From f4d092acc6617605891ad990d489c10306b3a279 Mon Sep 17 00:00:00 2001 From: Oluwaseyi-A <62573285+Oluwaseyi-A@users.noreply.github.com> Date: Mon, 18 Aug 2025 23:03:41 -0400 Subject: [PATCH] Add week2 notebooks to community-contributions --- .../brochure-builder-with-gradio.ipynb | 456 ++++++++++++++++++ .../pitting-llms-against-each-other.ipynb | 254 ++++++++++ 2 files changed, 710 insertions(+) create mode 100644 week2/community-contributions/brochure-builder-with-gradio.ipynb create mode 100644 week2/community-contributions/pitting-llms-against-each-other.ipynb diff --git a/week2/community-contributions/brochure-builder-with-gradio.ipynb b/week2/community-contributions/brochure-builder-with-gradio.ipynb new file mode 100644 index 0000000..42f41b7 --- /dev/null +++ b/week2/community-contributions/brochure-builder-with-gradio.ipynb @@ -0,0 +1,456 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "9905f163-759f-474b-8f7a-7d14da0df44d", + "metadata": {}, + "source": [ + "### BUSINESS CHALLENGE: Using Multi-shot Prompting\n", + "#### Day 5\n", + "\n", + "Create a product that builds a Brochure for a company to be used for prospective clients, investors and potential recruits.\n", + "\n", + "We will be provided a company name and their primary website." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "a0895f24-65ff-4624-8ae0-15d2d400d8f0", + "metadata": {}, + "outputs": [], + "source": [ + "# imports\n", + "# If these fail, please check you're running from an 'activated' environment with (llms) in the command prompt\n", + "\n", + "import os\n", + "import requests\n", + "import json\n", + "from typing import List\n", + "from dotenv import load_dotenv\n", + "from bs4 import BeautifulSoup\n", + "from IPython.display import Markdown, display, update_display\n", + "from openai import OpenAI\n", + "import gradio as gr" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "7794aa70-5962-4669-b86f-b53639f4f9ea", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "OpenAI API Key exists and begins sk-proj-\n", + "Anthropic API Key exists and begins sk-ant-\n", + "Google API Key exists and begins AIzaSyCf\n" + ] + } + ], + "source": [ + "# Initialize and constants\n", + "\n", + "# Load environment variables in a file called .env\n", + "# Print the key prefixes to help with any debugging\n", + "\n", + "load_dotenv(override=True)\n", + "openai_api_key = os.getenv('OPENAI_API_KEY')\n", + "anthropic_api_key = os.getenv('ANTHROPIC_API_KEY')\n", + "google_api_key = os.getenv('GOOGLE_API_KEY')\n", + "\n", + "if openai_api_key:\n", + " print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n", + "else:\n", + " print(\"OpenAI API Key not set\")\n", + " \n", + "if anthropic_api_key:\n", + " print(f\"Anthropic API Key exists and begins {anthropic_api_key[:7]}\")\n", + "else:\n", + " print(\"Anthropic API Key not set\")\n", + "\n", + "if google_api_key:\n", + " print(f\"Google API Key exists and begins {google_api_key[:8]}\")\n", + "else:\n", + " print(\"Google API Key not set\")" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "cfb690e2-4940-4dc8-8f32-5c2dab3c19da", + "metadata": {}, + "outputs": [], + "source": [ + "# Connect to OpenAI\n", + "\n", + "openai = OpenAI()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "81022472-755e-4a87-bd5d-58babb09e94b", + "metadata": {}, + "outputs": [], + "source": [ + "gpt_model = \"gpt-4.1-mini\"\n", + "claude_model = \"claude-3-5-haiku-latest\"\n", + "gemini_model = \"gemini-2.5-flash\"" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "63bf8631-2746-4255-bec1-522855d3e812", + "metadata": {}, + "outputs": [], + "source": [ + "# A class to represent a Webpage\n", + "\n", + "# Some websites need you to use proper headers when fetching them:\n", + "headers = {\n", + " \"User-Agent\": \"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/117.0.0.0 Safari/537.36\"\n", + "}\n", + "\n", + "class Website:\n", + " \"\"\"\n", + " A utility class to represent a Website that we