{ "cells": [ { "cell_type": "code", "execution_count": null, "id": "9ab446e4-219c-4589-aa8f-9386adcf5c60", "metadata": {}, "outputs": [], "source": [ "## Project Overview\n", "This project combines web scraping with OpenAI’s GPT models to summarize online training content. It extracts material from Microsoft’s **Quantum Computing Fundamentals** learning path, cleans it, and generates concise summaries per lesson as well as an overall course summary. \n", "\n", "## Key Features\n", "- Fetches and parses webpages using **requests** and **BeautifulSoup** \n", "- Produces summaries in multiple languages (e.g., English, Spanish, or any language) and at varying levels of detail (short, medium, detailed) \n", "- Summarizes individual lessons on demand or processes entire learning paths \n", "- Presents results as clean, structured **Markdown** directly in the notebook \n", "\n", "## Tech Stack\n", "- **Model**: GPT-4o-mini \n", "- **Language**: Python \n", "- **Libraries**: BeautifulSoup, OpenAI \n", "\n", "## Purpose\n", "This project demonstrates how AI can streamline the understanding of technical documentation and online courses by generating multilingual, customizable summaries. \n" ] }, { "cell_type": "code", "execution_count": null, "id": "4e2a9393-7767-488e-a8bf-27c12dca35bd", "metadata": {}, "outputs": [], "source": [ "# imports\n", "\n", "import os\n", "import requests\n", "from dotenv import load_dotenv\n", "from bs4 import BeautifulSoup\n", "from IPython.display import Markdown, display\n", "from openai import OpenAI\n", "\n", "# If you get an error running this cell, then please head over to the troubleshooting notebook!" ] }, { "cell_type": "code", "execution_count": null, "id": "7b87cadb-d513-4303-baee-a37b6f938e4d", "metadata": {}, "outputs": [], "source": [ "# Load environment variables from .env file (not included)\n", "\n", "load_dotenv(override=True)\n", "api_key = os.getenv('OPENAI_API_KEY')\n", "\n", "# Check the key\n", "\n", "if not api_key:\n", " print(\"No API key was found\")\n", "elif not api_key.startswith(\"sk-proj-\"):\n", " print(\"An API key was found, but it doesn't start sk-proj-; please check you're using the right key\")\n", "elif api_key.strip() != api_key:\n", " print(\"An API key was found, but it looks like it might have space or tab characters at the start or end - please remove them\")\n", "else:\n", " print(\"API key found and looks good so far!\")\n" ] }, { "cell_type": "code", "execution_count": null, "id": "019974d9-f3ad-4a8a-b5f9-0a3719aea2d3", "metadata": {}, "outputs": [], "source": [ "openai = OpenAI()\n", "\n", "# If this doesn't work, try Kernel menu >> Restart Kernel and Clear Outputs Of All Cells, then run the cells from the top of this notebook down.\n" ] }, { "cell_type": "code", "execution_count": null, "id": "c5e793b2-6775-426a-a139-4848291d0463", "metadata": {}, "outputs": [], "source": [ "# A class to represent a Webpage\n", "\n", "# Some websites need you to use proper headers when fetching them:\n", "headers = {\n", " \"User-Agent\": \"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/117.0.0.0 Safari/537.36\"\n", "}\n", "\n", "class Website:\n", "\n", " def __init__(self, url):\n", " \"\"\"\n", " Create this Website object from the given url using the BeautifulSoup library\n", " \"\"\"\n", " self.url = url\n", " response = requests.get(url, headers=headers)\n", " soup = BeautifulSoup(response.content, 'html.parser')\n", " self.title = soup.title.string if soup.title else \"No title found\"\n", " for irrelevant in soup.body([\"script\", \"style\", \"img\", \"input\"]):\n", " irrelevant.decompose()\n", " self.text = soup.body.get_text(separator=\"\\n\", strip=True)" ] }, { "cell_type": "code", "execution_count": null, "id": "2ef960cf-6dc2-4cda-afb3-b38be12f4c97", "metadata": {}, "outputs": [], "source": [ "\n", "\n", "training_website = Website(\"https://learn.microsoft.com/en-us/training/paths/quantum-computing-fundamentals/\")\n", "print(training_website.title)\n", "print(training_website.text)" ] }, { "cell_type": "code", "execution_count": null, "id": "abdb8417-c5dc-44bc-9bee-2e059d162699", "metadata": {}, "outputs": [], "source": [ "# Create a system prompt function that can use different language and length \n", "\n", "def build_system_prompt(language=\"Spanish\", length=\"short\"):\n", " return f\"\"\"You are an assistant that analyzes the contents of a website and provides a {length} summary, ignoring text that might be navigation related.