{ "cells": [ { "cell_type": "code", "execution_count": 4, "id": "9138adfe-71b0-4db2-a08f-dd9e472fdd63", "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "import boto3" ] }, { "cell_type": "code", "execution_count": null, "id": "15d71dd6-cc03-485e-8a34-7a33ed5dee0e", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "id": "1358921d-173b-4d5d-828c-b6c3726a5eb3", "metadata": {}, "source": [ "#### Connect to bedrock models" ] }, { "cell_type": "code", "execution_count": 5, "id": "b3827087-182f-48be-8b59-b2741f8ded44", "metadata": {}, "outputs": [], "source": [ "import json" ] }, { "cell_type": "code", "execution_count": 6, "id": "94c11534-6847-4e4a-b8e4-8066e0cc6aca", "metadata": {}, "outputs": [], "source": [ "# Use the Conversation API to send a text message to Amazon Nova.\n", "\n", "import boto3\n", "from botocore.exceptions import ClientError\n", "\n", "# Create a Bedrock Runtime client in the AWS Region you want to use.\n", "client = boto3.client(\"bedrock-runtime\", region_name=\"us-east-1\")\n", "\n", "# Set the model ID, e.g., Amazon Nova Lite.\n", "model_id = \"amazon.nova-lite-v1:0\"" ] }, { "cell_type": "code", "execution_count": null, "id": "9a8ad65f-abaa-475c-892c-2e2b4e668f5d", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 7, "id": "ac20bb00-e93f-4a95-a1de-dd2688bce591", "metadata": {}, "outputs": [], "source": [ "# Start a conversation with the user message.\n", "user_message = \"\"\"\n", "List the best parks to see in London with number of google ratings and value ie. 4.5 out of 5 etc. \n", "Give number of ratings and give output in table form\n", "\"\"\"" ] }, { "cell_type": "code", "execution_count": 8, "id": "a29f0055-48c4-4f25-b33f-cde1eaf755c5", "metadata": {}, "outputs": [], "source": [ "conversation = [\n", " {\n", " \"role\": \"user\",\n", " \"content\": [{\"text\": user_message}],\n", " }\n", "]" ] }, { "cell_type": "code", "execution_count": null, "id": "0e68b2d5-4d43-4b80-8574-d3c847b33661", "metadata": {}, "outputs": [], "source": [ "try:\n", " # Send the message to the model, using a basic inference configuration.\n", " response = client.converse(\n", " modelId=model_id,\n", " messages=conversation,\n", " inferenceConfig={\"maxTokens\": 512, \"temperature\": 0.5, \"topP\": 0.9},\n", " )\n", "\n", " # Extract and print the response text.\n", " response_text = response[\"output\"][\"message\"][\"content\"][0][\"text\"]\n", " print(response_text)\n", "\n", "except (ClientError, Exception) as e:\n", " print(f\"ERROR: Can't invoke '{model_id}'. Reason: {e}\")\n", " exit(1)\n" ] }, { "cell_type": "code", "execution_count": null, "id": "8ed16ee7-3f09-4780-8dfc-d1c5f3cffdbe", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "7f8c7a18-0907-430d-bfe7-86ecb8933bfd", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "2183994b-cde5-45b0-b18b-37be3277d73b", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.13" } }, "nbformat": 4, "nbformat_minor": 5 }