{ "cells": [ { "cell_type": "markdown", "id": "fe12c203-e6a6-452c-a655-afb8a03a4ff5", "metadata": {}, "source": [ "# End of week 1 exercise\n", "\n", "To demonstrate your familiarity with OpenAI API, and also Ollama, build a tool that takes a technical question, \n", "and responds with an explanation. This is a tool that you will be able to use yourself during the course!" ] }, { "cell_type": "markdown", "id": "0ea775a9-12c7-4a63-a676-d7bd0cdb100c", "metadata": {}, "source": [ "# imports\n", "import os\n", "from dotenv import load_dotenv\n", "from IPython.display import Markdown, display, update_display\n", "from openai import OpenAI\n", "import ollama" ] }, { "cell_type": "code", "execution_count": null, "id": "4a456906-915a-4bfd-bb9d-57e505c5093f", "metadata": {}, "outputs": [], "source": [ "# constants\n", "MODEL_GPT = 'gpt-4o-mini'\n", "MODEL_LLAMA = 'llama3.2'" ] }, { "cell_type": "code", "execution_count": null, "id": "a8d7923c-5f28-4c30-8556-342d7c8497c1", "metadata": {}, "outputs": [], "source": [ "# set up environment\n", "load_dotenv(override=True)\n", "api_key = os.getenv('OPENAI_API_KEY')\n", "\n", "if not api_key:\n", " print(\"No API key was found!\")\n", "else:\n", " print(\"API key found and looks good so far!\")" ] }, { "cell_type": "code", "execution_count": null, "id": "3f0d0137-52b0-47a8-81a8-11a90a010798", "metadata": {}, "outputs": [], "source": [ "# here is the question\n", "question = \"\"\"\n", "Please explain why do tennis players often use topspin on their forehand shots, and what advantages does it provide?\n", "\"\"\" " ] }, { "cell_type": "code", "execution_count": null, "id": "967aac6b-9f9c-4def-8659-d9382b0c59e4", "metadata": {}, "outputs": [], "source": [ "system_prompt = \"You are a helpful tennis coach who answers questions about tennis rules, techniques, strategies, training, and equipment.\"\n", "user_prompt = \"Please give a detailed explanation to the following question: \" + question" ] }, { "cell_type": "code", "execution_count": null, "id": "7936b5af-e912-4e0e-b43e-87673c4857cf", "metadata": {}, "outputs": [], "source": [ "messages = [\n", " {\"role\": \"system\", \"content\": system_prompt},\n", " {\"role\": \"user\", \"content\": user_prompt}\n", "]" ] }, { "cell_type": "code", "execution_count": null, "id": "60ce7000-a4a5-4cce-a261-e75ef45063b4", "metadata": {}, "outputs": [], "source": [ "# Get gpt-4o-mini to answer, with streaming\n", "openai = OpenAI()\n", "stream = openai.chat.completions.create(model=MODEL_GPT, messages=messages, stream=True)\n", "response = \"\"\n", "display_handle = display(Markdown(\"\"), display_id=True)\n", "for chunk in stream:\n", " response += chunk.choices[0].delta.content or ''\n", " response = response.replace(\"```\",\"\").replace(\"markdown\", \"\")\n", " update_display(Markdown(response), display_id=display_handle.display_id)" ] }, { "cell_type": "code", "execution_count": null, "id": "8f7c8ea8-4082-4ad0-8751-3301adcf6538", "metadata": {}, "outputs": [], "source": [ "# Get Llama 3.2 to answer\n", "response = ollama.chat(model=MODEL_LLAMA, messages=messages)\n", "result = response['message']['content']\n", "display(Markdown(result))" ] }, { "cell_type": "code", "execution_count": null, "id": "29e9cdd3-5adc-4428-9758-f761dc91783a", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.13" } }, "nbformat": 4, "nbformat_minor": 5 }