\n", " Respond in 20 words or less markdown, and respond in {language}.\n", " \"\"\"\n", " \n", " \n", " " ] }, { "cell_type": "code", "execution_count": null, "id": "987c95a6-6618-4d22-a2c3-3038a9d3f154", "metadata": {}, "outputs": [], "source": [ "# Create a function that writes a User Prompt that asks for summaries of websites:\n", "\n", "def user_prompt_for(website):\n", " user_prompt = f\"You are looking at a website titled {website.title}\"\n", " user_prompt += \"\\nThe contents of this website is as follows; \\\n", "please provide a short summary in {language} of this website in markdown. \\\n", "If it includes news or announcements, then summarize these too.\\n\\n\"\n", " user_prompt += website.text\n", " return user_prompt" ] }, { "cell_type": "code", "execution_count": null, "id": "8a846c89-81d8-4f48-9d62-7744d76694e2", "metadata": {}, "outputs": [], "source": [ "print(user_prompt_for(training_website))\n" ] }, { "cell_type": "code", "execution_count": null, "id": "26448ec4-5c00-4204-baec-7df91d11ff2e", "metadata": {}, "outputs": [], "source": [ "print(user_prompt_for(training_website))" ] }, { "cell_type": "markdown", "id": "d06e8d78-ce4c-4b05-aa8e-17050c82bb47", "metadata": {}, "source": [ "## And now let's build useful messages for GPT-4o-mini, using a function" ] }, { "cell_type": "code", "execution_count": null, "id": "0134dfa4-8299-48b5-b444-f2a8c3403c88", "metadata": {}, "outputs": [], "source": [ "\n", "def messages_for(website, language=\"Spanish\", length=\"short\"):\n", " return [\n", " {\"role\": \"system\", \"content\": build_system_prompt(language, length)},\n", " {\"role\": \"user\", \"content\": user_prompt_for(website)}\n", " ]" ] }, { "cell_type": "markdown", "id": "16f49d46-bf55-4c3e-928f-68fc0bf715b0", "metadata": {}, "source": [ "## Time to bring it together - the API for OpenAI is very simple!" ] }, { "cell_type": "code", "execution_count": null, "id": "425214b8-c5c5-4d7a-8b79-f9e151c9d54f", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "905b9919-aba7-45b5-ae65-81b3d1d78e34", "metadata": {}, "outputs": [], "source": [ "#call the OpenAI API. \n", "\n", "def summarize(url, language=\"Spanish\", length=\"short\"):\n", " website = Website(url)\n", " response = openai.chat.completions.create(\n", " model=\"gpt-4o-mini\",\n", " messages=messages_for(website, language, length)\n", " )\n", " return response.choices[0].message.content\n", " " ] }, { "cell_type": "code", "execution_count": null, "id": "1c437357-d004-49f5-95c3-fce38aefcb5c", "metadata": {}, "outputs": [], "source": [ "#Summarize all the lessons in microsoft quantum computer training, having the option to summarize by lesson, or the training as a whole\n", "\n", "def summarize_training(path_url, language=\"Spanish\", length=\"short\"):\n", " links = get_links_from_path(path_url)\n", " print(f\"Found {len(links)} lessons\")\n", "\n", " all_summaries = []\n", "\n", " for link in links:\n", " print(f\"Summarizing {link}...\")\n", " summary = summarize(link, language, length)\n", " all_summaries.append(f\"### {link}\\n{summary}\\n\")\n", "\n", " combined_prompt = \"Here are summaries of each lesson:\\n\\n\" + \"\\n\".join(all_summaries)\n", " response = openai.chat.completions.create(\n", " model=\"gpt-4o-mini\",\n", " messages=[\n", " {\"role\": \"system\", \"content\": build_system_prompt(language, length)},\n", " {\"role\": \"user\", \"content\": \"Please summarize the entire training path based on these lesson summaries:\\n\\n\" + combined_prompt}\n", " ]\n", " )\n", "\n", " return \"\\n\".join(all_summaries) + \"\\n\\n## General Course Summary\\n\" + response.choices[0].message.content\n", " " ] }, { "cell_type": "code", "execution_count": null, "id": "05e38d41-dfa4-4b20-9c96-c46ea75d9fb5", "metadata": {}, "outputs": [], "source": [ "summarize(\"https://learn.microsoft.com/en-us/training/paths/quantum-computing-fundamentals/\")" ] }, { "cell_type": "code", "execution_count": null, "id": "3d926d59-450e-4609-92ba-2d6f244f1342", "metadata": {}, "outputs": [], "source": [ "# A function to display this nicely in the Jupyter output, using markdown\n", "\n", "def display_summary(url):\n", " summary = summarize(url)\n", " display(Markdown(summary))" ] }, { "cell_type": "code", "execution_count": null, "id": "3018853a-445f-41ff-9560-d925d1774b2f", "metadata": {}, "outputs": [], "source": [ "display_summary(\"https://learn.microsoft.com/en-us/training/paths/quantum-computing-fundamentals/\")" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.13" } }, "nbformat": 4, "nbformat_minor": 5 }