{ "cells": [ { "cell_type": "markdown", "id": "75e2ef28-594f-4c18-9d22-c6b8cd40ead2", "metadata": {}, "source": [ "# Day 3 - Conversational AI - aka Chatbot!" ] }, { "cell_type": "code", "execution_count": null, "id": "70e39cd8-ec79-4e3e-9c26-5659d42d0861", "metadata": {}, "outputs": [], "source": [ "# imports\n", "\n", "import os\n", "from dotenv import load_dotenv\n", "from openai import OpenAI\n", "import gradio as gr" ] }, { "cell_type": "code", "execution_count": null, "id": "231605aa-fccb-447e-89cf-8b187444536a", "metadata": {}, "outputs": [], "source": [ "# Load environment variables in a file called .env\n", "# Print the key prefixes to help with any debugging\n", "\n", "load_dotenv(override=True)\n", "openai_api_key = os.getenv('OPENAI_API_KEY')\n", "\n", "if openai_api_key:\n", " print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n", "else:\n", " print(\"OpenAI API Key not set\")" ] }, { "cell_type": "code", "execution_count": null, "id": "6541d58e-2297-4de1-b1f7-77da1b98b8bb", "metadata": {}, "outputs": [], "source": [ "# Initialize\n", "\n", "openai = OpenAI()\n", "MODEL = 'gpt-4.1-mini'" ] }, { "cell_type": "code", "execution_count": null, "id": "e16839b5-c03b-4d9d-add6-87a0f6f37575", "metadata": {}, "outputs": [], "source": [ "# Again, I'll be in scientist-mode and change this global during the lab\n", "\n", "system_message = \"You are a helpful assistant\"" ] }, { "cell_type": "markdown", "id": "98e97227-f162-4d1a-a0b2-345ff248cbe7", "metadata": {}, "source": [ "## And now, writing a new callback\n", "\n", "We now need to write a function called:\n", "\n", "`chat(message, history)`\n", "\n", "Which will be a callback function we will give gradio.\n", "\n", "### The job of this function\n", "\n", "Take a message, take the prior conversation, and return the response.\n" ] }, { "cell_type": "code", "execution_count": null, "id": "354ce793", "metadata": {}, "outputs": [], "source": [ "def chat(message, history):\n", " return \"bananas\"" ] }, { "cell_type": "code", "execution_count": null, "id": "e87f3417", "metadata": {}, "outputs": [], "source": [ "gr.ChatInterface(fn=chat, type=\"messages\").launch()" ] }, { "cell_type": "code", "execution_count": null, "id": "5d4996e8", "metadata": {}, "outputs": [], "source": [ "def chat(message, history):\n", " return f\"You said {message} and the history is {history} but I still say bananas\"" ] }, { "cell_type": "code", "execution_count": null, "id": "434a0417", "metadata": {}, "outputs": [], "source": [ "gr.ChatInterface(fn=chat, type=\"messages\").launch()" ] }, { "cell_type": "code", "execution_count": null, "id": "7890cac3", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "id": "f7330d7f", "metadata": {}, "source": [ "## OK! Let's write a slightly better chat callback!" ] }, { "cell_type": "code", "execution_count": null, "id": "1eacc8a4-4b48-4358-9e06-ce0020041bc1", "metadata": {}, "outputs": [], "source": [ "\n", "def chat(message, history):\n", " history = [{\"role\":h[\"role\"], \"content\":h[\"content\"]} for h in history]\n", " messages = [{\"role\": \"system\", \"content\": system_message}] + history + [{\"role\": \"user\", \"content\": message}]\n", " response = openai.chat.completions.create(model=MODEL, messages=messages)\n", " return response.choices[0].message.content\n" ] }, { "cell_type": "code", "execution_count": null, "id": "0ab706f9", "metadata": {}, "outputs": [], "source": [ "gr.ChatInterface(fn=chat, type=\"messages\").launch()" ] }, { "cell_type": "code", "execution_count": null, "id": "3bce145a", "metadata": {}, "outputs": [], "source": [ "def chat(message, history):\n", " history = [{\"role\":h[\"role\"], \"content\":h[\"content\"]} for h in history]\n", " messages = [{\"role\": \"system\", \"content\": system_message}] + history + [{\"role\": \"user\", \"content\": message}]\n", " stream = openai.chat.completions.create(model=MODEL, messages=messages, stream=True)\n", " response = \"\"\n", " for chunk in stream:\n", " response += chunk.choices[0].delta.content or ''\n", " yield response" ] }, { "cell_type": "code", "execution_count": null, "id": "b8beeca6", "metadata": {}, "outputs": [], "source": [ "gr.ChatInterface(fn=chat, type=\"messages\").launch()" ] }, { "cell_type": "markdown", "id": "1334422a-808f-4147-9c4c-57d63d9780d0", "metadata": {}, "source": [ "## OK let's keep going!\n", "\n", "Using a system message to add context, and to give an example answer.. this is \"one shot prompting\" again" ] }, { "cell_type": "code", "execution_count": null, "id": "1f91b414-8bab-472d-b9c9-3fa51259bdfe", "metadata": {}, "outputs": [], "source": [ "system_message = \"You are a helpful assistant in a clothes store. You should try to gently encourage \\\n", "the customer to try items that are on sale. Hats are 60% off, and most other items are 50% off. \\\n", "For example, if the customer says 'I'm looking to buy a hat', \\\n", "you could reply something like, 'Wonderful - we have lots of hats - including several that are part of our sales event.'\\\n", "Encourage the customer to buy hats if they are unsure what to get.\"" ] }, { "cell_type": "code", "execution_count": null, "id": "413e9e4e-7836-43ac-a0c3-e1ab5ed6b136", "metadata": {}, "outputs": [], "source": [ "gr.ChatInterface(fn=chat, type=\"messages\").launch()" ] }, { "cell_type": "code", "execution_count": null, "id": "d75f0ffa-55c8-4152-b451-945021676837", "metadata": {}, "outputs": [], "source": [ "system_message += \"\\nIf the customer asks for shoes, you should respond that shoes are not on sale today, \\\n", "but remind the customer to look at hats!\"" ] }, { "cell_type": "code", "execution_count": null, "id": "c602a8dd-2df7-4eb7-b539-4e01865a6351", "metadata": {}, "outputs": [], "source": [ "gr.ChatInterface(fn=chat, type=\"messages\").launch()" ] }, { "cell_type": "code", "execution_count": null, "id": "0a987a66-1061-46d6-a83a-a30859dc88bf", "metadata": {}, "outputs": [], "source": [ "\n", "def chat(message, history):\n", " history = [{\"role\":h[\"role\"], \"content\":h[\"content\"]} for h in history]\n", " relevant_system_message = system_message\n", " if 'belt' in message.lower():\n", " relevant_system_message += \" The store does not sell belts; if you are asked for belts, be sure to point out other items on sale.\"\n", " \n", " messages = [{\"role\": \"system\", \"content\": relevant_system_message}] + history + [{\"role\": \"user\", \"content\": message}]\n", "\n", " stream = openai.chat.completions.create(model=MODEL, messages=messages, stream=True)\n", "\n", " response = \"\"\n", " for chunk in stream:\n", " response += chunk.choices[0].delta.content or ''\n", " yield response" ] }, { "cell_type": "code", "execution_count": null, "id": "20570de2-eaad-42cc-a92c-c779d71b48b6", "metadata": {}, "outputs": [], "source": [ "gr.ChatInterface(fn=chat, type=\"messages\").launch()" ] }, { "cell_type": "markdown", "id": "82a57ee0-b945-48a7-a024-01b56a5d4b3e", "metadata": {}, "source": [ "
\n",
" \n",
" | \n",
" \n",
" Business Applications\n", " Conversational Assistants are of course a hugely common use case for Gen AI, and the latest frontier models are remarkably good at nuanced conversation. And Gradio makes it easy to have a user interface. Another crucial skill we covered is how to use prompting to provide context, information and examples.\n", "\n", "Consider how you could apply an AI Assistant to your business, and make yourself a prototype. Use the system prompt to give context on your business, and set the tone for the LLM.\n", " | \n",
"