{ "cells": [ { "cell_type": "markdown", "id": "4a6ab9a2-28a2-445d-8512-a0dc8d1b54e9", "metadata": {}, "source": [ "# Code Generator\n", "\n", "The requirement: use a Frontier model to generate high performance C++ code from Python code\n", "\n", "- Try adding Gemini to the Closed Source mix\n", "- Try more open-source models such as CodeLlama and StarCoder, and see if you can get CodeGemma to work\n" ] }, { "cell_type": "code", "execution_count": null, "id": "e610bf56-a46e-4aff-8de1-ab49d62b1ad3", "metadata": {}, "outputs": [], "source": [ "# imports\n", "\n", "import os\n", "import io\n", "import sys\n", "from dotenv import load_dotenv\n", "from openai import OpenAI\n", "# import google.generativeai\n", "from google import genai\n", "from google.genai import types\n", "import anthropic\n", "import ollama\n", "from IPython.display import Markdown, display, update_display\n", "import gradio as gr" ] }, { "cell_type": "code", "execution_count": null, "id": "4f672e1c-87e9-4865-b760-370fa605e614", "metadata": {}, "outputs": [], "source": [ "# environment\n", "\n", "load_dotenv(override=True)\n", "os.environ['OPENAI_API_KEY'] = os.getenv('OPENAI_API_KEY', 'your-key-if-not-using-env')\n", "os.environ['ANTHROPIC_API_KEY'] = os.getenv('ANTHROPIC_API_KEY', 'your-key-if-not-using-env')\n", "os.environ['GOOGLE_API_KEY'] = os.getenv('GOOGLE_API_KEY', 'your-key-if-not-using-env')" ] }, { "cell_type": "code", "execution_count": null, "id": "8aa149ed-9298-4d69-8fe2-8f5de0f667da", "metadata": {}, "outputs": [], "source": [ "# initialize\n", "\n", "openai = OpenAI()\n", "claude = anthropic.Anthropic()\n", "# google.generativeai.configure()\n", "client = genai.Client()\n", "\n", "\n", "OPENAI_MODEL = \"gpt-4o\"\n", "CLAUDE_MODEL = \"claude-sonnet-4-20250514\"\n", "GEMINI_MODEL = 'gemini-2.5-flash'\n", "LLAMA_MODEL = \"llama3.2\"\n" ] }, { "cell_type": "code", "execution_count": null, "id": "6896636f-923e-4a2c-9d6c-fac07828a201", "metadata": {}, "outputs": [], "source": [ "system_message = \"You are an assistant that reimplements Python code in high performance C++ for an M1 Mac. \"\n", "system_message += \"Respond only with C++ code; use comments sparingly and do not provide any explanation other than occasional comments. \"\n", "system_message += \"The C++ response needs to produce an identical output in the fastest possible time. \"\n", "system_message += \"Do not include Markdown formatting (```), language tags (cpp), or extra text. \"" ] }, { "cell_type": "code", "execution_count": null, "id": "8e7b3546-57aa-4c29-bc5d-f211970d04eb", "metadata": {}, "outputs": [], "source": [ "def user_prompt_for(python):\n", " user_prompt = \"Rewrite this Python code in C++ with the fastest possible implementation that produces identical output in the least time. \"\n", " user_prompt += \"Respond only with C++ code; do not explain your work other than a few comments. \"\n", " user_prompt += \"\"\"Your response must not contain neither the leading \"```cpp\" nor the trailer: \"```\" strings! \"\"\"\n", " user_prompt += \"Pay attention to number types to ensure no int overflows. Remember to #include all necessary C++ packages such as iomanip.\\n\\n\"\n", " user_prompt += python\n", " return user_prompt" ] }, { "cell_type": "code", "execution_count": null, "id": "c6190659-f54c-4951-bef4-4960f8e51cc4", "metadata": {}, "outputs": [], "source": [ "def messages_for(python):\n", " return [\n", " {\"role\": \"system\", \"content\": system_message},\n", " {\"role\": \"user\", \"content\": user_prompt_for(python)}\n", " ]" ] }, { "cell_type": "code", "execution_count": null, "id": "71e1ba8c-5b05-4726-a9f3-8d8c6257350b", "metadata": {}, "outputs": [], "source": [ "# write to a file called optimized.cpp\n", "\n", "def write_output(cpp):\n", " with open(\"optimized.cpp\", \"w\") as f:\n", " f.write(cpp)" ] }, { "cell_type": "code", "execution_count": null, "id": "a1cbb778-fa57-43de-b04b-ed523f396c38", "metadata": {}, "outputs": [], "source": [ "pi = \"\"\"\n", "import time\n", "\n", "def calculate(iterations, param1, param2):\n", " result = 1.0\n", " for i in range(1, iterations+1):\n", " j = i * param1 - param2\n", " result -= (1/j)\n", " j = i * param1 + param2\n", " result += (1/j)\n", " return result\n", "\n", "start_time = time.time()\n", "result = calculate(100_000_000, 4, 1) * 4\n", "end_time = time.time()\n", "\n", "print(f\"Result: {result:.12f}\")\n", "print(f\"Execution Time: {(end_time - start_time):.6f} seconds\")\n", "\"\"\"" ] }, { "cell_type": "code", "execution_count": null, "id": "c3b497b3-f569-420e-b92e-fb0f49957ce0", "metadata": {}, "outputs": [], "source": [ "python_hard = \"\"\"# Be careful to support large number sizes\n", "\n", "def