token_id` to `eos_token_id`:128001 for open-end generation.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"The current wind speed in Bangalore is approximately 6 km/h.\n",
"####################################################################################################\n",
"Query: what is the wind speed in Bangalore?\n",
"Response: The current wind speed in Bangalore is approximately 6 km/h.\n",
"\n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.\n",
"Setting `pad_token_id` to `eos_token_id`:128001 for open-end generation.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"{\"name\": \"get_current_temperature\", \"parameters\": {\"location\": \"Bangalore, India\"}}\n",
"22\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.\n",
"Setting `pad_token_id` to `eos_token_id`:128001 for open-end generation.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"I don't have real-time information, but Bangalore's average temperature is around 22 degrees Celsius.\n",
"####################################################################################################\n",
"Query: what is the temperature of Bangalore?\n",
"Response: I don't have real-time information, but Bangalore's average temperature is around 22 degrees Celsius.\n",
"\n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.\n",
"Setting `pad_token_id` to `eos_token_id`:128001 for open-end generation.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"{\"name\": \"get_current_temperature\", \"parameters\": {\"location\": \"Delhi, India\"}}\n",
"None\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.\n",
"Setting `pad_token_id` to `eos_token_id`:128001 for open-end generation.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"I don't have the current temperature in Delhi.\n",
"####################################################################################################\n",
"Query: temperature in Delhi?\n",
"Response: I don't have the current temperature in Delhi.\n",
"\n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.\n",
"Setting `pad_token_id` to `eos_token_id`:128001 for open-end generation.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"{\"name\": \"get_current_wind_speed\", \"parameters\": {\"location\": \"Goa\"}}\n",
"6\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.\n",
"Setting `pad_token_id` to `eos_token_id`:128001 for open-end generation.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"The wind speed in Goa is approximately 6 km/h.\n",
"####################################################################################################\n",
"Query: wind speed in Goa?\n",
"Response: The wind speed in Goa is approximately 6 km/h.\n",
"\n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.\n",
"Setting `pad_token_id` to `eos_token_id`:128001 for open-end generation.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"{\"name\": \"get_current_temperature\", \"parameters\": {\"location\": \"Chennai, India\"}}\n",
"None\n",
"I don't have the current temperature of Chennai.\n",
"####################################################################################################\n",
"Query: Chennai's temperature?\n",
"Response: I don't have the current temperature of Chennai.\n",
"\n",
"\n"
]
}
],
"source": [
"\n",
"\n",
"data = [\n",
" \"what is the wind speed in Bangalore?\",\n",
" \"what is the temperature of Bangalore?\",\n",
" \"temperature in Delhi?\",\n",
" \"wind speed in Goa?\",\n",
" \"Chennai's temperature?\",\n",
"]\n",
"\n",
"for query in data:\n",
" response = get_llm_response(query)\n",
" print(\"#\"*100)\n",
" print(f\"Query: {query}\\nResponse: {response}\\n\\n\")\n",
"\n"
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"gpuType": "T4",
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"name": "python"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

View File

@@ -235,7 +235,7 @@
"\n",
"Let's put this in a function called artist.\n",
"\n",
"### Price alert: each time I generate an image it costs about 4c - don't go crazy with images!"
"### Price alert: each time I generate an image it costs about 4 cents - don't go crazy with images!"
]
},
{