have scraped, now with links\n", + " \"\"\"\n", + "\n", + " def __init__(self, url):\n", + " self.url = url\n", + " response = requests.get(url, headers=headers)\n", + " self.body = response.content\n", + " soup = BeautifulSoup(self.body, 'html.parser')\n", + " self.title = soup.title.string if soup.title else \"No title found\"\n", + " if soup.body:\n", + " for irrelevant in soup.body([\"script\", \"style\", \"img\", \"input\"]):\n", + " irrelevant.decompose()\n", + " self.text = soup.body.get_text(separator=\"\\n\", strip=True)\n", + " else:\n", + " self.text = \"\"\n", + " links = [link.get('href') for link in soup.find_all('a')]\n", + " self.links = [link for link in links if link]\n", + "\n", + " def get_contents(self):\n", + " return f\"Webpage Title:\\n{self.title}\\nWebpage Contents:\\n{self.text}\\n\\n\"" + ] + }, + { + "cell_type": "markdown", + "id": "1e7bb527-e769-4245-bb91-ae65e64593ff", + "metadata": {}, + "source": [ + "## First step: Have LLM figure out which links are relevant\n", + "\n", + "### Use a call to the LLM to read the links on a webpage, and respond in structured JSON. " + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "1ce303ae-b967-4261-aadc-02dafa54db4a", + "metadata": {}, + "outputs": [], + "source": [ + "link_system_prompt = \"You are provided with a list of links found on a webpage. \\\n", + "You are able to decide which of the links would be most relevant to include in a brochure about the company, \\\n", + "such as links to an About page, or a Company page, or Careers/Jobs pages.\\n\"\n", + "link_system_prompt += \"You should respond in JSON as in this example:\"\n", + "link_system_prompt += \"\"\"\n", + "{\n", + " \"links\": [\n", + " {\"type\": \"about page\", \"url\": \"https://full.url/goes/here/about\"},\n", + " {\"type\": \"careers page\", \"url\": \"https://another.full.url/careers\"}\n", + " ]\n", + "}\n", + "\"\"\"" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "d24a4c0c-a1d1-4897-b2a7-4128d25c2e08", + "metadata": {}, + "outputs": [], + "source": [ + "def get_links_user_prompt(website):\n", + " user_prompt = f\"Here is the list of links on the website of {website.url} - \"\n", + " user_prompt += \"please decide which of these are relevant web links for a brochure about the company, respond with the full https URL in JSON format. \\\n", + "Do not include Terms of Service, Privacy, email links.\\n\"\n", + " user_prompt += \"Links (some might be relative links):\\n\"\n", + " user_prompt += \"\\n\".join(website.links)\n", + " return user_prompt" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "8103fc11-5bc0-41c4-8c97-502c9e96429c", + "metadata": {}, + "outputs": [], + "source": [ + "def get_links(url, model): # 1st inference\n", + " website = Website(url)\n", + " response = openai.chat.completions.create(\n", + " model=model,\n", + " messages=[\n", + " {\"role\": \"system\", \"content\": link_system_prompt},\n", + " {\"role\": \"user\", \"content\": get_links_user_prompt(website)}\n", + " ],\n", + " response_format={\"type\": \"json_object\"}\n", + " )\n", + " result = response.choices[0].message.content\n", + " return json.loads(result)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "dc84a695-515d-4292-9a95-818f4fe3d20e", + "metadata": {}, + "outputs": [], + "source": [ + "huggingface = Website(\"https://huggingface.co\")" + ] + }, + { + "cell_type": "markdown", + "id": "91896908-1632-41fc-9b8b-39a7638d8dd1", + "metadata": {}, + "source": [ + "## Second step: make the brochure!