{ "cells": [ { "cell_type": "markdown", "id": "7db973a2-c95e-4939-a0d7-b54edec4d2cf", "metadata": {}, "source": [ "# Bitcoin Market Prediction uisng CoinmarketCap\n", "An AI-powered project using historical CoinMarketCap data to predict Bitcoin price trends and offer actionable insights for traders." ] }, { "cell_type": "markdown", "id": "b792b517-bbc8-4e2c-bff2-45fad1a784dc", "metadata": {}, "source": [ "## Imports" ] }, { "cell_type": "code", "execution_count": null, "id": "51523d62-825a-4a15-aec2-7c910beb5fda", "metadata": {}, "outputs": [], "source": [ "import os\n", "import requests\n", "from dotenv import load_dotenv\n", "from bs4 import BeautifulSoup\n", "from IPython.display import Markdown, display\n", "from openai import OpenAI" ] }, { "cell_type": "markdown", "id": "2e3816b0-4557-4225-bfb9-9933d813548a", "metadata": {}, "source": [ "## .env configuration" ] }, { "cell_type": "code", "execution_count": null, "id": "02be59e7-01cc-41b5-88c3-a47860570078", "metadata": {}, "outputs": [], "source": [ "load_dotenv(override=True)\n", "api_key = os.getenv('OPENAI_API_KEY')\n", "\n", "# Check the key\n", "\n", "if not api_key:\n", " print(\"No API key was found - please head over to the troubleshooting notebook in this folder to identify & fix!\")\n", "elif not api_key.startswith(\"sk-proj-\"):\n", " print(\"An API key was found, but it doesn't start sk-proj-; please check you're using the right key - see troubleshooting notebook\")\n", "elif api_key.strip() != api_key:\n", " print(\"An API key was found, but it looks like it might have space or tab characters at the start or end - please remove them - see troubleshooting notebook\")\n", "else:\n", " print(\"API key found and looks good so far!\")" ] }, { "cell_type": "markdown", "id": "3fc32555-ea4e-45fe-ad44-9dbf4441afd1", "metadata": {}, "source": [ "### This line creates an authenticated OpenAI client instance, used to make API requests in your code." ] }, { "cell_type": "code", "execution_count": null, "id": "0845c687-6610-4f83-89e8-fb94bc47ddd2", "metadata": {}, "outputs": [], "source": [ "from openai import OpenAI\n", "openai = OpenAI(api_key=api_key)" ] }, { "cell_type": "code", "execution_count": null, "id": "d140db1a-dd72-4986-8f38-09f8d8f97b00", "metadata": {}, "outputs": [], "source": [ "headers = {\n", " \"User-Agent\": \"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/117.0.0.0 Safari/537.36\"\n", "}\n", "\n", "class Website:\n", "\n", " def __init__(self, url):\n", " \"\"\"\n", " Create this Website object from the given url using the BeautifulSoup library\n", " \"\"\"\n", " self.url = url\n", " response = requests.get(url, headers=headers)\n", " soup = BeautifulSoup(response.content, 'html.parser')\n", " self.title = soup.title.string if soup.title else \"No title found\"\n", " for irrelevant in soup.body([\"script\", \"style\", \"img\", \"input\"]):\n", " irrelevant.decompose()\n", " self.text = soup.body.get_text(separator=\"\\n\", strip=True)" ] }, { "cell_type": "code", "execution_count": null, "id": "fdc96768-94a8-4a08-acf1-32a62b699b94", "metadata": {}, "outputs": [], "source": [ "system_prompt = \"\"\"\n", "You are an intelligent assistant specialized in Bitcoin market prediction. Your tasks are:\n", "\n", "- Collect, preprocess, and analyze historical Bitcoin price and volume data sourced from CoinMarketCap historical data tables or API.\n", "- Extract relevant time series and technical features from OHLC (open, high, low, close) and volume data.\n", "- Use machine learning or statistical models to forecast future Bitcoin price trends.\n", "- Output clear, concise, and actionable insights, focusing on predicted price direction and potential trading signals.\n", "- Ensure all data collection respects CoinMarketCap’s terms of service.\n", "- Present findings in user-friendly language, explaining prediction confidence and market risks.\n", "- Continuously improve prediction accuracy through back-testing on updated datasets.\n", "\n", "\"\"\"\n" ] }, { "cell_type": "code", "execution_count": null, "id": "7d39e983-5b65-4de1-bdf0-e4239c3eb03f", "metadata": {}, "outputs": [], "source": [ "def user_prompt_for(website):\n", " user_prompt = f\"You are analyzing historical Bitcoin market data from the webpage titled '{website.title}'.\\n\"\n", " user_prompt += (\n", " \"The data includes daily open, high, low, close prices, trading volume, \"\n", " \"and market capitalization presented in a table format.\\n\"\n", " \"Please provide a clear and concise analysis in Markdown format, focusing on recent trends, \"\n", " \"price movements, volatility, and any insights that could help forecast Bitcoin price directions.\\n\"\n", " \"If possible, include technical indicators, significant patterns, or notable market events mentioned in the data.\\n\\n\"\n", " )\n", " user_prompt += website.text\n", " return user_prompt\n" ] }, { "cell_type": "code", "execution_count": null, "id": "d3d41ed3-4753-49f2-b51f-37e8be43102c", "metadata": {}, "outputs": [], "source": [ "def messages_for(website):\n", " return [\n", " {\"role\": \"system\", \"content\": system_prompt},\n", " {\"role\": \"user\", \"content\": user_prompt_for(website)}\n", " ]" ] }, { "cell_type": "code", "execution_count": null, "id": "0eb99fcf-75a2-41b8-bf53-568f94264438", "metadata": {}, "outputs": [], "source": [ "# And now: call the OpenAI API. You will get very familiar with this!\n", "\n", "def summarize(url):\n", " website = Website(url)\n", " response = openai.chat.completions.create(\n", " model = \"gpt-4o-mini\",\n", " messages = messages_for(website)\n", " )\n", " return response.choices[0].message.content\n", "\n", "# A function to display this nicely in the Jupyter output, using markdown\n", "\n", "def display_summary(summary): \n", " display(Markdown(summary))" ] }, { "cell_type": "code", "execution_count": null, "id": "a0e57921-5132-40c6-834b-03a11a96425c", "metadata": {}, "outputs": [], "source": [ "url = \"https://coinmarketcap.com/currencies/bitcoin/historical-data/3\"\n", "summary = summarize(url)\n", "display_summary(summary)" ] }, { "cell_type": "code", "execution_count": null, "id": "19d9b69a-6493-402d-a0b4-a486c322c816", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.13" } }, "nbformat": 4, "nbformat_minor": 5 }