{ "cells": [ { "cell_type": "markdown", "id": "834bf7f1", "metadata": {}, "source": [ "Task: build a tool that takes a technical question and responds with an explanation" ] }, { "cell_type": "code", "execution_count": null, "id": "ac41ae00", "metadata": {}, "outputs": [], "source": [ "# imports \n", "\n", "from openai import OpenAI" ] }, { "cell_type": "code", "execution_count": null, "id": "c9727896", "metadata": {}, "outputs": [], "source": [ "openai = OpenAI(base_url='http://localhost:11434/v1', api_key='ollama')" ] }, { "cell_type": "code", "execution_count": null, "id": "8e2ed70e", "metadata": {}, "outputs": [], "source": [ "MODEL_LLAMA = 'llama3.2'" ] }, { "cell_type": "code", "execution_count": null, "id": "ae31ec03", "metadata": {}, "outputs": [], "source": [ "# here is the question; type over this to ask something new\n", "\n", "question = \"\"\"\n", "Please explain what this code does and why:\n", "yield from {book.get(\"author\") for book in books if book.get(\"author\")}\n", "\"\"\"" ] }, { "cell_type": "code", "execution_count": null, "id": "918bc133", "metadata": {}, "outputs": [], "source": [ "system_prompt = \"\"\"\n", "You are an expert software engineer.\n", "You are given a technical question and you need to explain what the code does and why.\n", "\"\"\"" ] }, { "cell_type": "code", "execution_count": null, "id": "c9bbdcb8", "metadata": {}, "outputs": [], "source": [ "# Get Llama 3.2 to answer\n", "from IPython.display import Markdown, update_display\n", "\n", "\n", "stream = openai.chat.completions.create(\n", " model=MODEL_LLAMA,\n", " messages=[\n", " {\"role\": \"system\", \"content\": system_prompt},\n", " {\"role\": \"user\", \"content\": question}\n", " ],\n", " stream=True\n", ")\n", "response = \"\"\n", "display_handle = display(Markdown(\"\"), display_id=True)\n", "for chunk in stream:\n", " response += chunk.choices[0].delta.content or ''\n", " update_display(Markdown(response), display_id=display_handle.display_id)\n" ] } ], "metadata": { "kernelspec": { "display_name": ".venv", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.10" } }, "nbformat": 4, "nbformat_minor": 5 }