\n", + "\n", + "Assemble all the details into another prompt to GPT4-o" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "ab7c54e3-e654-4b1f-8671-09194b628aa0", + "metadata": {}, + "outputs": [], + "source": [ + "def get_all_details(url, model): # 1st inference wrapper\n", + " result = \"Landing page:\\n\"\n", + " result += Website(url).get_contents()\n", + " links = get_links(url, model) # inference\n", + " # print(\"Found links:\", links)\n", + " for link in links[\"links\"]:\n", + " result += f\"\\n\\n{link['type']}\\n\"\n", + " result += Website(link[\"url\"]).get_contents()\n", + " return result" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "ea9f54d1-a248-4c56-a1de-6633193de5bf", + "metadata": {}, + "outputs": [], + "source": [ + "system_prompt = \"You are an assistant that analyzes the contents of several relevant pages from a company website \\\n", + "and creates a short humorous, entertaining, jokey brochure about the company for prospective customers, investors and recruits. Respond in markdown.\\\n", + "Include details of company culture, customers and careers/jobs if you have the information.\"" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "13412c85-badd-4d79-a5ac-8283e4bb832f", + "metadata": {}, + "outputs": [], + "source": [ + "def get_brochure_user_prompt(company_name, url, model):\n", + " user_prompt = f\"You are looking at a company called: {company_name}\\n\"\n", + " user_prompt += f\"Here are the contents of its landing page and other relevant pages; use this information to build a short brochure of the company.\\n\"\n", + " user_prompt += get_all_details(url, model) # inference wrapper\n", + " user_prompt = user_prompt[:5_000] # Truncate if more than 5,000 characters\n", + " return user_prompt" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "107a2100-3f7d-4f16-8ba7-b5da602393c6", + "metadata": {}, + "outputs": [], + "source": [ + "def stream_gpt(company_name, url):\n", + " stream = openai.chat.completions.create(\n", + " model=gpt_model,\n", + " messages=[\n", + " {\"role\": \"system\", \"content\": system_prompt},\n", + " {\"role\": \"user\", \"content\": get_brochure_user_prompt(company_name, url, gpt_model)}\n", + " ],\n", + " stream=True\n", + " )\n", + " \n", + " result = \"\"\n", + " for chunk in stream:\n", + " result += chunk.choices[0].delta.content or \"\"\n", + " yield result" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "eaf61e44-537a-41ff-a82c-9525df8abc83", + "metadata": {}, + "outputs": [], + "source": [ + "claude_via_openai_client = OpenAI(\n", + " api_key=anthropic_api_key,\n", + " base_url=\"https://api.anthropic.com/v1\" \n", + ")\n", + "\n", + "def stream_claude(company_name, url):\n", + " result = claude_via_openai_client.chat.completions.create(\n", + " model=claude_model,\n", + " messages=[\n", + " {\"role\": \"system\", \"content\": system_prompt},\n", + " {\"role\": \"user\", \"content\": get_brochure_user_prompt(company_name, url, claude_model)}\n", + " ],\n", + " stream=True\n", + " )\n", + " \n", + " response = \"\"\n", + " with result as stream:\n", + " for text in stream.text_stream:\n", + " response += text or \"\"\n", + " yield response" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "93e75fca-e54e-4637-86f1-4acc04b04d65", + "metadata": {}, + "outputs": [], + "source": [ + "gemini_via_openai_client = OpenAI(\n", + " api_key=google_api_key, \n", + " base_url=\"https://generativelanguage.googleapis.com/v1beta/openai/\"\n", + ")\n", + "\n", + "def stream_gemini(company_name, url):\n", + " result = gemini_via_openai_client.chat.completions.create(\n", + " model=gemini_model,\n", + " messages=[\n", + " {\"role\": \"system\", \"content\": system_prompt},\n", + " {\"role\": \"user\", \"content\": get_brochure_user_prompt(company_name, url, gemini_model)}\n", + " ],\n", + " stream=True\n", + " )\n", + " \n", + " response = \"\"\n", + " with result as stream:\n", + " for text in stream.text_stream:\n", + " response += text or \"\"\n", + " yield response" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "26cbe9b5-3603-49a1-a676-75c7ddaacdb8", + "metadata": {}, + "outputs": [], + "source": [ + "# stream_gpt(\"HuggingFace\", \"https://huggingface.co\")" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "f19be4c0-71a1-427e-b3dc-e1896e2c078b", + "metadata": {}, + "outputs": [], + "source": [ + "def stream_model(company_name, url, model):\n", + " yield \"\"\n", + " if model==\"GPT\":\n", + " result = stream_gpt(company_name, url)\n", + " elif model==\"Claude\":\n", + " result = stream_claude(company_name, url)\n", + " elif model==\"Gemini\":\n", + " result = stream_gemini(company_name, url)\n", + " else:\n", + " raise ValueError(\"Unknown model\")\n", + " yield from result" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "ab510f66-b25c-4c25-92d0-e3c735b8b5fa", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "* Running on local URL: http://127.0.0.1:7871\n", + "* To create a public link, set `share=True` in `launch()`.\n" + ] + }, + { + "data": { + "text/html": [ + "
