{ "cells": [ { "cell_type": "markdown", "id": "6e19458c-4b0e-40f6-bd4f-4d9c80ea671b", "metadata": {}, "source": [ "# End of Week 1 - Exercise - Using Gemini API with GenAI SDK" ] }, { "cell_type": "code", "execution_count": null, "id": "f1a125bb-737f-41a5-8dd1-626cd8efe6e2", "metadata": {}, "outputs": [], "source": [ "import os\n", "from dotenv import load_dotenv\n", "from google import genai\n", "from google.genai import types\n", "from IPython.display import Markdown, display, update_display" ] }, { "cell_type": "code", "execution_count": null, "id": "acf37451-3732-455b-a906-87f66053b018", "metadata": {}, "outputs": [], "source": [ "# Load API Key - For Gemini it automatically takes the api key from env file if we save the key using GOOGLE_API_KEY keyword\n", "load_dotenv(override=True)\n", "api_key = os.getenv('GOOGLE_API_KEY')\n", "\n", "if not api_key:\n", " print(\"No API key was found - please head over to the troubleshooting notebook in this folder to identify & fix!\")\n", "elif api_key.strip() != api_key:\n", " print(\"An API key was found, but it looks like it might have space or tab characters at the start or end - please remove them - see troubleshooting notebook\")\n", "else:\n", " print(\"API key found and looks good so far!\")" ] }, { "cell_type": "code", "execution_count": null, "id": "4c2fccf9-e419-431e-97fc-a42fcf67c633", "metadata": {}, "outputs": [], "source": [ "# Initialze Google Client\n", "# Just to make it explicit i have used the api_key parameter but thats optional and genai.client automatically takes from .env file\n", "\n", "try:\n", " client = genai.Client(api_key=api_key)\n", " print(\"Google GenAI Client initialized successfully!\")\n", "except Exception as e:\n", " print(f\"Error initializing GenAI Client: {e}\")\n", " print(\"Ensure your GOOGLE_API_KEY is correctly set as an environment variable.\")\n", " exit()" ] }, { "cell_type": "code", "execution_count": null, "id": "5b918afd-ed3b-49d1-85f1-6e549faec66e", "metadata": {}, "outputs": [], "source": [ "# Get list of models\n", "print(\"List of models that support generateContent:\\n\")\n", "for m in client.models.list():\n", " for action in m.supported_actions:\n", " if action == \"generateContent\":\n", " print(m.name)" ] }, { "cell_type": "code", "execution_count": null, "id": "791da71e-35a5-4a15-90c7-93ae22e40232", "metadata": {}, "outputs": [], "source": [ "MODEL_GEMINI = 'gemini-2.5-flash-preview-05-20'" ] }, { "cell_type": "code", "execution_count": null, "id": "2a536e25-060e-4f93-bbd7-d80195620bba", "metadata": {}, "outputs": [], "source": [ "# System Definitions\n", "\n", "system_instruction_prompt = (\n", " \"You are an expert Python programming assistant. Your goal is to identify common coding errors, suggest improvements for readability and efficiency,and provide corrected code snippets.\\\n", " Always format code blocks using Markdown.\\\n", " Be concise but thorough. Focus on the provided code and context.\"\n", ")\n", "\n", "generate_content_config = types.GenerateContentConfig(system_instruction=system_instruction_prompt)" ] }, { "cell_type": "code", "execution_count": null, "id": "2fc2a778-f175-44ec-9535-f81deeca7f1a", "metadata": {}, "outputs": [], "source": [ "# Main program to get user input and then use model to respond.\n", "\n", "MAX_HISTORY_MESSAGES = 6\n", "conversation_contents = []\n", "\n", "print(\"\\n--- Start Chat with Gemini Python Assistant ---\")\n", "print(\"Type 'Done' to exit the conversation.\")\n", "\n", "while True:\n", " user_input = input(\"You: \").strip()\n", "\n", " if user_input.lower() == \"done\": \n", " print(\"\\nExiting chat. Goodbye!\")\n", " break \n", "\n", " if not user_input: \n", " print(\"Please enter a question or 'Done' to exit.\")\n", " continue\n", " \n", " try:\n", " user_message_content = types.Content(\n", " role=\"user\",\n", " parts=[types.Part.from_text(text=user_input)]\n", " ) \n", " \n", " conversation_contents.append(user_message_content) \n", " \n", " stream_response = client.models.generate_content_stream(\n", " model=MODEL_GEMINI,\n", " contents=conversation_contents,\n", " config=generate_content_config,\n", " )\n", " \n", " model_full_response_text = \"**Gemini:**\\n\\n\"\n", " current_display_handle = display(Markdown(\"\"), display_id=True)\n", " \n", " \n", " for chunk in stream_response:\n", " chunk_text = chunk.text or ''\n", " model_full_response_text += chunk_text\n", " update_display(Markdown(model_full_response_text), display_id=current_display_handle.display_id)\n", " \n", " # Add Model's FULL Response to Conversation History\n", " model_message_content = types.Content(\n", " role=\"model\",\n", " parts=[types.Part.from_text(text=model_full_response_text.removeprefix(\"**Gemini:**\\n\\n\"))]\n", " )\n", " \n", " conversation_contents.append(model_message_content)\n", " \n", " conversation_contents = conversation_contents[-MAX_HISTORY_MESSAGES:] \n", "\n", " except Exception as e:\n", " print(f\"\\nAn error occurred during interaction: {e}\")\n", " if conversation_contents:\n", " conversation_contents.pop()\n", " print(\"Please try asking your question again or type 'Done' to exit.\")\n", " continue " ] }, { "cell_type": "code", "execution_count": null, "id": "a86c3e5b-516b-42dc-994f-9dfa75c610cc", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.10" } }, "nbformat": 4, "nbformat_minor": 5 }