{ "cells": [ { "metadata": {}, "cell_type": "code", "source": [ "import os, textwrap, time, requests\n", "from bs4 import BeautifulSoup\n", "from openai import OpenAI\n", "from dotenv import load_dotenv\n", "from urllib.parse import urljoin\n", "\n", "# ------------------ ENV & OpenAI ------------------\n", "load_dotenv(override=True)\n", "openai = OpenAI(api_key=os.getenv(\"OPENAI_API_KEY\"))\n", "\n", "UA = (\"Mozilla/5.0 (Windows NT 10.0; Win64; x64) \"\n", " \"AppleWebKit/537.36 (KHTML, like Gecko) Chrome/117 Safari/537.36\")\n", "BASE_URL = \"https://www.cambridge.org\"\n", "JFQA_URL = f\"{BASE_URL}/core/journals/journal-of-financial-and-quantitative-analysis/latest-issue\"\n", "\n", "# ------------------ Helpers ------------------\n", "def fetch_latest_issue(url: str) -> list[dict]:\n", " \"\"\"Return unique {title, link} dicts for each research article.\"\"\"\n", " soup = BeautifulSoup(\n", " requests.get(url, headers={\"User-Agent\": UA}, timeout=30).text,\n", " \"html.parser\"\n", " )\n", "\n", " anchors = soup.find_all(\"a\", href=lambda h: h and \"/article/\" in h)\n", " seen, articles = set(), []\n", " for a in anchors:\n", " href = a[\"href\"].split(\"?\")[0] # strip tracking params\n", " if href in seen: # de‑duplicate\n", " continue\n", " seen.add(href)\n", " title = a.get_text(\" \", strip=True)\n", " full = urljoin(BASE_URL, href)\n", " articles.append({\"title\": title, \"link\": full})\n", " print(f\"Found {len(articles)} unique article links.\")\n", " return articles\n", "\n", "def fetch_article_details(link: str) -> dict:\n", " soup = BeautifulSoup(\n", " requests.get(link, headers={\"User-Agent\": UA}, timeout=30).text,\n", " \"html.parser\"\n", " )\n", "\n", " # abstract\n", " abs_tag = soup.find(\"div\", class_=\"abstract\")\n", " abstract = abs_tag.get_text(\" \", strip=True) if abs_tag else \"N/A\"\n", "\n", " # publication date (meta is most reliable)\n", " meta_date = soup.find(\"meta\", attrs={\"name\": \"citation_publication_date\"})\n", " pub_date = meta_date[\"content\"] if meta_date else \"N/A\"\n", "\n", " # authors (multiple tags)\n", " authors = [m[\"content\"] for m in soup.find_all(\"meta\",\n", " attrs={\"name\": \"citation_author\"})]\n", " authors_str = \", \".join(authors) or \"N/A\"\n", "\n", " return {\"abstract\": abstract, \"pub_date\": pub_date, \"authors\": authors_str}\n", "\n", "def summarise(txt: str) -> str:\n", " prompt = (\"Summarise the following finance‑paper abstract in 2‑3 sentences, \"\n", " \"mentioning the question, method, and main finding.\\n\\n\"\n", " f\"Abstract:\\n{txt}\")\n", " try:\n", " rsp = openai.chat.completions.create(\n", " model=\"gpt-4o-mini\",\n", " messages=[\n", " {\"role\": \"system\",\n", " \"content\": \"You are a helpful finance research assistant.\"},\n", " {\"role\": \"user\", \"content\": prompt}],\n", " temperature=0.2, max_tokens=120\n", " )\n", " return rsp.choices[0].message.content.strip()\n", " except Exception as e:\n", " print(f\"⚠️ summarise error → {e}\")\n", " return \"Summary unavailable.\"\n", "\n", "def scrape_jfqa_latest() -> None:\n", " for art in fetch_latest_issue(JFQA_URL):\n", " det = fetch_article_details(art[\"link\"])\n", " if det[\"abstract\"] == \"N/A\":\n", " print(f\"\\n📘 {art['title']} — no abstract found.\")\n", " continue\n", "\n", " summary = summarise(det[\"abstract\"])\n", " print(f\"\\n📘 {art['title']}\")\n", " print(f\" Authors: {det['authors']}\")\n", " print(f\" Date : {det['pub_date']}\")\n", " print(f\" Journal: JFQA (Latest Issue)\")\n", " print(\" Summary:\", textwrap.shorten(summary, width=600, placeholder=\"…\"))\n", " print(\"-\" * 90)\n", " time.sleep(1.0) # polite gap between OpenAI calls\n", "\n", "if __name__ == \"__main__\":\n", " scrape_jfqa_latest()\n" ], "id": "e20b182f6258f0be", "outputs": [], "execution_count": null } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.6" } }, "nbformat": 4, "nbformat_minor": 5 }