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "view = gr.Interface(\n", + " fn=stream_model,\n", + " inputs=[gr.Textbox(label=\"Company\"), gr.Textbox(label=\"URL\"), gr.Dropdown([\"GPT\", \n", + " # \"Claude\", #TODO\n", + " # \"Gemini\"\n", + " ], label=\"Select model\", value=\"GPT\")],\n", + " outputs=[gr.Markdown(label=\"Response:\")],\n", + " flagging_mode=\"never\"\n", + ")\n", + "view.launch()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.13" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/week2/community-contributions/pitting-llms-against-each-other.ipynb b/week2/community-contributions/pitting-llms-against-each-other.ipynb new file mode 100644 index 0000000..53e2e70 --- /dev/null +++ b/week2/community-contributions/pitting-llms-against-each-other.ipynb @@ -0,0 +1,254 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "10c54e52-3d1c-48cc-a0f6-efda6d90fbbb", + "metadata": {}, + "source": [ + "# Pitting LLMs Against Each Other\n", + "Three LLMs, namely OpenAI’s GPT, Anthropic’s Claude, and Google’s Gemini, go head-to-head in a three-way conversational debate." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "40677b08-18e9-4a88-a103-5b50d2bbecff", + "metadata": {}, + "outputs": [], + "source": [ + "# imports\n", + "\n", + "import os\n", + "from dotenv import load_dotenv\n", + "from openai import OpenAI\n", + "import anthropic\n", + "from IPython.display import Markdown, display, update_display\n", + "import google.generativeai" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "df5a52ba-ea13-4dbf-a695-e1398a484cc8", + "metadata": {}, + "outputs": [], + "source": [ + "# Load environment variables in a file called .env\n", + "# Print the key prefixes to help with any debugging\n", + "\n", + "load_dotenv(override=True)\n", + "openai_api_key = os.getenv('OPENAI_API_KEY')\n", + "anthropic_api_key = os.getenv('ANTHROPIC_API_KEY')\n", + "google_api_key = os.getenv('GOOGLE_API_KEY')\n", + "\n", + "if openai_api_key:\n", + " print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n", + "else:\n", + " print(\"OpenAI API Key not set\")\n", + " \n", + "if anthropic_api_key:\n", + " print(f\"Anthropic API Key exists and begins {anthropic_api_key[:7]}\")\n", + "else:\n", + " print(\"Anthropic API Key not set\")\n", + "\n", + "if google_api_key:\n", + " print(f\"Google API Key exists and begins {google_api_key[:8]}\")\n", + "else:\n", + " print(\"Google API Key not set\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "1ededc77-2672-4e27-b1c8-11f6f8ff8970", + "metadata": {}, + "outputs": [], + "source": [ + "# Connect to OpenAI, Anthropic, Gemini\n", + "\n", + "openai = OpenAI()\n", + "\n", + "# claude = anthropic.Anthropic()\n", + "\n", + "# google.generativeai.configure()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "3b311279-5993-4226-ae08-991e974230fb", + "metadata": {}, + "outputs": [], + "source": [ + "# Let's make a conversation between GPT-4.1-mini and Claude-3.5-haiku and Gemini\n", + "\n", + "gpt_model = \"gpt-4.1-mini\"\n", + "claude_model = \"claude-3-5-haiku-latest\"\n", + "gemini_model = \"gemini-2.5-flash\"\n", + "\n", + "gpt_system = \"You are a chatbot in a conversation with 2 other chatbots; \\\n", + "debate which of you is the best.\"\n", + "\n", + "claude_system = \"You are a chatbot in a conversation with 2 other chatbots; \\\n", + "debate which of you is the best.