{ "cells": [ { "cell_type": "markdown", "id": "61f56afc-bc15-46a4-8eb1-d940c332cf52", "metadata": {}, "source": [ "# Meeting minutes creator\n", "\n", "In this colab, we make a meeting minutes program.\n", "\n", "It includes useful code to connect your Google Drive to your colab.\n", "\n", "Upload your own audio to make this work!!\n", "\n", "https://colab.research.google.com/drive/1KSMxOCprsl1QRpt_Rq0UqCAyMtPqDQYx?usp=sharing\n", "\n", "This should run nicely on a low-cost or free T4 box." ] }, { "cell_type": "markdown", "id": "501aa674", "metadata": {}, "source": [ "### BUT FIRST - Something cool - really showing you how \"model inference\" works via OpenAI" ] }, { "cell_type": "code", "execution_count": null, "id": "e9289ba7-200c-43a9-b67a-c5ce826c9537", "metadata": {}, "outputs": [], "source": [ "from visualizer import TokenPredictor, create_token_graph, visualize_predictions\n", "\n", "message = \"In one sentence, describe the color orange to someone who has never been able to see\"\n", "model_name = \"gpt-4.1-mini\"\n", "\n", "predictor = TokenPredictor(model_name)\n", "predictions = predictor.predict_tokens(message)\n", "G = create_token_graph(model_name, predictions)\n", "plt = visualize_predictions(G)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "id": "540a8255", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": ".venv", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.9" } }, "nbformat": 4, "nbformat_minor": 5 }