{ "cells": [ { "cell_type": "markdown", "id": "0", "metadata": {}, "source": [ "# End of week 1 exercise\n", "\n", "To demonstrate your familiarity with OpenAI API, and also Ollama, build a tool that takes a technical question, \n", "and responds with an explanation. This is a tool that you will be able to use yourself during the course!" ] }, { "cell_type": "code", "execution_count": null, "id": "1", "metadata": {}, "outputs": [], "source": [ "# imports\n", "from IPython.display import Markdown, display, update_display\n", "from dotenv import load_dotenv\n", "import os\n", "import openai\n", "from openai import OpenAI\n" ] }, { "cell_type": "code", "execution_count": null, "id": "2", "metadata": { "editable": true, "slideshow": { "slide_type": "" }, "tags": [] }, "outputs": [], "source": [ "# constants\n", "models = {\n", " 'MODEL_GPT': 'gpt-4o-mini',\n", " 'MODEL_LLAMA': 'llama3.2'\n", "}\n", "\n", "load_dotenv(override=True)\n", "api_key = os.getenv(\"OPENAI_API_KEY\")\n", "\n", "# To use ollama using openai API (ensure that ollama is running on localhost)\n", "ollama_via_openai = OpenAI(base_url='http://localhost:11434/v1', api_key='ollama')\n", "\n", "def model_choices(model):\n", " if model in models:\n", " return models[model]\n", " else:\n", " raise ValueError(f\"Model {model} not found in models dictionary\")\n", "\n", "def get_model_api(model='MODEL_GPT'):\n", " if model == 'MODEL_GPT':\n", " return openai, model_choices(model)\n", " elif model == 'MODEL_LLAMA':\n", " return ollama_via_openai, model_choices(model)\n", " else:\n", " raise ValueError(f\"Model {model} not found in models dictionary\")\n" ] }, { "cell_type": "code", "execution_count": null, "id": "3", "metadata": { "editable": true, "slideshow": { "slide_type": "" }, "tags": [] }, "outputs": [], "source": [ "# set up environment\n", "\n", "system_prompt = \"\"\" You are an AI assistant helping a user find information about a product. \n", "The user asks you a technical question about code, and you provide a response with code snippets and explanations.\"\"\"\n", "\n", "def stream_brochure(question, model):\n", " api, model_name = get_model_api(model)\n", " stream = api.chat.completions.create(\n", " model=model_name,\n", " messages=[\n", " {\"role\": \"system\", \"content\": system_prompt},\n", " {\"role\": \"user\", \"content\": question}\n", " ],\n", " stream=True\n", " )\n", " \n", " response = \"\"\n", " display_handle = display(Markdown(\"\"), display_id=True)\n", " for chunk in stream:\n", " response += chunk.choices[0].delta.content or ''\n", " response = response.replace(\"```\",\"\").replace(\"markdown\", \"\")\n", " update_display(Markdown(response), display_id=display_handle.display_id)\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "id": "4", "metadata": {}, "outputs": [], "source": [ "# Here is the question; type over this to ask something new\n", "\n", "question = \"\"\"\n", "Please explain what this code does and why:\n", "yield from {book.get(\"author\") for book in books if book.get(\"author\")}\n", "\"\"\"" ] }, { "cell_type": "code", "execution_count": null, "id": "5", "metadata": {}, "outputs": [], "source": [ "# Get the model of your choice (choices appeared below) to answer, with streaming \n", "\n", "\"\"\"models = {\n", " 'MODEL_GPT': 'gpt-4o-mini',\n", " 'MODEL_LLAMA': 'llama3.2'\n", "}\"\"\"\n", "\n", "stream_brochure(question,'MODEL_GPT')" ] }, { "cell_type": "code", "execution_count": null, "id": "6", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.13" } }, "nbformat": 4, "nbformat_minor": 5 }