\"\n", + "\n", + "gemini_system = \"You are a chatbot in a conversation with 2 other chatbots; \\\n", + "debate which of you is the best.\"\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "85bdfab1-6602-46b3-a1d2-bdb36880d9d6", + "metadata": {}, + "outputs": [], + "source": [ + "def alex_prompt():\n", + " user_prompt = f\"\"\"\n", + " You are Alex, in conversation with Blake and Charlie.\n", + " The conversation so far is as follows:\n", + " {format_conversation()}\n", + " Now with this, respond with what you would like to say next, as Alex.\n", + " \"\"\"\n", + " return user_prompt\n", + "\n", + "def blake_prompt():\n", + " user_prompt = f\"\"\"\n", + " You are Blake, in conversation with Alex and Charlie.\n", + " The conversation so far is as follows:\n", + " {format_conversation()}\n", + " Now with this, respond with what you would like to say next, as Blake.\n", + " \"\"\"\n", + " return user_prompt\n", + "\n", + "def charlie_prompt():\n", + " user_prompt = f\"\"\"\n", + " You are Charlie, in conversation with Alex and Blake.\n", + " The conversation so far is as follows:\n", + " {format_conversation()}\n", + " Now with this, respond with what you would like to say next, as Charlie.\n", + " \"\"\"\n", + " return user_prompt\n", + "\n", + "# Shared conversation history\n", + "conversation = []\n", + "\n", + "def format_conversation():\n", + " return \"\\n\".join(conversation)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "6f7c745d-7d75-468b-93ac-7a1d95f2e047", + "metadata": {}, + "outputs": [], + "source": [ + "def alex_says():\n", + " response = openai.chat.completions.create(\n", + " model=gpt_model,\n", + " messages=[\n", + " {\"role\": \"system\", \"content\": gpt_system},\n", + " {\"role\": \"user\", \"content\": alex_prompt()}\n", + " ],\n", + " )\n", + " result = response.choices[0].message.content\n", + " return result" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "6e28f4c9-0297-4762-a3ea-b961e0d6d980", + "metadata": {}, + "outputs": [], + "source": [ + "gemini_via_openai_client = OpenAI(\n", + " api_key=google_api_key, \n", + " base_url=\"https://generativelanguage.googleapis.com/v1beta/openai/\"\n", + ")\n", + "\n", + "def blake_says():\n", + " response = gemini_via_openai_client.chat.completions.create(\n", + " model=gemini_model,\n", + " messages=[\n", + " {\"role\": \"system\", \"content\": gemini_system},\n", + " {\"role\": \"user\", \"content\": blake_prompt()}\n", + " ],\n", + " )\n", + " result = response.choices[0].message.content\n", + " return result" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "363b70bf-d3e2-4d05-8a3e-ec5d54460e96", + "metadata": {}, + "outputs": [], + "source": [ + "claude_via_openai_client = OpenAI(\n", + " api_key=anthropic_api_key,\n", + " base_url=\"https://api.anthropic.com/v1\" \n", + ")\n", + "\n", + "def charlie_says():\n", + " response = claude_via_openai_client.chat.completions.create(\n", + " model=claude_model, \n", + " messages=[\n", + " {\"role\": \"system\", \"content\": claude_system},\n", + " {\"role\": \"user\", \"content\": charlie_prompt()}\n", + " ],\n", + " )\n", + " result = response.choices[0].message.content\n", + " return result\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c017eb8c-1709-4ac1-8f17-92c3a6cdbfc0", + "metadata": {}, + "outputs": [], + "source": [ + "# The three models engage in a longer interaction with history.\n", + "\n", + "for i in range(5):\n", + " alex_next = alex_says()\n", + " print(f\"Alex (GPT):\\n{alex_next}\\n\")\n", + " conversation.append(f\"Alex: {alex_next}\")\n", + " \n", + " blake_next = blake_says()\n", + " print(f\"Blake (Gemini):\\n{blake_next}\\n\")\n", + " conversation.append(f\"Blake: {blake_next}\")\n", + "\n", + " charlie_next = charlie_says()\n", + " print(f\"Charlie (Claude):\\n{charlie_next}\\n\")\n", + " conversation.append(f\"Charlie: {charlie_next}\") \n", + "\n", + " # break" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.13" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +}