{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "135717e7", "metadata": { "vscode": { "languageId": "plaintext" } }, "outputs": [], "source": [ "# imports\n", "\n", "import os\n", "import requests\n", "from dotenv import load_dotenv\n", "from bs4 import BeautifulSoup\n", "from IPython.display import Markdown, display\n", "from openai import OpenAI\n", "import ollama" ] }, { "cell_type": "code", "execution_count": 2, "id": "29a9e634", "metadata": { "vscode": { "languageId": "plaintext" } }, "outputs": [], "source": [ "# OPTION 1\n", "# using openai\n", "\n", "# message = \"Hello, GPT! This is my first ever message to you! Hi!\"\n", "# client = OpenAI(base_url=\"http://localhost:11434/v1\", api_key=\"not-needed\")\n", "# response = openai.chat.completions.create(model=``, messages=[{\"role\":\"user\", \"content\":message}])\n", "# print(response.choices[0].message.content)" ] }, { "cell_type": "code", "execution_count": null, "id": "306993ed", "metadata": { "vscode": { "languageId": "plaintext" } }, "outputs": [], "source": [ "# OPTION 2\n", "# using Ollama\n", "\n", "message = \"Hello, GPT! This is my first ever message to you! Hi!\"\n", "model=\"llama3\"\n", "response=ollama.chat(model=model,messages=[{\"role\":\"user\",\"content\":message}])\n", "print(response[\"message\"][\"content\"])\n" ] }, { "cell_type": "code", "execution_count": 4, "id": "856f767b", "metadata": { "vscode": { "languageId": "plaintext" } }, "outputs": [], "source": [ "# A class to represent a Webpage\n", "# If you're not familiar with Classes, check out the \"Intermediate Python\" notebook\n", "\n", "# Some websites need you to use proper headers when fetching them:\n", "headers = {\n", " \"User-Agent\": \"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/117.0.0.0 Safari/537.36\"\n", "}\n", "\n", "class Website:\n", "\n", " def __init__(self, url):\n", " \"\"\"\n", " Create this Website object from the given url using the BeautifulSoup library\n", " \"\"\"\n", " self.url = url\n", " response = requests.get(url, headers=headers)\n", " soup = BeautifulSoup(response.content, 'html.parser')\n", " self.title = soup.title.string if soup.title else \"No title found\"\n", " for irrelevant in soup.body([\"script\", \"style\", \"img\", \"input\"]):\n", " irrelevant.decompose()\n", " self.text = soup.body.get_text(separator=\"\\n\", strip=True)" ] }, { "cell_type": "code", "execution_count": 5, "id": "4ce558dc", "metadata": { "vscode": { "languageId": "plaintext" } }, "outputs": [], "source": [ "# Let's try one out. Change the website and add print statements to follow along.\n", "\n", "ed = Website(\"https://edwarddonner.com\")" ] }, { "cell_type": "code", "execution_count": 6, "id": "5e3956f8", "metadata": { "vscode": { "languageId": "plaintext" } }, "outputs": [], "source": [ "# Define our system prompt - you can experiment with this later, changing the last sentence to 'Respond in markdown in Spanish.\"\n", "\n", "system_prompt = \"You are an assistant that analyzes the contents of a website \\\n", "and provides a short summary, ignoring text that might be navigation related. \\\n", "Respond in markdown.\"" ] }, { "cell_type": "code", "execution_count": 7, "id": "99d791b4", "metadata": { "vscode": { "languageId": "plaintext" } }, "outputs": [], "source": [ "# A function that writes a User Prompt that asks for summaries of websites:\n", "\n", "def user_prompt_for(website):\n", " user_prompt = f\"You are looking at a website titled {website.title}\"\n", " user_prompt += \"\\nThe contents of this website is as follows; \\\n", "please provide a short summary of this website in markdown. \\\n", "If it includes news or announcements, then summarize these too.\\n\\n\"\n", " user_prompt += website.text\n", " return user_prompt" ] }, { "cell_type": "code", "execution_count": 8, "id": "5d89b748", "metadata": { "vscode": { "languageId": "plaintext" } }, "outputs": [], "source": [ "# See how this function creates exactly the format above\n", "\n", "def messages_for(website):\n", " return [\n", " {\"role\": \"system\", \"content\": system_prompt},\n", " {\"role\": \"user\", \"content\": user_prompt_for(website)}\n", " ]" ] }, { "cell_type": "code", "execution_count": 9, "id": "9a97d3e2", "metadata": { "vscode": { "languageId": "plaintext" } }, "outputs": [], "source": [ "# And now: call the OpenAI API. You will get very familiar with this!\n", "\n", "def summarize(url):\n", " website = Website(url)\n", " response=ollama.chat(model=model,messages=messages_for(website))\n", " return(response[\"message\"][\"content\"])" ] }, { "cell_type": "code", "execution_count": null, "id": "ec13fe0a", "metadata": { "vscode": { "languageId": "plaintext" } }, "outputs": [], "source": [ "summarize(\"https://edwarddonner.com\")" ] }, { "cell_type": "code", "execution_count": 11, "id": "e3ade092", "metadata": { "vscode": { "languageId": "plaintext" } }, "outputs": [], "source": [ "# A function to display this nicely in the Jupyter output, using markdown\n", "\n", "def display_summary(url):\n", " summary = summarize(url)\n", " display(Markdown(summary))" ] }, { "cell_type": "code", "execution_count": null, "id": "be2d49e6", "metadata": { "vscode": { "languageId": "plaintext" } }, "outputs": [], "source": [ "display_summary(\"https://edwarddonner.com\")" ] }, { "cell_type": "code", "execution_count": null, "id": "1ccbf33b", "metadata": { "vscode": { "languageId": "plaintext" } }, "outputs": [], "source": [ "display_summary(\"https://cnn.com\")" ] }, { "cell_type": "code", "execution_count": null, "id": "ae3d0eae", "metadata": { "vscode": { "languageId": "plaintext" } }, "outputs": [], "source": [ "display_summary(\"https://anthropic.com\")" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.13" } }, "nbformat": 4, "nbformat_minor": 5 }