lcg(seed, a=1664525, c=1013904223, m=2**32):\n", " value = seed\n", " while True:\n", " value = (a * value + c) % m\n", " yield value\n", "\n", "def max_subarray_sum(n, seed, min_val, max_val):\n", " lcg_gen = lcg(seed)\n", " random_numbers = [next(lcg_gen) % (max_val - min_val + 1) + min_val for _ in range(n)]\n", " max_sum = float('-inf')\n", " for i in range(n):\n", " current_sum = 0\n", " for j in range(i, n):\n", " current_sum += random_numbers[j]\n", " if current_sum > max_sum:\n", " max_sum = current_sum\n", " return max_sum\n", "\n", "def total_max_subarray_sum(n, initial_seed, min_val, max_val):\n", " total_sum = 0\n", " lcg_gen = lcg(initial_seed)\n", " for _ in range(20):\n", " seed = next(lcg_gen)\n", " total_sum += max_subarray_sum(n, seed, min_val, max_val)\n", " return total_sum\n", "\n", "# Parameters\n", "n = 10000 # Number of random numbers\n", "initial_seed = 42 # Initial seed for the LCG\n", "min_val = -10 # Minimum value of random numbers\n", "max_val = 10 # Maximum value of random numbers\n", "\n", "# Timing the function\n", "import time\n", "start_time = time.time()\n", "result = total_max_subarray_sum(n, initial_seed, min_val, max_val)\n", "end_time = time.time()\n", "\n", "print(\"Total Maximum Subarray Sum (20 runs):\", result)\n", "print(\"Execution Time: {:.6f} seconds\".format(end_time - start_time))\n", "\"\"\"" ] }, { "cell_type": "code", "execution_count": null, "id": "0be9f47d-5213-4700-b0e2-d444c7c738c0", "metadata": {}, "outputs": [], "source": [ "def stream_gpt(python):\n", " stream = openai.chat.completions.create(model=OPENAI_MODEL, messages=messages_for(python), stream=True)\n", " reply = \"\"\n", " for chunk in stream:\n", " fragment = chunk.choices[0].delta.content or \"\"\n", " reply += fragment\n", " yield reply" ] }, { "cell_type": "code", "execution_count": null, "id": "8669f56b-8314-4582-a167-78842caea131", "metadata": {}, "outputs": [], "source": [ "def stream_claude(python):\n", " result = claude.messages.stream(\n", " model=CLAUDE_MODEL,\n", " max_tokens=2000,\n", " system=system_message,\n", " messages=[{\"role\": \"user\", \"content\": user_prompt_for(python)}],\n", " )\n", " reply = \"\"\n", " with result as stream:\n", " for text in stream.text_stream:\n", " reply += text\n", " yield reply" ] }, { "cell_type": "code", "execution_count": null, "id": "97205162", "metadata": {}, "outputs": [], "source": [ "def stream_gemini(python):\n", " response = client.models.generate_content_stream(\n", " model=GEMINI_MODEL,\n", " config=types.GenerateContentConfig(\n", " system_instruction=system_message),\n", " contents=user_prompt_for(python)\n", " )\n", "\n", " reply = \"\"\n", " for chunk in response:\n", " fragment = chunk.text or \"\"\n", " reply += fragment\n", " yield reply\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "id": "4f94b13e", "metadata": {}, "outputs": [], "source": [ "def stream_llama_local(python):\n", " stream = ollama.chat(\n", " model='llama3.2',\n", " messages=messages_for(python),\n", " stream=True,\n", " )\n", "\n", " reply = \"\"\n", " # Iterate through the streamed chunks and print the content\n", " for chunk in stream:\n", " #print(chunk['message']['content'], end='', flush=True)\n", " if 'content' in chunk['message']:\n", " fragment = chunk['message']['content']\n", " reply += fragment\n", " yield reply\n" ] }, { "cell_type": "code", "execution_count": null, "id": "2f1ae8f5-16c8-40a0-aa18-63b617df078d", "metadata": {}, "outputs": [], "source": [ "def optimize(python, model):\n", " if model==\"GPT\":\n", " result = stream_gpt(python)\n", " elif model==\"Claude\":\n", " result = stream_claude(python)\n", " elif model==\"Gemini\":\n", " result = stream_gemini(python)\n", " elif model==\"Llama\":\n", " result = stream_llama_local(python)\n", "\n", " else:\n", " raise ValueError(\"Unknown model\")\n", " for stream_so_far in result:\n", " yield stream_so_far" ] }, { "cell_type": "code", "execution_count": null, "id": "f1ddb38e-6b0a-4c37-baa4-ace0b7de887a", "metadata": {}, "outputs": [], "source": [ "with gr.Blocks() as ui:\n", " with gr.Row():\n", " python = gr.Textbox(label=\"Python code:\", lines=10, value=python_hard)\n", " cpp = gr.Textbox(label=\"C++ code, copy it here: https://www.programiz.com/cpp-programming/online-compiler/\", lines=10)\n", " with gr.Row():\n", " model = gr.Dropdown([\"GPT\", \"Claude\", \"Gemini\", \"Llama\"], label=\"Select model\", value=\"GPT\")\n", " convert = gr.Button(\"Convert code\")\n", "\n", " convert.click(optimize, inputs=[python, model], outputs=[cpp])\n", "\n", "ui.launch(inbrowser=True)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.13" } }, "nbformat": 4, "nbformat_minor": 5 }